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Abstract: Transition metal sulfides are cheap and efficient catalysts for water splitting to produce
hydrogen; these compounds have attracted wide attention. Nickel sulfide (NiS2) has been studied
in depth because of its simple preparation process, excellent performance and good stability.
Here, we propose a modification to the hydrothermal synthesis method for the fabrication of a highly
efficient and stable NiS2 electrocatalyst prepared by two different sulfur sources, i.e., sulfur powder
and C3H7NaO3S2 (MPS), for application in hydrogen evolution reactions. The obtained NiS2

demonstrated excellent HER performance with an overpotential of 131 mV to drive -10 mA cm−1 in
0.5 M H2SO4 solution with 5mV performance change after 1000 cycles of stability testing. We believe
that this discovery will promote the industrial development of nonprecious metal catalysts.
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1. Introduction

Fossil fuels have been extremely important over the past hundred years, at the same time causing
very serious damage to the environment [1–3]. In order to alleviate the pressure on the ecological
environment, people have begun to look for more green, efficient and low-cost methods of energy
generation [4–6]. Hydrogen is a clean energy source; it has a calorific value higher than fossil fuels and
may be produced from water without pollution to the environment [7]. Therefore, the usage of catalysts
to optimize the decomposition of water for hydrogen production has attracted great attention from
researchers [8–12]. At the present, there are a variety of extremely stable and high-efficiency catalysts,
such as platinum and palladium; however, their application is limited by their high cost [13,14].
Thus, there is a need to find a low-cost and stable catalyst.

Nonprecious transition metals are abundant and exhibit a good performance for hydrogen
evolution reactions [15]. Nonprecious transition metal derivatives such as oxides, sulfides, carbides,
nitrides, and alloys have been studied, and all demonstrated good catalytic performance. As a
transition metal, nickel-based materials have been thoroughly studied in terms of catalysis [1,16–19].
Nickel-based dichalcogenides, specifically, NiS2, are narrow-bandwidth semiconductors performing

Nanomaterials 2020, 10, 2115; doi:10.3390/nano10112115 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-2574-3479
http://www.mdpi.com/2079-4991/10/11/2115?type=check_update&version=1
http://dx.doi.org/10.3390/nano10112115
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2020, 10, 2115 2 of 8

well in acidic environments with a relatively small Tafel slope and a low overpotential [17,20–23].
Some NiS2 crystals have irregular morphologies and complicated structures, causing instability in the
performance of the catalyst. If there is further improvement in the catalytic performance and stability
of NiS2, it is expected to be widely used in industry.

In this work, we propose a hydrothermal synthesis method of polyhedral NiS2 (MS) from
C3H7O3NaS2 (MPS) and sulfur powder used as the dual sulfur source. The obtained NiS2 was used for
hydrogen evolution reactions (HER), performed in an acidic environment of 0.5M H2SO4. The catalyst
showed excellent performance: the turn-on voltage at a current density of 10 mA cm−2 was 131 mV,
and the Tafel slope was 50 mV dec−1. In order to ensure the relevance of this technique for practical
applications, we also conducted a stability test of 1000 circles; the resulting performance change was
only 5 mV. For the renewable energy industry, we believe that this method of preparation of NiS2

electrodes will promote the development of electrocatalysts.

2. Materials and Methods

2.1. Materials and Chemicals

The carbon fiber paper (CFP) model was obtained from CeTech Co., Ltd. (WOS1009)
(Taichung City, Taiwan). Ni(NO3)2·6H2O was obtained from Shanghai Titan Technology Co., Ltd.
(Shanghai, China). Sulfur powder (S) was obtained from Nanjing Chemical Reagent Co., Ltd.
(Nanjing, China). Sodium 3-mercapto-1-propanesulfonate (C3H7NaO3S2, Na[SH(CH2)3SO3], MPS)
was obtained from Aladdin Reagent Co., Ltd. (Shanghai, China). A deionized water Millipore filter
was obtained from Millipore Q, USA (Millipore Q, Billerica, MA, USA).

2.2. Synthesis of NiS2 (MS) with Dual Sulfur Source

Cleaned carbon fiber paper (CFP), washed using deionized water and absolute ethanol,
was prepared. Then, 1.2 mM of Ni(NO3)2·6H2O and 1.6 mM of MPS were mixed into the Teflon-lined
autoclave with 25 mL deionized water and stirred for 15 min. After the above step, 0.8 mM of sulfur
powder was added to the solution and stirred for 15 min slowly. After finishing this step, the CFP was
placed into a container and was heated to 180 ◦C for 8 h. After this, the CFP was taken out and washed.

2.3. Synthesis of NiS2 with MPS

Cleaned carbon fiber paper (CFP), washed by deionized water and absolute ethanol, was prepared.
Then, 1.2 mM of Ni(NO3)2·6H2O and 1.6 mM of MPS were added to the Teflon-lined autoclave with
25 mL deionized water and stirred for 15 min. After finishing this step, the CFP was placed into a
container and heated to 180 ◦C for 8 h. After this, the CFP was taken out and washed.

2.4. Synthesis of NiS2 with S

Cleaned carbon fiber paper (CFP), washed by deionized water and absolute ethanol, was prepared.
Then, 1.2 mM of Ni(NO3)2·6H2O was added to the Teflon-lined autoclave with 25 mL deionized water
and stirred for 15 min. After the above step, 0.8 mM of sulfur powder was added to the solution and
stirred for 15 min slowly. After finishing this step, put CFP was placed into a container and heated to
180 ◦C for 8 h. Finally, the CFP was taken out and washed.

2.5. Materials Characterization

X-ray diffractometer (XRD) by Bruker D8 Advance X-ray diffractometer (XRD) with Cu-Kα

radiation (15◦ to 75◦, 0.1◦ s−1) (Bruker Daltonics Inc., Karlsruhe, Germany). Raman measurements by
Horiba LabRAM system (HORIBA, Ltd., Kyoto, Japan). SEM images by Scanning electron microscopy
(FE-SEM; JSM-7000F JEOL Ltd., Tokyo, Japan). TEM and HRTEM images by JEOL type JEM2100
instrument (JEOL Ltd., Tokyo, Japan). XPS was performed on as-synthesized NiS2 by PHI5000
Versaprobe (Ulvac-Phi Inc., Kanagawa, Japan).
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2.6. Electrochemical Measurements

A CHI760E electrochemical analyzer (CH Instruments, Chenhua Co., Shanghai, China) was
used to analyze the performance of samples in 0.5 M H2SO4. A three-electrode system was
used to test samples. The measured potentials were converted to a reversible hydrogen electrode
(E(RHE) = E Hg/Hg2Cl2 + 0.241 + 0.0591 pH). Prior to testing, nitrogen had to be bubbled into H2SO4

solution to remove oxygen from the solution. The range of LSV test was from −0.8 to 0 V with the scan
rate of 2 mV s−1. Tafel data could be calculated from the LSV test. Different scan rates of the CV test
(5 to 90 mV s−1) were carried out to reveal the ECSA of samples. EIS measurements were carried out in
a frequency range from 105 to 0.1 Hz with an AC voltage of 5 mV.

3. Results and Discussion

Figure 1a,b present scanning electron microscopy (SEM) images of NiS2 (MS) prepared by sulfur
powder and MPS, forming a regular polyhedral block structure on the carbon fiber which was from the
carbon fiber paper (CFP). Transmission electron microscopy image (TEM) captured from the edge of
the sample is shown on Figure 1c. Figure 1d represents the HRTEM image of NiS2 (MS), with regular
crystal plane spacing of 0.283 nm, corresponding to the (200) plane according to the following XRD card
(JCPDS#65-3325) [24,25]. In order to compare the proposed NiS2 (MS) synthesis method, i.e., from dual
sulfur sources, with other techniques, we also studied the morphology (Figures S1 and S2) of the
synthesized material by two other techniques. As can be seen from Figure S1a,b, the carbon fiber
surface also has some regularly shaped products stacked together. However, only a small amount
of product adhered to the surface compared with the material synthesized by the dual sulfur source,
which had a certain degree of negative influence on the conductivity between the substances. Figure S2
is SEM patterns of NiS2 synthesized by sulfur powder as the sole sulfur source. The resulting product
was relatively small and scattered on the surface of the carbon fiber, which was in sharp contrast to the
products synthesized by the previous two schemes. During the HER process, the other two samples
easily detached from the carbon fiber, resulting in poor performance and stability. In comparison,
the samples prepared by the dual sulfur source interlaced with each other provided a larger coverage
of the electrode, and thus, improved resistance and catalytic performance.
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X-ray diffraction (XRD) analysis was performed in order to investigate the structure and
composition of the obtained NiS2 [25]. Analyzing the shape of the peaks in the XRD picture,
it can be seen that the obtained substance had good crystallinity. The diffraction peaks of 31.7◦, 36.7◦,
41.3◦, 45.4◦, 52.,9◦, 56.4◦ and 62.9◦ corresponded to NiS2 planes according to JCPDS#65-3325 of (111),
(200), (210), (211), (220), (221) and (311), respectively. The diffraction peak at 27◦ was attributed to
the presence of carbon fiber [24]. The peak at 65◦ may be have been contributed to the presence of
sulfur. Figure 2b represents the full x-ray photoelectron spectroscopy (XPS) spectra of NiS2 (MS)
used for confirmation of its elemental composition [17,26]. As shown in Figure 2c, two spin-orbit
doublets and two satellites can be deconvoluted from the Ni 2p spectrum, namely 853.5 eV and 856.1
eV corresponded to 2p3/2 of Ni2+ and Ni3+, and 871.1 eV and 874.5 eV were attributed to 2p1/2 of
Ni2+ and Ni3+ respectively [17,26–29]. Figure 2d shows the deconvolution of S 2p peaks: the peak at
161.52 eV belonged to S 2p3/2, while that at 162.87 eV corresponded to S 2p1/2 of Ni-S bondings [30,31].
Due to the surface oxidation of NiS2, the peak at 166.7 eV could be attributed to S-O bonding [19].
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In order to further prove the applicability of the synthesized NiS2, electrochemical analysis
was carried out to investigate the HER performance of the electrocatalyst in 0.5 M H2SO4 aqueous
solution. Linear scan voltammetry (LSV) curves were measured to analyze the HER activity of NiS2,
as shown in Figure 3a. The electrode based on NiS2 and grown on carbon paper from MPS and
sulfur powder showed excellent HER performance, with an overpotential of 131 mV to drive −10 mA
cm−1. Compared with the performance of the NiS2 synthesized using MPS or sulfur powder as the
sulfur source, the overpotential was 197 mV and 261 mV, respectively. There may be two reasons for
switching on the voltage gap. First, the increase in the loading of the substrate was obvious; provided
more active sites for hydrogen adsorption and desorption. From the SEM image, it can be seen that
there were many substrates on the surface that is synthesized by the dual sulfur source, which may
have caused more defects in the boundary crystal planes, thereby improving the catalytic performance
to a certain extent. It can be seen from the XRD pattern that the crystallinity of the sample prepared
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using the dual sulfur source was better. Combined with the TEM image of the sample, the high crystal
plane (200) of the sample can be seen. This sample showed excellent performance in the process of
electrocatalytic water decomposition. We summarized the overpotential of the HER of similar samples
that have been published so far; Figure S3. Figure 3b shows the Tafel slope of 50 mV dec−1 for NiS2

with MPS and sulfur powder and the other two Tafel slopes of 53 mV dec−1 and 74 mV dec−1 for NiS2

with MPS or sulfur powder, respectively. The lowest overpotential and Tafel slope for NiS2 fabricated
by MPS and sulfur powder indicated the best performance of hydrogen evolution reaction and high
intrinsic catalytic activity supported by its superior exchange current density. To assess the stability of
the catalytic performance of NiS2, cycling voltammetry (CV) was conducted. Thus, after 1000 cycles of
stability testing at −10 mA cm−1, the performance loss was only 5 mV.
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Electrochemical impendence spectroscopy (EIS) was used to assess the charge transfer performance
of the synthesized NiS2, which also determined the double layer capacitance [1,16]. The Nyquist plots
(Figure 3d) confirmed that the NiS2 fabricated from MPS and sulfur powder showed excellently smaller
charge transfer resistance (Rct), compared to other two materials, in the experiment and simulation in
0.5 M H2SO4 solution. The experimental data was fitted according to the electrical model presented
in the inset of Figure 3d. Cad and Rad represent adsorption capacitance and adsorption resistance,
respectively. The lowest charge transfer resistance of 53 Ω for NiS2 prepared by MPS and sulfur
powder was observed from the fitting experiment data in Figure 3d. The charge transfer resistances
of NiS2 with only MPS and only sulfur powder were 178 Ω and 258 Ω, respectively. Contrasting the
value of Rct of the samples, it can be observed that the NiS2 fabricated by MPS and sulfur powder
had improved electrical conductivity, allowing electrochemical processes to occur on the surface.
Nonfaradaic double-layer capacitance (Cdl) was calculated for further analysis of the NiS2 activity.
The Cdl of NiS2 fabricated by the dual sulfur source was 10.3 mF cm−2, and the Cdl of the material
prepared by MPS and sulfur powder were 0.44 mF cm−2 and 1.67 mF cm−2, respectively. Different scan
rates of cyclic voltammetry measurement were carried out in order to determine the electrochemical
surface area (ECSA) of NiS2, as shown in Figure 4a. The catalytic performance of the working electrode
was normalized to 1 cm2. Figure 4a–d show cyclic voltammograms of NiS2 prepared by different
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experimental schemes which were measured in the nonfaradaic capacitance current range with different
scan rates.Nanomaterials 2019, 9, x 6 of 8 
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