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Simple Summary: Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune
cells. Emerging data indicate that they are also key players in the progression of multiple tumors.
In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze
the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases,
those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on
the cross-interactions among them and with the surrounding stromal cells that form the tumor
microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted
to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of
markers and tools to allow the modulation of individual ILC subsets, in addition to the development
of standardized protocols, is essential for addressing the therapeutic modulation of ILCs.

Abstract: The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered
in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by
the transcription factors necessary for their development and the cytokines and chemokines they
produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral
properties and capable of adapting their phenotypes and functions depending on the signals
they receive from their surrounding environment. ILCs are considered the innate counterparts of
the adaptive immune cells during physiological and pathological processes, including cancer, and as
such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only
in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other
immune and stromal cells in the metastatic microenvironment further dictates and influences this
dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more
suitable and organ-specific metastatic environments. Here, we review the present knowledge on
the different ILC subsets, focusing on their interplay with components of the tumor environment
during the development of primary melanoma as well as on metastatic progression to organs, such as
the liver or lung.
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1. Introduction

The incidence of melanoma has risen worldwide over the past decade, with approximately
132,000 new diagnoses each year, according to the World Health Organization [1]. Although it
represents only 1% of all cutaneous malignancies, melanoma is the most deadly of all skin cancers [2].
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Although the development of combined treatments for melanoma has decreased deaths among patients
by around 65%, patients with metastatic disease still unfortunately encounter death as an irremediable
fate, with a survival rate lower than 25% [3]. Targeted therapies have improved this scenario [4,5],
but tumor resistance in metastatic melanoma is still of great concern [6]. In addition to this resistance,
inherent in the tumor cells themselves, some initially responsive patients might develop de novo
resistance driven by the complex reciprocal interactions between the tumor and its microenvironment [7],
which leads to the failure of routine therapies. The mechanisms for the development of resistance against
current therapies include changes in the immune-cell subsets towards immunosuppressive phenotypes
and programmed cell death-ligand 1 (PD-L1) expression in the tumor [8]. Indeed, therapies that control
inhibitory pathways, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and/or programmed cell
death protein-1 (PD-1) receptors, result in better outcomes for patients with advanced melanoma [4,5].
In addition to the previous ones, recently intervening with a second line of checkpoint blockade targeting
PD-1, T-cell immunoglobulin and mucin domain-3 (TIM-3)and/or killer-cell immunoglobulin-like
receptors (KIR) it’s being considered as a more effective strategy [9].

The tumor microenvironment (TME) may be considered an ecosystem where multiple cell types
coexist. This specialized environment is composed of tumor cells, non-tumor cells, and a non-cellular
compartment. The non-tumor cells include endothelial cells, fibroblasts, and innate and adaptive
immune cells. The non-cellular compartment of the TME is composed of extracellular matrix (ECM)
and extracellular vesicles (EVs). The components of the TME strongly interact with one another,
which significantly impacts their function and the TME’s composition [10–12]. In this review, we focus
on the innate lymphoid compartment during melanoma progression, including its interaction with
tumor cells and other components of the TME.

2. Innate Lymphoid Cells

Over the last decade, innate lymphoid cells (ILCs) have emerged as new players in the immune
TME, involved in melanoma progression and the acquisition of resistance. ILCs modulate the functions
of immune cells, such as dendritic cells [13] and T cells [14]; moreover, they interact with other elements
of the TME such as the ECM [15,16], endothelial cells [17,18], and fibroblasts [16]. All of these TME
components are critical participants in melanoma progression and colonization of the liver [18,19]
and lungs [20], among other sites.

ILCs and the cells of the adaptive immune system derive from a common progenitor in the bone
marrow [19,20]. ILCs differ from other components of the adaptive immune system by their lack of
rearranged antigen receptors [21,22]. Spits et al. [23] classified ILCs into three groups according to
the differential expression of transcription factors and specific cytokine that they produce (Figure 1).
Type 1 ILCs include helper ILC1 (ILC1s) and cytotoxic natural killer (NK) cells, mirroring Th1 cells
in the adaptive immune system. Both subsets are characterized by the need for the transcription factor
T-bet to develop and by the capacity for producing interferon gamma (IFNγ) and tumor necrosis factor
alpha (TNFα) (Figure 1). NK cells were the first component of the innate lymphoid compartment
to be discovered [24,25]. They produce cytotoxic molecules and have thus been considered central
players in immune surveillance against tumors since their discovery. ILC1s resemble NK cells at
the phenotypic level, but lack their cytotoxic potential and do not require the transcription factor Eomes
for their development and function [26,27]. ILC1s also express considerable amounts of interleukin-7
receptor (IL-7R), while tissue-resident NK cells do not [28].
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Figure 1. Innate lymphoid cell classification. The ILCs are classified into three main groups—Type 1, 
Type 2, and Type 3 ILCs—according to the differential expression of transcription factors and 
specific cytokine repertoires that they produce. NCR—Natural cytotoxicity receptors; 
IFNγ—Interferon gamma; TNFα—Tumor necrosis factor alpha. 

Type 2 ILCs (ILC2s) express the transcription factor GATA binding protein 3 (GATA3) and 
produce IL-5, IL-13, and IL-22 to restore the normal immune state, stimulating tissue repair through 
stromal reaction [29,30]. Type 3 ILCs express the transcription factor retinoic acid receptor-related 
orphan receptor gamma-t (RORγt) and produce IL-17 and IL-22 to create an acute immunologic 
response [31]. They can be further divided into those designated as ILC3s, which include natural 
cytotoxicity receptor-positive NCR(+) ILC3s (NKp46, NKp44, and NKp30) and NCR(−) ILC3s [32], 
and lymphoid tissue inducer (LTi) cells. 

Even though these three ILC groups are well defined, they show a high degree of plasticity, 
being able to transdifferentiate into other ILC subsets when exposed to tissue-specific stimuli [33,34]. 
For example, NCR(+) and NCR(−)ILC3s, together with ILC2s, have the potential to turn into 
IFNγ-producing ILC1-like cells in the presence of IL-12 and IL-15, and IL-1, respectively [35,36]. 

The data beautifully summarized by Bal et al., (2020) shed some light on the pathways that 
mediate the dynamic differentiation patterns of ILCs [37]. Briefly, NK cells become ILC1s upon 
activation with tumor growth factor beta (TGFβ). Both ILC1s and ILC2s transdifferentiate into ILC3s 
upon IL-1β and IL-23 stimulation, while the complementary stimulation of ILC2s with TGFβ leads to 
their transdifferentiation into CD117-ILC3s [37]. Therefore, the plasticity of these immune 
populations complicates the picture of ILCs in both healthy conditions and pathogenesis. Based on 
the multiple phenotypes they may acquire, some authors have postulated the existence of more than 
three subsets [38], adding two other subsets—intraepithelial ILC1s and ILC progenitors (ILCPs)—to 
the abovementioned types of ILCs. 

3. ILCs in the Skin, Liver, and Lung 

The determination of melanoma-related alterations of ILCs requires a preliminary description 
of their status under tumor-free conditions. It is also worth briefly describing innate cells in the 
hepatic and lung compartments, both of which are homing and colonization sites for metastatic 
melanoma [39,40]. 

3.1. Skin 

ILCs are predominantly tissue-resident cells that do not circulate in the body [41]. The skin 
homing of ILCs rely on surface receptors such as C-C motif chemokine receptor 10 (CCR10) and 

Figure 1. Innate lymphoid cell classification. The ILCs are classified into three main groups—Type 1,
Type 2, and Type 3 ILCs—according to the differential expression of transcription factors and specific
cytokine repertoires that they produce. NCR—Natural cytotoxicity receptors; IFNγ—Interferon gamma;
TNFα—Tumor necrosis factor alpha.

Type 2 ILCs (ILC2s) express the transcription factor GATA binding protein 3 (GATA3) and produce
IL-5, IL-13, and IL-22 to restore the normal immune state, stimulating tissue repair through stromal
reaction [29,30]. Type 3 ILCs express the transcription factor retinoic acid receptor-related orphan
receptor gamma-t (RORγt) and produce IL-17 and IL-22 to create an acute immunologic response [31].
They can be further divided into those designated as ILC3s, which include natural cytotoxicity
receptor-positive NCR(+) ILC3s (NKp46, NKp44, and NKp30) and NCR(−) ILC3s [32], and lymphoid
tissue inducer (LTi) cells.

Even though these three ILC groups are well defined, they show a high degree of plasticity, being able
to transdifferentiate into other ILC subsets when exposed to tissue-specific stimuli [33,34]. For example,
NCR(+) and NCR(−)ILC3s, together with ILC2s, have the potential to turn into IFNγ-producing
ILC1-like cells in the presence of IL-12 and IL-15, and IL-1, respectively [35,36].

The data beautifully summarized by Bal et al., (2020) shed some light on the pathways that
mediate the dynamic differentiation patterns of ILCs [37]. Briefly, NK cells become ILC1s upon
activation with tumor growth factor beta (TGFβ). Both ILC1s and ILC2s transdifferentiate into
ILC3s upon IL-1β and IL-23 stimulation, while the complementary stimulation of ILC2s with TGFβ
leads to their transdifferentiation into CD117- ILC3s [37]. Therefore, the plasticity of these immune
populations complicates the picture of ILCs in both healthy conditions and pathogenesis. Based on
the multiple phenotypes they may acquire, some authors have postulated the existence of more than
three subsets [38], adding two other subsets—intraepithelial ILC1s and ILC progenitors (ILCPs)—to
the abovementioned types of ILCs.

3. ILCs in the Skin, Liver, and Lung

The determination of melanoma-related alterations of ILCs requires a preliminary description of
their status under tumor-free conditions. It is also worth briefly describing innate cells in the hepatic
and lung compartments, both of which are homing and colonization sites for metastatic melanoma [39,40].
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3.1. Skin

ILCs are predominantly tissue-resident cells that do not circulate in the body [41]. The skin homing
of ILCs rely on surface receptors such as C-C motif chemokine receptor 10 (CCR10) and cutaneous
lymphocyte-associated antigen (CLA) [42–45]. They also express additional homing-related receptors,
such as C-C motif chemokine receptor 8 (CCR8) in dermal NK cells (Figure 2). All three types of ILCs
are found in the skin, but the relative enrichment of the different phenotypes varies depending on
the status of the organ [41,43,46] (Table 1). A detail description of ILCs in healthy skin could be found
elsewhere [43,47].
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ILCs form the dominant subset [51,52] (Table 1). 

Hepatic Type 1 ILCs are involved in immune regulation with opposing roles, either favoring or 
inhibiting an effective local immune response [53,54]. Liver ILC1s, previously identified as 
liver-resident NK cells, reside in the organ in a state of equilibrium [55] and, unlike conventional NK 
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Figure 2. ILCs in the healthy skin. All three types of ILCs can be found in healthy skin; CD56+ CD16−

NK cells, ILC2s, and NCR(−) ILC3s are the most abundant. All types of skin ILCs express the surface
receptors CCR10 and CLA. ILC—innate lymphoid cell; NCR—NK cell receptor; CCR—C-C motif
chemokine receptor; CLA—cutaneous lymphocyte-associated antigen.

Table 1. Relative abundance of ILCs in skin, liver and lung.

Skin Liver Lung

Healthy Melanoma Healthy Melanoma Healthy Melanoma

Type 1 ILC
ILC1 + ++ ++ + ++ NA *

NK ++ ++++ +++ ++++ ++ ++++

Type 2 ILC ++++ +++ ++ ++ +++ ++++

Type 3 ILC
NCR(+) + +++ + ++ ++ +++

NCR(−) +++ + + ++ +++ NA *

* Not sufficiently addressed. ILC—Innate lymphoid cells; NCR—Natural cytotoxicity receptor; NK—Natural killer.

NK cells produce perforin and granzyme B, which endow these cells with robust cytotoxic
activity [44]. ILC2s and ILC3s might contribute to wound healing following activation by IL-33 derived
from fibroblasts and endothelial and epithelial cells [44,45]. ILC3 NCR(−) subsets compose the major
ILC subtype in healthy skin, while NCR(+)s predominate in psoriatic skin [47,48]. They produce IL-22
and express the surface marker CD56 [49] and express the chemokine receptor CCR10, increasing
immune cell recruitment (Figure 2) [50].

3.2. Liver

As discussed by Liu and Zhang, a healthy liver contains abundant resident ILCs [51]. Type 1 ILCs
form the dominant subset [51,52] (Table 1).
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Hepatic Type 1 ILCs are involved in immune regulation with opposing roles, either favoring or
inhibiting an effective local immune response [53,54]. Liver ILC1s, previously identified as liver-resident
NK cells, reside in the organ in a state of equilibrium [55] and, unlike conventional NK cells,
express TNF-related apoptosis-inducing ligand (TRAIL) [56,57]. Liver NKG2A+ CD49a+ ILC1s
act in concert with conventional CD49b+ NK cells to maintain the local immunotolerance existing
in the liver [57]. Type 2 and 3 ILCs represent about 5% of all the ILCs in a healthy liver (Figure 3).
ILCs deregulation may lead to a wide range of liver disorders [54]. The activation and expansion of
Type 2 and 3 ILCs in chronic hepatocellular stress or ischemia/reperfusion injury [51] may counteract
injury and increase the levels of IL-22, a survival factor for hepatocytes [58].
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3.3. Lungs

ILCs significantly populate the lung (Figure 4) [38,59,60], where they play a central role in organ
homeostasis and repair [61,62]. Despite the presence of the three main subsets of ILCs, there is
limited information regarding the ILC composition in healthy and damage human lung (Table 1).
For example, CD69-CD56dimCD16+ NK cells account for the vast majority of NK cells in human lungs
undergoing lobectomy [63], while the non-toxic ILC1 subset is characterized as CD56−IL-12Rβ2+ [61].
In addition, ILC2s and NCR(−) ILC3s predominate in healthy human lungs, while damage from chronic
obstructive pulmonary disease leads to an increase in NCR(−) ILC3s and a concomitant decrease
in ILC2 and NCR(+) ILC3 cells [61]. Notably, discrepancies are observed between human and mouse
lungs, as ILC2s have been described as the main subset of ILCs in healthy mouse lungs [64]. Both ILC1s
and ILC2s have been linked to host protection upon viral infection [65], in response to which epithelial
or immune-cell-derived cytokines produce IL-4, IL-5, IL-13, and IL-9, along with amphiregulin [62,66],
contributing to immune surveillance and the stimulation of lung-epithelium responses [67] ILC3s
mainly act as a regulator of lung inflammation [68], with a central role in the IL-17/IL-22 axis, key to
lung homeostasis [69,70].

Thus, even though the primary function of ILCs is to favor tissue repair, the mechanisms by
which each subset in the lung and liver carries it out seem to be slightly different and to involve
different modulators.
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4. The Function of ILCs in Melanoma

4.1. ILCs in Primary Cutaneous Melanoma

The roles of ILCs in melanoma are consistent with their plasticity and their opposing functions
determined by the external stimuli they receive from the TME (Table 2). Among all the ILC subsets
observed in the melanoma microenvironment, those expressing the activating receptor NKp46, such as
Type 1 ILCs and NCR(+)ILC3s, exert antitumor effects. NKp46 allows ILCs to recognize molecules
expressed in tumor cells (e.g., ligands). The integrity and correct surface expression of NKp46 is essential
for the ILC-mediated capacity to control melanoma development in mouse models (Figure 5) [71].

NK cells interaction with melanoma cells has been reviewed elsewhere [72]. Briefly, NK-cell-
mediated tumor-cell cytotoxicity relies on the balance among ligands for activating receptors
(e.g., NKG2D, DNAM-1, and NCRs) and those for inhibitory receptors (e.g., NKG2A and KIRs).
Melanoma cells very often display some ligands for NKG2D (MICA/B and ULBP), while the presence of
less-characterized NCR ligands seems to be high in early disease stages [72]. The relevance of NK cells
in this field is also supported by their capability of killing melanoma cells with cancer-stem-cell-like
characteristics, which are known to facilitate disease recurrence and metastatic spread [73,74].
However, the antitumor activity of NK cells may be altered promoting tumor evasion. One of
the best-characterized mechanisms is the selection of melanoma cells with low expression of ligands
that activate NK receptors or increased expression of KIR (inhibitory receptor)-ligand, class I MHC [72].
The implications of less-described roles of NK cells in the adaptive immune response should also
be taken into account. NK cells, as well as pre-mNK cells (murine pre-mature NK)—functionally
comparable to human CD56bright HLA-DR+ NK cells [75]—present class II MHC at the cell surface
under certain conditions [76,77], such as in contact with tumor cells.
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Table 2. Functions of ILC types within a normal and tumor microenvironment during melanoma progression.

Skin Liver Lung

Healthy Melanoma Healthy Melanoma Healthy Melanoma

Type 1 ILC

ILC1 Immune cell
recruitment.

Antitumoral (antigen
recognition),

protumoral (PD-L1
expression).

Normal hepatic
function, local immune

tolerance.

Inflammatory tumor
microenvironment,

tumor growth.

Homeostasis,
host protection,

immune
surveillance.

Antitumoral
(IFNγ-production)

NK Cytotoxicity.

Antitumoral (cytotoxic),
protumoral (T cell

exhaustion,
ILC2 modulation).

Local immune response. Antitumoral
(cytotoxicity). Cytotoxicity. Antitumoral

(cytotoxicity).

Type 2 ILC Wound healing.

Antitumoral (IL-5),
protumoral (NK
cell-impairment,

fibroblast
transdifferentiation,
increase NK PD-1

expression).

Response to chronic
stress, local

immune-suppression,
counteract

inflammatory injury.

Antitumoral (NA *),
protumoral (favour a

protumoral
desmoplastic reaction)

Host protection,
immune

surveillance.

Antitumoral
(tumor

immunesurveillance,
induction of IFNγ
producing ILC1),
protumoral (NK
cell imapirment).

Type 3 ILC

NCR(+) Immune cell
recruitment.

Proangiogenic,
immunesuppressive cell

recruitment,
IL-6 and Stat-3

activation

Response to chronic
stress, counteract

inflammatory injury.

Upregulation of
adhesion molecules

Regulation of
inflammation.

Antitumor
immune response

NCR(−) Wound healing.

Proangiogenic,
immunesuppressive cell

recruitment,
IL-6 and Stat-3

activation

Response to chronic
stress, counteract

inflammatory injury.
NA * Regulation of

inflammation. NA *

* NA: Not addressed.
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Figure 5. ILCs in melanoma. During melanoma progression, different ILC subsets maintain active
crosstalk, resulting in either antitumoral or protumoral responses, not only by direct action on tumor cells
but also by acting on other ILCs (left). Moreover, ILCs modulate CD4+ T-cell activity and, thus, influence
the adaptive immune response through MHC class II. MHC—Major histocompatibility complex.

Interestingly, Terme et al., described opposite roles for pre-mNK cells in terms of their capacity to
prime CD4+ and CD8+ T cells, favoring T-cell maturation [77]. In fact, Wilson et al., observed enhanced
CD4+-mediated tumor (melanoma) rejection upon the depletion of the B220+NK1.1 pre-mNK cell
population [78]. As suggested by the authors, the negative effect of pre-mNK cells on CD4+-mediated
antitumor activity could be related to T-cell exhaustion or transformation into regulatory T cells upon
exposure to pre-mNK-presenting class II MHC.

In line with these results, two independent studies highlight the inverse correlation between
the enrichment of the circulating CD56bright NK-cell population and the survival of melanoma
patients [79,80]. Moreover, activated CD11c+NK1.1+NHCIIhigh IKDC (murine pre-NK) cells were able
to express the inhibitory PD-L1 and produce IL-10 [81], suppressing anti-melanoma immunity [78].
Indeed, NK cell cytotoxicity against tumor cells increases after PD-1 blockage in NK cells [82].
The mechanisms regulating the immune response to therapy could be mediated by a modulation
of ILC2 function but not ILC1 nor ILC3 [74]. Since in the context of autoimmune diseases, a large
percentage of CD4+ T cells may be killed via TNF-related apoptosis-inducing ligand (TRAIL) or
perforin and granzyme B, leading to CD4+ T-cell exhaustion [83,84], it is tempting to hypothesize that
these mechanisms operate to promote tumor development.

Little is known about the specific role of ILC1s in the melanoma context. Ercolano et al. have
described an increased presence of ILC1s in melanoma patients but a functional impairment of IFNγ
and TNFα [85] in the melanoma microenvironment. On the other hand, chronic tumor-cell exposure to
IFNγ—secreted by Type 1 ILCs, among others—has been proposed as a relevant regulator of immune
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checkpoints. IFNγ induces the expression of PD-L1 on the tumor-cell surface and therefore blocks
NK/ILC1-cell maturation and activity [86]. In this scenario, often detected in melanoma, Benci et al.,
showed that the blockage of tumor IFNγ signaling favors IFNγ production by CD8 T-cell populations.
Ultimately, antitumor effects take place via either surface-antigen/MHC-I recognition or the promotion
of Type-1-ILC maturation. Given the opposite roles that IFNγ may play, it would be of interest to
analyze the biological consequences of the findings of Ercolano et al. [85].

The limited literature on the contribution of ILC2 cells to melanoma development points towards
a dual role for this population. As shown by Long et al. [87], IL33-responsive intratumoral ILCs
correlate well with functional ILC2s, Ref. [87]. The interaction of IL-33-stimulated ILC2s with NK
cells resulted in an impaired ability of NK cells to eliminate B16 melanoma cells. According to these
results, the depletion of ILC2s within the tumor led to an increase in NK-cell infiltration and tumor
rejection (Figure 5) [87]. As stated by Wagner et al., the capacity of ILC2s to suppress tumor growth
upon IL-33 stimulation was diminished by tumor-cell-derived lactic acid [88]. In vitro, the number of
growing B16F10 melanoma cells inversely correlated with proliferation, survival, and IL-5 production
by ILC2s. However, Wagner et al. did not decipher the underlying mechanism. Therefore, it cannot be
excluded the participation of tumor C-X-C chemokine receptor type 2 (CXCR2). IL-33-activated ILC2s
sustain CXCR2 expression on tumor cells by producing high amounts of CXCR2 ligands, which, in turn,
induce apoptosis in malignant cells [89]. However, ILC2s also up-regulate the expression of PD-1
in CXCR2-expressing NK cells which might interfere with the antitumoral effect of ILC2 during
melanoma progression.

Three facts suggest a protumoral function of ILC3s in melanoma. First, they are active producers of
IL-17 [70,90,91]. IL-17 spurs B16-F10 melanoma growth by promoting angiogenesis and the recruitment
of immunosuppressive populations, such as myeloid-derived suppressor cells (MDSCs) [92]. Moreover,
it contributes to tumor development through IL-6 and Stat3 activation. Thus, targeting IL-17 might
represent a potentially effective therapeutic approach in melanoma [93]. Second, large numbers of ILC3s
exist in skin diseases, with significant inflammatory activity [94]. Third, the enrichment of the ILC3
population has been linked to tumor progression or metastasis [95,96].

ILCs and the Stromal Compartment in the Primary Melanoma

As part of the immune cells, ILCs participate in the creation of a complex and dynamic TME [97].
The healthy dermis is composed of large amounts of ECM, consisting mainly of collagen, elastin,
and proteoglycans [98]. In turn, the ECM has profound effects on tumor-cell invasion and immune-cell
infiltration [99]. Since cancer has been compared with a “wound that would not heal” [100], it is
tempting to hypothesize that ILCs may participate in melanoma development and progression by a
reciprocal dialogue with other cells and molecules in the TME [101].

Several groups have correlated several ECM proteins with specific ILCs activities.
In malignant-melanoma patients, an inverse association exists between the expression of hyaluronan
and proteoglycan link protein-3 and NK-cell infiltration [102]. Heparan sulfate proteoglycans may act
as NK-cell ligands but are not sufficient to induce NK cells’ cytotoxic activity against melanoma cells.
Hypothetically, the overexpression of heparanase by melanoma cells or NK cells reduces the ability
to recognize target cells [103,104], thus favoring their immune escape. Other ECM proteins, such as
galectin1 and galectin3, can directly inhibit the activity of NK cells in some types of cancer, including
melanoma [105–107]. While some galectins play a protumoral role, others such as galectin-9 exhibit
antitumoral activity by modulating NK-cell activity [107].

There is ample evidence supporting the relevance of the interaction among ILCs and stromal
cells in cancer development. In the tumor stroma, endothelial cells might regulate NK antitumor
responses through NK group 2D (NKG2D) ligands. Thompson et al., suggest that the disruption of
the NKG2D ligand, RAE-1ε, in B16 melanoma-associated endothelial cells impairs NK antitumoral
responses in vivo [108]. Conversely, NK cells might modulate tumor vascularization through
the production of proangiogenic molecules. Levi et al., demonstrated that in several cancers,
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including melanoma, the majority of NK-infiltrating cells are of the CD56bright subset, which secretes
the proangiogenic factor vascular endothelial growth factor (VEGF) contributes to the development on
new vessels [109]. Additionally, NK cells are located near tumor-associated myofibroblasts in melanoma
lesions, suggesting that their crosstalk may result in the induction of a proangiogenic phenotype of
NK cells [110] while inhibiting the antitumor cytotoxicity of NK cells [110,111]. Cancer-associated
fibroblasts induce the shedding of the NKG2D ligands major histocompatibility complex (MHC)
class I chain-related protein A and B (MICA/B) expressed on the tumor-cell surface by secreting
high levels of metalloproteases (MMPs). As a result, melanoma cells become more resistant to
NK-cell-mediated lysis [112]. Moreover, cancer-associated fibroblasts decrease the expression of NK
activating receptor through the secretion of prostaglandin E2 and indoleamine-2,3-dioxygenase (IDO),
attenuating the cytotoxic activity of NK cells [110,113]. Thus, NK cells may participate in reactions
known to occur in the tumor-associated stroma.

Other ILCs are also able to initiate complex crosstalk with stromal cells. For example,
IL-33, constitutively produced by fibroblasts and endothelial cells in the skin, prompt Type 2 immune
responses [114] by, among other actions, activating macrophages and ILC2 [115]. IL-33-activated ILC2s
secrete IL-13 that induces the transdifferentiation into myofibroblasts. Other actions of ILC2-derived
IL-13 are M2 polarization of tumor macrophages and the activation of MDSCs [101,116]. Both actions
contribute to a microenvironment that supports tumor survival.

Type 3 ILCs might also influence the local immune response by interacting with the tumor stroma.
Eisenring et al., showed that IL-12-activated NKp46+-expressing LTis increased leukocyte invasion
by inducing the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule-1 (VCAM-1) in the tumor vasculature, Ref. [117]. Other Type 3 ILC3s may also act on stromal
cells through IL-17, which induces VEGF, TGFβ, or IL-8 [118]. Moreover, ILC3-derived IL-17 might
promote M2-macrophage differentiation and the recruitment of MDSCs [119,120].

4.2. ILCs in the Metastatic Progression of Cutaneous Melanoma

During melanoma progression, tumor cells acquire the ability to metastasize to distant organs,
such as the liver and lungs. These new microenvironments regulate cell behavior within a complex
stroma (Table 2).

4.2.1. ILCs and Inflammation during Metastatic Progression in the Liver

The relationship between inflammation and tumorigenesis has led to the identification of
tumor-related inflammation as one of the hallmarks of cancer [121]. In general, the liver presents a
tolerogenic environment to avoid undesired immune reactions to oral antigens, which predisposes
the liver to other types of pathogenic infections. As a result, the liver may develop fibrosis, and, in turn,
hepatocellular carcinoma [122]. Moreover, hepatic fibrosis has been shown to predispose this organ to
metastasis [123]. For example, invasion by metastatic cells may be facilitated by the inflammatory state
that exists in the fibrotic liver, which promotes the adhesion of metastatic cells to the liver’s capillaries,
inducing the further release of cytokines [39,124]. Inflammation also stimulates ILCs and recruits
immunosuppressive immune populations to metastatic initiating sites [101,125].

Members of the IL-1 superfamily, such as IL-1β, IL-18, and IL-33, are involved in inflammatory
diseases and cancer. In several cancers, including melanoma, the IL-1 superfamily modulates
the TME to promote liver metastasis [126]. Less is known about the role of these cytokines
in re-educating innate-lymphoid-immune-cell function in metastatic growth. IL-18 neutralization
has shown opposing effects in controlling metastasis to the liver [127,128]. Indeed, some reports
support IL-18-signaling-induced hepatic NK-cell maturation and, thus, a significant inhibition of
tumor growth in the liver [39,128,129]. On the contrary, Salado et al. reported a protumoral role
for IL-18 in the inflammation-dependent development of melanoma metastasis to the liver [130].
In the liver, IL-18 is produced by liver non-parenchymal cells and by myeloid dendritic cells (DCs) [131].
IL-18, in conjunction with IL-1β, contributes to the stimulation of IFNγ production by NK cells,
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which, along with granzyme, facilitates the generation of an inflammatory milieu [132]. Within this
environment, NK cells promote the phagocytosis of colon carcinoma cells by liver-resident macrophage
Kupffer cells (KCs) [133]. Even though the immune populations cooperate to mount an initial reaction
against the tumor in the pre-metastatic niche, this protective response is soon reversed [117,134].

Besides their immunological role in the metastatic progression of melanoma to the liver,
inflammatory cytokines have also been implicated in the adhesion of circulating murine melanoma cells
to the hepatic microvasculature through ICAM-1 and VCAM-1 adhesion molecules [17]. Eisenrig et al.
also showed that NKp46+ ILC3s were capable of upregulating both cell-adhesion molecules, facilitating
the infiltration of immune cells with anti-tumor functions [117]. Further studies are needed to decipher
the complex regulatory roles of ILCs in the metastasizing liver.

4.2.2. ILCs and Inflammation during Metastatic Progression to Lungs

One of the main target organs for circulating melanoma cells is the lungs. Several types of ILCs
have been related to melanoma progression to the lungs [42]. The tumoricidal activity of NK cells
in the lungs is greatly enhanced by other inflammatory cells, such as DCs and macrophages (Table 2).
Chiba et al. showed that the dectin-1 expressed on these innate immune cells contributes to the NK
activation and effective killing of B16 melanoma cells during metastatic progression to the lungs [135].
Dectin-1 is also expressed by hepatic KCs [136], which indicates similar roles of lung and liver
macrophages during metastatic progression. In murine lungs metastasized by B16F10 melanoma,
fully active and highly cytotoxic NK cells produce large amounts of IFNγ [137]. Such an increase
in IFNγ is associated with a more effective immune response and an increased in fibronectin, an ECM
protein involved in the development of a non-permissive tumor environment [15]. Moreover, a defect
in NK-cell differentiation supports the anti-metastatic role of NK cells in melanoma metastasis to
the lung [138]. Leong et al. have reported an increase in the lung metastasis of B16-F10 melanoma cells
in mice carrying an NK-specific phosphatase and tensin homolog (PTEN) deletion [139]. Despite the role
of PTEN in limiting the cytotoxic activity of NK cells, the prometastatic effect was attributed to a direct
effect of PTEN deletion on NK-cell trafficking [140].

In the lungs, ILC2s increase in number during inflammatory diseases and mediate the production
of IL-1β, IL-18, IL-33, IL-5 and IL-13 [141]. In this scenario, the IL-33-mediated activation of ILC2
cells might control the development of metastasis by promoting tumor immune-surveillance through
eosinophil infiltration due to ILC2-derived IL-5 and IL-13 [142]. Moreover, ILC2 might give rise to
IFNγ-producing ILC1s [42] and the potential for transdifferentiation into other ILC types, introducing
increasing levels of complexity in the study of ILC2s’ role during tumor progression.

The IL-1 superfamily members regulate the production of IL-17 by ILC3s [143]. In the lung,
galectin-3 facilitates melanoma metastatic colonies by affecting tumor-cell adhesion and the innate
immune response against melanoma by increasing serum IL-17 levels [106]. In melanoma metastasis
to the lung, IFNγ, in combination with IL-17, models the TME in such a way that an effective immune
response to the tumor can operate [106]. However, it is unknown whether IL-17 derives from naturally
occurring ILC3 or from ILC1-derived NCR(+)ILC3s favoring tumorigenesis [144].

4.2.3. ILCs and the Stromal Compartment in the Metastatic Microenvironment

During metastatic progression, and similarly to primary-tumor development, ILCs interact not
only with tumor cells but also with fibroblasts and endothelial cells, key stromal components with
central roles in the generation and remodeling of the TME. Little is currently known regarding
the specific role of different ILCs in the modulation of the stromal compartment that ultimately leads
to the spread of melanoma to the liver and lungs. What is known and clear is that the adhesion of
tumor cells to the endothelium of organs is essential for metastasis development [145]. ILCs enhance
endothelial cells’ expression of VCAM-1 and ICAM-1. It is interesting to note that VCAM-1 [146]
and ICAM-1 [147] play critical roles in the colonization of the liver and brain melanoma metastasis,
respectively [146–149]. Moreover, ILC3s promote the adhesion and recruitment of leukocytes to
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the sites of invasion [91]. ILC2 trafficking is regulated by β2 integrin expression in the context of
the inflammatory milieu [150], raising the possibility that high ICAM-1 expression on the lung and liver
endothelium favors the recruitment of ILCs during melanoma metastasis.

The metastatic TME in the liver contains soluble mediators that recruit fibroblasts, pericytes,
and stem cells to the site of tumor colonization and induce their transdifferentiation into
myofibroblast-like cells. Such cells are characterized by their expression of α-smooth muscle actin stress
fibers, a high proliferation rate, and a large production of fibrillary collagen [151]. Unresolved fibrosis
that persists during metastatic growth sustains inflammation, which promotes the recruitment of
ILCs to the developing metastatic foci. Interestingly, ILCs modulate fibroblast function by driving
the secretion of excessive collagen and matrix proteins in the lung and the liver [152,153].

Amphiregulin is considered a potential prognostic marker for liver metastasis in colorectal
cancer progression and a mediator of liver-myofibroblast activation [154]. This relationship has not
been addressed in the context of melanoma progression. However, given the implication of ILCs
in fibrogenesis, inflammation, and liver disease, it is tempting to hypothesize that ILC2s play a
prometastatic role in the liver in melanoma, as they do in colorectal cancer [155], by secreting factors
that promote the development of a desmoplastic stroma [156].

Opposing roles of ILC3s are observed between the early metastatic stages and once their interaction
with cancer-associated fibroblasts has taken place. Early in tumor development, the increasing
numbers of ILC3s create an environment more protective against melanoma metastasis. Carrega et al.,
(2015) showed that NCR(+)ILC3s are activated by tumor-associated fibroblasts through the NKp44
activating receptor [157]. The activation of lung fibroblasts results in the production of large
amounts of insulin-like growth factor 1 (IGF-1) [158], which favors ILC3 recruitment and activation.
However, the IGF-1 level has also been correlated with melanoma lung-metastasis development
and the appearance of acquired chemoresistance [159].

5. ILCs and EVs in the TME

An updated view of the TME includes not only “free” molecules or direct communication
mediated by cell-to-cell contact but also vesicle-driven systems [160]. The generic term “extracellular
vesicles” (or “EVs”) encompasses all types of membrane-surrounded vesicles released from cells into
the extracellular medium. The capacity of cells to secrete vesicles has been known since the late
1960s [161], although it was not until the late 1990s that EVs were included among the mechanisms
driving cell-to-cell communication [162,163]. These pioneering studies described the involvement of
secreted vesicles in the communication among immune cells and in the antitumor activity exerted by
DCs, placing the immune system in the foundations of the EV research field. Moreover, increasing
evidence shows a central role for EVs in the protumoral and prometastatic remodeling of the TME by
sustaining cell proliferation and reprogramming stromal cells, in addition to the abovementioned role
in the immune response [160].

Size and cellular origin-based classifications distinguish three main classes of EVs: (1) apoptotic
bodies, 80–5000 nm-sized vesicles formed during the programmed death of a cell (sometimes included
in the second group described here); (2) microvesicles, ectosomes, microparticles, or oncosomes
(when related to the oncology field), which are described as 50–1000 nm-sized vesicles generated by
the outward budding of the plasma membrane; and (3) exosomes, vesicles originated in the endosomal
system with an approximate diameter of 50–150 nm and liberated into the extracellular medium by
the fusion of multivesicular endosomes (MVE) with the plasma membrane. EVs may carry different
cargoes, including proteins, lipids, and nucleic acids, and represent a stable strategy for transferring
otherwise-unstable molecules such as mRNAs [160,164,165]. Nevertheless, EVs from different modes of
biogenesis often display similar appearances, overlapping size ranges, and comparable compositions;
therefore, unless an exhaustive isolation protocol is applied, it is undoubtedly challenging to clarify
the true nature of the EVs with which we are working. We, therefore, adopt this general term to discuss
the current knowledge regarding secreted vesicles in the TME and primarily related to the ILCs.
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The EV field has garnered enormous interest over the past few years due to its involvement
in the short—and long-distance organ communication system as well as a putative drug-delivery system.
It is especially relevant for highly spreading malignancies, such as melanoma, where few therapeutic
options exist for advanced stages. In this context, EVs have shown to play an essential role in modulating
both TME and distant-organ behavior [166–169]. Considerable effort has been devoted to elucidating
the immunomodulatory capacity of EVs and, especially, the role of tumor-derived EVs in the formation
of both a limiting and a favorable environment for cancer progression [160,170]. The first studies in this
field pointed towards an immunoreactive role for tumor-derived EVs. As shown by Wolfers et al.,
EVs secreted by tumor cells were able to induce antitumoral activity against mammary adenocarcinoma,
colon adenocarcinoma, and mastocytoma tumor models [171]. In the same study, they observed
the transference of melanoma antigens (e.g., Mart-1) present on EVs to DCs, which was suggested as
the mechanism underlying the observed activation of cytotoxic T lymphocytes (CTL). In agreement
with the previous study, Dai et al. observed a specific CTL response driven by tumor-antigen-containing
EVs [172]. The immune- suppressive effects of tumor EVs have also been described. T-cell apoptosis
driven by Fas ligand (FasL), TRAIL, or galectin 9-containing EVs; the inhibition of DC/macrophage
maturation by TGFβ-dependent mechanisms; and monocyte differentiation into MDSCs are among
the described strategies for silencing the antitumor activity of the host [170,173].

5.1. Effect of Tumor-Derived EVs on ILCs

Focusing on ILCs, the current knowledge is circumscribed to NK cells and to a period approximately
spanning the past fifteen years. The limited information thus available prompted us to review EVs
behind the frontiers of melanoma.

In 2005, Gastpar et al., reported that heat shock protein-70 (Hsp70)-positive tumor EVs activate
NKs. As explained in this work, EVs, which contain Hsp70, were able to activate not only the migratory
but also the cytolytic activity of NK cells against Hsp70-membrane positive tumors (Figure 6A) [174].
Hsp70 is broadly present in tumor-cell-derived EVs, including those from melanoma cell lines such as
B16 [158]. The overexpression of Hsp70 on melanoma cells also induces NK-cell activation and antitumor
activity against cells expressing NK-receptor ligands [173]. Nevertheless, caution must be taken,
as exosomal Hsp70 has also been linked to MDSC activation, which may lead to an immunosuppressive
TME [175–177]. In 2006, Liu et al., observed that the pretreatment of mice with EVs originating from
mammary tumors accelerated subsequent tumor growth. According to this study, the protumoral
activity was partially explained by diminished proliferation of the tumor cells and the cytotoxic capacity
of NK cells [178].

The regulation of NK-cell receptors could be one of the mechanisms behind the altered NK activity.
Interestingly, the presence of activating surface-receptor ligands on EVs has been proposed to act as
both an inducer and repressor of NK-cell activity (Figure 6B,C) [179,180]. HLA-B-associated transcript
3 (BAT3), a ligand for the NKp30 receptor [180], can be secreted in exosome-like vesicles from tumor
cells and induce IFNγ and TNFα release by NKs. Notably, the incubation of NKs with purified BAT3
exerts an opposite effect, suggesting that membrane-bound, and not soluble, BAT3 is required to
elicit NK-mediated cytotoxicity. The nature of BAT3-containing vesicles was promptly confirmed by
Simhadri et al. [181].

The presence of NKG2D ligands on EVs seems to represent a double-edged sword; while they
promote NK activation and proliferation in some experimental contexts [182], NKG2D ligands may
also suppress NK-cell cytotoxicity by behaving as a decoy [178,180,181]. The observed differences may
be linked to the origin of the ligand-containing EVs, as DC-derived EVs lead to immunoreactivity [182],
while exposing NKs to tumor-originated EVs leads to immunosuppression [180,183]. Interestingly,
EVs obtained from certain melanoma cell cultures also contain NKG2D-ligand MICA, and these EVs
can diminish the surface expression of the receptor on NKs [184]. The same immunosuppressive effect
of melanoma-derived EVs was also recently described by a study focused on the characterization of
melanoma-patient-derived EVs [185].
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NK-cell activation as well as the recognition of NKl-presenting tumor cells.

TGFβ represents a second primary mechanism for NK modulation. As beautifully reviewed
by Batlle and Massagué, TGFβ is an essential regulator of immune homeostasis and also plays a
relevant role in tumor immune evasion [186]. The TGFβ-mediated inhibition of NK cells includes
the downregulation of surface NKG2D and NKp30 receptors, decreased receptor adapter DAP12 levels
(Figure 6D), and the modification of metabolic mammalian target of rapamycin (mTOR) signaling.
TGFβ has also been shown to be present on tumor-derived EVs and to play a crucial role in NK-cell
activity, at least partly by downmodulating surface receptors [187,188]. In a more biological setting,
EVs purified from the sera of patients who have acute myeloid leukemia (AML) and pancreatic cancer
contain TGFβ [187,188]. Furthermore, and despite a relatively low number of serum EV samples,
both studies were able to detect higher amounts of TGFβ in AML patients and describe the role of this
growth factor in the inhibition of NK-cell activity [189].

Interestingly, melanoma patients exhibit higher blood TGFβ levels [190,191], although the specific
presence of TGFβ in blood-derived EVs remains elusive. TGFβ has recently been detected
in melanoma-cell-derived EVs [190], and the results support a role for EV-derived TGFβ
in the downregulation of DC-receptor molecules (e.g., CD40 and CD86). Despite the lack of specific data
regarding the effects of melanoma-derived TGFβ on NK-cell activity, it seems plausible to speculate
about its role in immunosuppression also by NK-cell inhibition.

5.2. Tumor Modulation by ILC-Derived EVs

As previously mentioned, the immune system must eliminate “dangerous foreigners”, including
cells undergoing malignant transformation. Any failure in this mission facilitates cancer development.
Innate immune cells, including NK cells, are part of the first line of defense that elicits non-specific
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but fast antitumoral activity. NK-mediated cancer-cell destruction relies on a delicate balance among
activating and inhibiting cell-surface receptors. An outcome favoring activating receptors (e.g., NKG2D,
NKp30, NKp46, and DNAM-1) leads to the release of cytotoxic effectors (e.g., perforin, granzymes A
and B, and FasL) and the death of the target cell.

Interestingly, the EVs secreted by NK cells contain functional immunomodulatory surface
molecules as well as lytic proteins, providing a plausible explanation for their observed antitumoral
activity [192–196]. In detail, Lugini et al. identified NK markers (mainly CD56 and NKG2D) in EVs
isolated from healthy-donor blood samples as well as perforin and FasL, proteins inducing the cell death
of the NK-target cells [193]. Moreover, in the same study, they found that activated NK-derived EVs were
able to exert cytolytic effects against several hematological cell lines, although little effect was observed
against breast and melanoma cell lines. Jong et al. also identified CD56 as a component of the EVs
obtained from activated NK cultures derived from human blood [194]. They also detected several lytic
proteins (perforin, granulysin, granzyme (A), and granzyme (B), which could explain the cytotoxic
activity of EVs against leukemia, neuroblastoma, and breast-cancer cell lines. Shoae-Hassani et al.
extended the catalog of NK receptors found in NK-derived EVs, while perforin and FasL were identified
among the contents of EVs purified from NK-92MI cell cultures [195].

Limited and contradictory literature exists regarding the specific role of ILC-derived EVs
in melanoma. While little antitumor activity was detected for EVs from blood-derived NK cells [180],
in vitro and in vivo cytotoxicity was detected by Zhu et al. against B16F10 melanomas treated with
EVs obtained from NK-92MI cells [196]. These conflicting results may indicate that diverse results can
be obtained when using different sources of NK-derived EVs or melanoma cell lines and conditions.
In this particular scenario, it is important to consider the limitations to the expansion and activation of
blood-derived NK cultures, compared to the use of an IL-12-overexpressing transformed NK-cell line
(NK-92MI) that exhibits continuous expansion in culture. Moreover, the amount of EVs applied is also
a variable to consider, although higher amounts are claimed to be employed in non-effective assays
than those showing antitumor activity. Jong et al. proposed a method to enlarge the scale of EVs
obtained from blood-derived activated human NK cells and analyzed the cytotoxicity against several
non-melanocytic tumors [194]. The results suggest a path that could be explored in melanoma models.
In addition, NK-cell “education” may essential for the selective EV-mediated induction of tumor-cell
death. In this regard, Shoae-Hassani et al. reported increased anti-tumor activity for blood-derived
cytokine-activated NK cells when they were incubated with the target neuroblastoma cells before EV
isolation from the NK cultures [195].

6. Conclusions

The discovery of ILCs and their roles in immunity, inflammation, tissue repair, and maintenance
has significantly raised interest in these populations and their role in tumor progression. In cancer,
the currently available data report contradictory and conflicting results that reflect the complexity of
the field (Table 2). Such complexity may be partially driven by the reported capacity of ILC subsets to
transdifferentiate in response to the TME and homing tissue. For example, increased numbers of ILC1s
might result from the transdifferentiation of ILC3s into helper ILC1s or from the conversion of NKs.
Nevertheless, mentioned differences may also result from the lack of broadly stablished consensus
on ILC population-specific markers. In fact, discrimination of ILCs from other immune populations
require a complex set of markers, nor say the identification of specific ILC types. Time and effort are
required to settle down knowledge specially on complex fields such as lineage tracing.

Determination of most meaningful ILC populations for primary or metastatic melanoma
development may enormously benefit from advanced tissue analysis based on multiplexing tissue
imaging while involvement of ILCs on treatment response could be approached by serum or plasma
analysis. These could represent solid foundations for further analysis involving specific ILCs and their
interaction with melanoma cells either by ILC isolation and culture with syngeneic melanoma cells
or by more complex animal models that should be developed. Besides the direct action of ILCs on



Cancers 2020, 12, 3177 16 of 26

the tumor cell, mounting evidence suggests that ILCs can influence the activity of other stromal cells
through the promotion of immune editing, angiogenesis, and ECM remodeling. Correlation among
these processes and specific ILC populations could be deciphered by in situ tissue analysis while
proper functional analysis would require models able to recreate TME.

The level of complexity in the characterization of ILCs and their role in tumors increases
when considering the critical role of an additional component of the TME: the extracellular vesicles.
The available information on ILC-derived EVs remains scarce and somewhat contradictory. While little
antitumoral activity has been detected for EVs from blood-derived NKs, the cytotoxic potential of EVs
obtained from NK-92MI cells for B16F10 melanoma is high both in vivo and in vitro. Given the influence
EVs exert on a large plethora of pathways and mechanisms, it is necessary to increase our knowledge
on the effects of EVs from ILCs to better focus the development of effective therapies. Nevertheless,
the development of this field encounters on the cell expansion a limitation; isolation of EVs by classical
methodologies such as differential ultracentrifugation of chromatography-based methods requires
large number of cells, especially for further functional analysis. Current efforts are focused on protocols
to allow NK cell-expansion as an alternative to the use of transformed cell lines such as NK-92
and NK-92MI. Similar efforts will be required in order to analyze the effect of other ILCs in tumor,
and specifically melanoma, development.

Therefore, the identification of markers and tools to allow the modulation of individual ILC
subsets in mice and humans, the development of standardized protocols, the deep characterization of
melanoma-related ILCs and the identification of their key contribution to cancer development will be
essential prior addressing the therapeutic modulation of ILCs.
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166. Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.;
Williams, C.; García-Santos, G.; Ghajar, C.; et al. Melanoma exosomes educate bone marrow progenitor cells
toward a pro-metastatic phenotype through MET. Nat. Med. 2012, 18, 883–891. [CrossRef] [PubMed]

167. Shu, S.L.; Yang, Y.; Allen, C.L.; Maguire, O.; Minderman, H.; Sen, A.; Ciesielski, M.J.; Collins, K.A.; Bush, P.J.;
Singh, P.; et al. Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a
pre-metastatic microenvironment. Sci. Rep. 2018, 8, 12905. [CrossRef]

168. Gyukity-Sebestyén, E.; Harmati, M.; Dobra, G.; Németh, I.B.; Mihály, J.; Zvara, Á.; Hunyadi-Gulyás, É.;
Katona, R.; Nagy, I.; Horváth, P.; et al. Melanoma-derived exosomes induce PD-1 overexpression and tumor
progression via mesenchymal stem cell oncogenic reprogramming. Front. Immunol. 2019, 10, 2459. [CrossRef]

169. Tracey, E.H.; Vij, A. Updates in melanoma. Derm. Clin. 2019, 37, 73–82. [CrossRef]
170. Sheehan, C.; D’Souza-Schorey, C. Tumor-derived extracellular vesicles: Molecular parcels that enable

regulation of the immune response in cancer. J. Cell Sci. 2019, 132, jcs235085. [CrossRef]
171. Wolfers, J.; Lozier, A.; Raposo, G.; Regnault, A.; Théry, C.; Masurier, C.; Flament, C.; Pouzieux, S.; Faure, F.;

Tursz, T.; et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming.
Nat. Med. 2001, 7, 297–303. [CrossRef]

172. Dai, S. More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-Specific
CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells.
Clin. Cancer Res. 2005, 11, 7554–7563. [CrossRef]

http://dx.doi.org/10.1007/s00262-005-0043-4
http://www.ncbi.nlm.nih.gov/pubmed/16047144
http://dx.doi.org/10.1111/bph.14768
http://dx.doi.org/10.1158/1078-0432.CCR-07-4499
http://www.ncbi.nlm.nih.gov/pubmed/18413824
http://dx.doi.org/10.3389/fimmu.2019.03080
http://www.ncbi.nlm.nih.gov/pubmed/32010138
http://dx.doi.org/10.1371/journal.pone.0188649
http://www.ncbi.nlm.nih.gov/pubmed/29261670
http://dx.doi.org/10.1038/ncomms9280
http://dx.doi.org/10.1016/j.immuni.2020.01.011
http://dx.doi.org/10.18632/oncotarget.12733
http://dx.doi.org/10.1186/s12943-019-0980-8
http://dx.doi.org/10.1083/jcb.41.1.59
http://dx.doi.org/10.1084/jem.183.3.1161
http://dx.doi.org/10.1038/nm0598-594
http://dx.doi.org/10.1146/annurev-cellbio-101512-122326
http://www.ncbi.nlm.nih.gov/pubmed/25288114
http://dx.doi.org/10.1038/nrm.2017.125
http://www.ncbi.nlm.nih.gov/pubmed/29339798
http://dx.doi.org/10.1038/nm.2753
http://www.ncbi.nlm.nih.gov/pubmed/22635005
http://dx.doi.org/10.1038/s41598-018-31323-7
http://dx.doi.org/10.3389/fimmu.2019.02459
http://dx.doi.org/10.1016/j.det.2018.08.003
http://dx.doi.org/10.1242/jcs.235085
http://dx.doi.org/10.1038/85438
http://dx.doi.org/10.1158/1078-0432.CCR-05-0810


Cancers 2020, 12, 3177 25 of 26

173. Robbins, P.D.; Morelli, A.E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol.
2014, 14, 195–208. [CrossRef]

174. Gastpar, R.; Gehrmann, M.; Bausero, M.A.; Asea, A.; Gross, C.; Schroeder, J.A.; Multhoff, G. Heat shock
protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells.
Cancer Res. 2005, 65, 5238–5247. [CrossRef]

175. Gobbo, J.; Marcion, G.; Cordonnier, M.; Dias, A.M.M.; Pernet, N.; Hammann, A.; Richaud, S.; Mjahed, H.;
Isambert, N.; Clausse, V.; et al. Restoring anticancer immune response by targeting tumor-derived exosomes
with a HSP70 peptide aptamer. J. Natl. Cancer Inst. 2016, 108, djv330. [CrossRef]

176. Elsner, L.; Muppala, V.; Gehrmann, M.; Lozano, J.; Malzahn, D.; Bickeböller, H.; Brunner, E.; Zientkowska, M.;
Herrmann, T.; Walter, L.; et al. The heat shock protein HSP70 promotes mouse NK cell activity against
tumors that express inducible NKG2D ligands. J. Immunol. 2007, 179, 5523–5533. [CrossRef]

177. Chalmin, F.; Ladoire, S.; Mignot, G.; Vincent, J.; Bruchard, M.; Remy-Martin, J.P.; Boireau, W.; Rouleau, A.;
Simon, B.; Lanneau, D.; et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates
STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells.
J. Clin. Investig. 2010, 120, 457–471. [CrossRef] [PubMed]

178. Liu, C.; Yu, S.; Zinn, K.; Wang, J.; Zhang, L.; Jia, Y.; Kappes, J.C.; Barnes, S.; Kimberly, R.P.; Grizzle, W.E.;
et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function.
J. Immunol. 2006, 176, 1375–1385. [CrossRef] [PubMed]

179. Pogge von Strandmann, E.; Simhadri, V.R.; von Tresckow, B.; Sasse, S.; Reiners, K.S.; Hansen, H.P.; Rothe, A.;
Böll, B.; Simhadri, V.L.; Borchmann, P.; et al. Human leukocyte antigen-B-associated transcript 3 is released
from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 2007, 27, 965–974.
[CrossRef] [PubMed]

180. Ashiru, O.; Boutet, P.; Fernández-Messina, L.; Agüera-González, S.; Skepper, J.N.; Valés-Gómez, M.;
Reyburn, H.T. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D
ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010, 70, 481–489. [CrossRef]

181. Simhadri, V.R.; Reiners, K.S.; Hansen, H.P.; Topolar, D.; Simhadri, V.L.; Nohroudi, K.; Kufer, T.A.; Engert, A.;
Pogge von Strandmann, E. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to
regulate natural killer function. PLoS ONE 2008, 3, e3377. [CrossRef]

182. Viaud, S.; Terme, M.; Flament, C.; Taieb, J.; André, F.; Novault, S.; Escudier, B.; Robert, C.; Caillat-Zucman, S.;
Tursz, T.; et al. dendritic cell-derived exosomes promote natural killer cell activation and proliferation: A role
for NKG2D ligands and IL-15Rα. PLoS ONE 2009, 4, e4942. [CrossRef]

183. Labani-Motlagh, A.; Israelsson, P.; Ottander, U.; Lundin, E.; Nagaev, I.; Nagaeva, O.; Dehlin, E.; Baranov, V.;
Mincheva-Nilsson, L. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial
ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumor Biol. 2016, 37, 5455–5466.
[CrossRef]

184. López-Cobo, S.; Campos-Silva, C.; Moyano, A.; Oliveira-Rodríguez, M.; Paschen, A.; Yáñez-Mó, M.;
Blanco-López, M.C.; Valés-Gómez, M. Immunoassays for scarce tumour-antigens in exosomes: Detection of
the human NKG2D-Ligand, MICA, in tetraspanin-containing nanovesicles from melanoma. J. Nanobiotechnol.
2018, 16, 47. [CrossRef]

185. Sharma, P.; Ludwig, S.; Muller, L.; Hong, C.S.; Kirkwood, J.M.; Ferrone, S.; Whiteside, T.L.
Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma.
J. Extracell. Vesicles 2018, 7, 1435138. [CrossRef] [PubMed]

186. Batlle, E.; Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019, 50,
924–940. [CrossRef]

187. Clayton, A.; Mitchell, J.P.; Court, J.; Linnane, S.; Mason, M.D.; Tabi, Z. Human tumor-derived exosomes
down-modulate NKG2D expression. J. Immunol. 2008, 180, 7249–7258. [CrossRef] [PubMed]

188. Zhao, J.; Schlößer, H.A.; Wang, Z.; Qin, J.; Li, J.; Popp, F.; Popp, M.C.; Alakus, H.; Chon, S.-H.H.; Hansen, H.P.;
et al. Tumor-derived extracellular vesicles inhibit natural killer cell function in pancreatic cancer. Cancers
2019, 11, 874. [CrossRef]

189. Szczepanski, M.J.; Szajnik, M.; Welsh, A.; Whiteside, T.L.; Boyiadzis, M. Blast-derived microvesicles in sera
from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated
transforming growth factor. Haematologica 2011, 96, 1302–1309. [CrossRef]

http://dx.doi.org/10.1038/nri3622
http://dx.doi.org/10.1158/0008-5472.CAN-04-3804
http://dx.doi.org/10.1093/jnci/djv330
http://dx.doi.org/10.4049/jimmunol.179.8.5523
http://dx.doi.org/10.1172/JCI40483
http://www.ncbi.nlm.nih.gov/pubmed/20093776
http://dx.doi.org/10.4049/jimmunol.176.3.1375
http://www.ncbi.nlm.nih.gov/pubmed/16424164
http://dx.doi.org/10.1016/j.immuni.2007.10.010
http://www.ncbi.nlm.nih.gov/pubmed/18055229
http://dx.doi.org/10.1158/0008-5472.CAN-09-1688
http://dx.doi.org/10.1371/journal.pone.0003377
http://dx.doi.org/10.1371/journal.pone.0004942
http://dx.doi.org/10.1007/s13277-015-4313-2
http://dx.doi.org/10.1186/s12951-018-0372-z
http://dx.doi.org/10.1080/20013078.2018.1435138
http://www.ncbi.nlm.nih.gov/pubmed/29511460
http://dx.doi.org/10.1016/j.immuni.2019.03.024
http://dx.doi.org/10.4049/jimmunol.180.11.7249
http://www.ncbi.nlm.nih.gov/pubmed/18490724
http://dx.doi.org/10.3390/cancers11060874
http://dx.doi.org/10.3324/haematol.2010.039743


Cancers 2020, 12, 3177 26 of 26

190. Krasagakis, K.; Thölke, D.; Farthmann, B.; Eberle, J.; Mansmann, U.; Orfanos, C. Elevated plasma levels
of transforming growth factor (TGF)-β1 and TGF-β2 in patients with disseminated malignant melanoma.
Br. J. Cancer 1998, 77, 1492–1494. [CrossRef] [PubMed]

191. Tas, F.; Karabulut, S.; Yasasever, C.T.; Duranyildiz, D. Serum transforming growth factor-beta 1 (TGF-β1)
levels have diagnostic, predictive, and possible prognostic roles in patients with melanoma. Tumor Biol. 2014,
35, 7233–7237. [CrossRef] [PubMed]

192. Düchler, M.; Czernek, L.; Peczek, L.; Cypryk, W.; Sztiller-Sikorska, M.; Czyz, M. Melanoma-derived
extracellular vesicles bear the potential for the induction of antigen-specific tolerance. Cells 2019, 8, 665.
[CrossRef] [PubMed]

193. Lugini, L.; Cecchetti, S.; Huber, V.; Luciani, F.; Macchia, G.; Spadaro, F.; Paris, L.; Abalsamo, L.; Colone, M.;
Molinari, A.; et al. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol. 2012,
189, 2833–2842. [CrossRef]

194. Jong, A.Y.; Wu, C.-H.; Li, J.; Sun, J.; Fabbri, M.; Wayne, A.S.; Seeger, R.C. Large-scale isolation and cytotoxicity
of extracellular vesicles derived from activated human natural killer cells. J. Extracell. Vesicles 2017, 6, 1294368.
[CrossRef] [PubMed]

195. Shoae-Hassani, A.; Behfar, M.; Mortazavi-Tabatabaei, S.A.; Ai, J.; Mohseni, R.; Hamidieh, A.A. Natural killer
cells from the subcutaneous adipose tissue underexpress the NKp30 and NKp44 in obese persons and are
less active against major histocompatibility complex class I non-expressing neoplastic cells. Front. Immunol.
2017, 8, 1486. [CrossRef]

196. Zhu, L.; Kalimuthu, S.; Gangadaran, P.; Oh, J.M.; Lee, H.W.; Baek, S.H.; Jeong, S.Y.; Lee, S.W.; Lee, J.;
Ahn, B.C. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 2017,
7, 2732–2745. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/bjc.1998.245
http://www.ncbi.nlm.nih.gov/pubmed/9652767
http://dx.doi.org/10.1007/s13277-014-1984-z
http://www.ncbi.nlm.nih.gov/pubmed/24771267
http://dx.doi.org/10.3390/cells8070665
http://www.ncbi.nlm.nih.gov/pubmed/31269655
http://dx.doi.org/10.4049/jimmunol.1101988
http://dx.doi.org/10.1080/20013078.2017.1294368
http://www.ncbi.nlm.nih.gov/pubmed/28326171
http://dx.doi.org/10.3389/fimmu.2017.01486
http://dx.doi.org/10.7150/thno.18752
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Innate Lymphoid Cells 
	ILCs in the Skin, Liver, and Lung 
	Skin 
	Liver 
	Lungs 

	The Function of ILCs in Melanoma 
	ILCs in Primary Cutaneous Melanoma 
	ILCs in the Metastatic Progression of Cutaneous Melanoma 
	ILCs and Inflammation during Metastatic Progression in the Liver 
	ILCs and Inflammation during Metastatic Progression to Lungs 
	ILCs and the Stromal Compartment in the Metastatic Microenvironment 


	ILCs and EVs in the TME 
	Effect of Tumor-Derived EVs on ILCs 
	Tumor Modulation by ILC-Derived EVs 

	Conclusions 
	References

