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Abstract: The purpose of this article was to theoretically study the non-Fickian moisture absorption
process in vegetable-fiber-reinforced polymer composites using a Langmuir-type model. Here, the
focus was on evaluating the effect of the water layer thickness that surrounds the composite during
the water migration process. The solutions of the governing equations were obtained using the
finite volume method, considering constant thermophysical properties and non-deformable material.
The results for the local and average moisture content and concentration, gradient values, and the
transient rates of the free and bound (water) molecules in the process were presented and analyzed.
It was observed that the water layer thickness strongly influenced the water absorption kinetics,
the moisture content gradient values, and the equilibrium moisture content inside the material. It is
envisaged that this new approach will contribute to better interpretation of experimental data and a
better understanding of the physical phenomenon of water absorption, which directly affects the
properties of composite materials.
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1. Introduction

In recent years, growing environmental concerns have encouraged several industrial sectors to
adapt their technologies and products to meet sustainable demands. Thus, the concept of “green
materials”, or “eco-friendly materials”, has been standing out in the scientific and industrial fields [1].
In this sense, the use of vegetable fibers as reinforcement in polymeric matrix composites instead
of conventional synthetic fibers presents numerous advantages, which may result in products with
acceptable performance and costs and the potential for different applications [2–4].

However, the chemical structures of vegetable fibers makes the composites produced from them
more sensitive to the influence of external environmental factors, such as temperature and moisture.
Due to their polar and hydrophilic nature, when exposed to moisture, these materials will inevitably
absorb water, causing swelling in the fibers and changes in their properties, decrease their durability
during operation [5]. In this way, in-depth studies related to these phenomena are essential in order to
clarify the consequences of moisture exposure on the mechanical, physical, and chemical properties of
these composites and to find alternative solutions this important problem.

The diffusion of water molecules inside a composite material occurs by imperfections in its matrix,
by capillarity along the interface, and by regions lacking polymeric resin, which proceeds until reaching
the vegetable fibers. This phenomenon results in an increase in the free volume of the structure, which is
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responsible for changes in the properties of these materials. In addition, water absorption promotes
fiber expansion and volume variations due to changes in moisture content, causing microcracks in the
matrix. Thus, the prediction of the moisture content over time is particularly important, since from the
obtained results it is possible to predict which areas are more susceptible to cracks and deformations,
which directly affect the quality of the product, especially under moist environments applications [6,7].

To properly explain the macroscopic behavior of water molecules during the absorption process,
it is necessary to have a set of experiments that faithfully reproduce the work conditions. However,
each experiment usually takes several weeks, which is a limitation of the technique. Further,
experimental approaches depend on predefined conditions that may inappropriately represent the real
environment, affecting the achievement of reliable results and their interpretation. Alternatively, the use
of appropriate and validated mathematical models allows the prediction of the material behavior in
the long term quickly and economically, eliminating the need to condition the composites in humid
environments. Therefore, several authors have conducted studies aiming to predict the behavior of
these materials over long periods and under different conditions of moisture exposure [8–11].

The diffusion laws often explain the water-absorbing behavior of composite materials.
Fick’s diffusion model is the most used in predicting moisture transport in composite
materials [10,12–17], mainly for the initial moisture uptake region. The preference for this model is
associated with the ease of fitting the governing equation to the experimental sorption data. However,
for long periods, the moisture absorption in the material may not occur only by diffusion [18,19], whereby
different processes such as chemical reactions can be activated, directly affecting the humidification
kinetics and inducing a deviation in the behavior of the water absorption characteristic curve. In such
cases, it is said that the humidification process is of the non-Fickian type, whereby it becomes necessary
to use appropriate models that adequately capture these effects.

In this context, the Langmuir-type model [20] considers the fact that the absorption process occurs
in two states. In the first state the water molecules are free to diffuse into the material, while in
the second state these molecules become chemically bonded to the polymer chains. This process
can be irreversible and means the non-Fickian behavior needs to be observed. The main advantage
presented by Langmuir’s model as compared with Fick’s model is the fact that it considers the
interaction between bound and free water molecules within the composite, being widely used to
explain anomalous diffusion processes, and thus allowing for more consistent physical interpretations
with real phenomena, since Fick’s model does not predict this deviation.

Based on the information cited before, some researchers have used the Langmuir-type
model to describe the water absorption kinetics in vegetable-fiber-reinforced polymer composites.
Santos et al. [21] presented a theoretical study of the anomalous behavior of moisture diffusion in
composite materials reinforced with caroá fibers using Langmuir’s model. The predicted results of
the average moisture content compared to experimental data showed that the model was effective in
describing the phenomenon, allowing a better understanding of the moisture migration mechanisms.
Chilali et al. [22] investigated the behavior of water diffusion in polymeric composites of thermoplastic
and thermosetting matrices reinforced with flax fibers. The aim was to evaluate the effects of the fiber
content, thickness, and orientation on the process behavior. Gravimetric tests were performed in pure
water and salt water and the diffusion parameters were obtained using both Fick and Langmuir’s
models. The authors concluded that both the models correctly described the transient evolution of water
uptake. Meloetal [23] presented a review of polymeric composites reinforced with vegetable fibers
and discussed the problem of moisture absorption in these materials. The authors reported analytical
and numerical solutions for Langmuir’s modeling using a one-dimensional approach. The study
was applied to caroá fibers and the authors obtained a good agreement between the theoretical and
experimental data for the average moisture content throughout the process. Britoetal [24] developed
a three-dimensional and transient mathematical model using Langmuir’s model and its numerical
solution based on the finite volume method. This was used to predict the water absorption in polymeric
composites reinforced with vegetable fibers. The obtained results were validated with experimental
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data for sisal fibers as reinforcement. The results for the concentrations of free and bound water
molecules and the average and local moisture contents at different process times were presented,
allowing the authors to describe in more detail the characteristics inherent to the absorption process.
However, despite the importance of more precisely describing the water sorption phenomena inside
the composite, which has not yet been explained by Fick’s model, there are still few studies focused on
the mass transport mechanisms using Langmuir’s model, especially those that present new approaches
to assess the influence of different test conditions on the absorption process.

An important component of the water sorption experiments in vegetable-fiber-reinforced polymer
composites the sample selection. When placed in the water bath, if a sample has a higher density it will
not float, rather it will sink to the bottom of the container, causing differences in the water absorption
rate between the top and bottom sides of the sample. However, despite this phenomenon being
observed in practical applications, when predicting this phenomenon, researchers must consider that
the boundary conditions on the material surfaces are the same, contrary to the real process conditions.

In this sense, supplementing the research already carried out, this work aims to evaluate the effect
of the water layer thickness that surrounds the composite during the water migration process using
the Langmuir-type model. The one-dimensional solution for the governing equations was obtained
numerically using the finite-volume method, considering the constant thermophysical properties
and non-deformable material. These results were validated using the analytical solution published
previously proposed by Santosetal [21], as applied to vegetable-fiber-reinforced polymer composites.

Thus, the innovative aspect of the research is the precise explanation of the distribution of the
water inside the composite during the absorption and the velocity with which this phenomenon
occurs. This information will assist engineers, researchers, and industries in making decisions
related to the use of these materials in humid environments and in adequately understanding the
absorption phenomenon.

2. Methodology Modelling

2.1. The Physical Problem and Geometry

For the physical problem, the water absorption process was considered in a porous material
(polymer composite) with a thickness of 2a, immersed in a fluid solute (water), at a specific temperature.
The sample was located in such a way that the upper and bottom surfaces of the solid were at distances
L1 and L2 from the upper and bottom walls of the water level in the container, as shown in Figure 1.
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2.2. The Mathematical Model

For the analysis and solution of the mass transfer problem in the composite material, the following
hypotheses were considered: (a) the material is considered homogeneous and isotropic; (b) the process
is isothermal and transient; (c) there is no variation in the material dimensions; (d) the solid is considered
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completely dry at the beginning of the process; (e) the water transport inside the solid occurs only by
one-dimensional diffusion; (f) there is an equilibrium condition between the external environment and
the surface of the solid; (g) capillary transport through the solid is considered negligible; (h) there is no
internal mass generation.

Langmuir’s model is an extension of the Fickian diffusion model. In this model, it is assumed that
the migration of water inside the material occurs due to the existence of two phases—free and bound
water molecules—which are represented mathematically by probability parameters. Based on these
considerations, the Langmuir model is described by the following equations:

∂C
∂t

=
∂
∂x

(
D
∂C
∂x

)
+ SC (1)

and
SC =

∂S
∂t

= λC− µS (2)

In Equation (1), C and S represent the free and bound water molecule concentrations inside the
composite, respectively; D represents the free water molecule diffusivity (m2/s); SC is the source term
that describes the temporal variation of the bound water molecule concentration; λ is the probability
that a free molecule will become bonded (s−1); µ is the probability that a bound water molecule will
become free for diffusion (s−1); and t represents the time (s). For the solution of the governing equations,
the following initial and boundary conditions were considered:

• Initial condition:

S = C = 0
{

0 < x < 2a
t = 0

(3)

• Boundary conditions:

L1
∂C
∂t

= −D
∂C
∂x

{
x = 2a
t > 0

(4)

L2
∂C
∂t

= −D
∂C
∂x

{
x = 2a
t > 0

(5)

According to the boundary conditions, it is assumed that the solute rate leaving the solution is
equal to the solute diffusive flux at the surface of the composite. These conditions together allow
us to evaluate the effect of the water level that surrounds the composite material on the water
absorption kinetics.

The total moisture inside the material at a specific position x and in an instant of time t (local
moisture) is given by the sum of the values of C and S at the same point, as follows:

M = C + S (6)

Once M is determined at any point within the composite, the average moisture content of the
solid porous material at any time is given from the integration of Equation (6) in the volume of the
solid. Since the problem is being investigated from a one-dimensional perspective, the equation to
calculate the average moisture content assumes the following form:

M =
1
V

∫
MdV =

1
2a

2a∫
0

Mdx (7)

where 2a corresponds to the solid thickness.
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2.3. The Numerical Solution

To obtain the numerical solution of Equations (1) and (2), the finite-volume method was used.
In this method, the solution is obtained from the integration of the governing equations in the control
volume of the domain and in time.

For the discretization process, a solid with uniform 2a thickness and (np-2) control volumes was
considered, as illustrated in Figure 2. The solid was divided into three different regions: (a) internal
control volumes; (b) upper boundary control volumes; (c) bottom boundary control volumes. Figure 2
shows nodal point P (in the center of the control volume), its south (S) and north (N) neighbors,
the dimension of the control volume, the distances between nodal point P and its neighbors S (δxs) and
N (δxn), and specific water fluxes on the bottom face C′′1 and top face C′′2 of the solid.
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Figure 2. Schematic representation of the computational domain.

2.3.1. The Free Molecule Concentration

• Internal points

Applying the integral in Equation (1) in the control volume of nodal point P over time, the following
is obtained: ∫

x

∫
t

∂C
∂t

dtdx =

∫
t

∫
x

∂
∂x

(
D
∂C
∂x

)
dxdt−

∫
x

∫
t

SCdtdx (8)

After the integration process, assuming a fully implicit formulation, Equation (8) takes the
following form: (

CP −Co
P

)∆x
∆t

= Dn

(CN −CP

δxn

)
−Ds

(CP −CS

δxs

)
−

(
λCP − µSo

P

)
∆x (9)

Rearranging the terms of Equation (9), the following discretized linear algebraic equation
is obtained:

APCP = ANCN + ASCS + Ao
PCo

P + SC (10)

where the coefficients are given by:

AP =
(∆x

∆t
+

Dn

δxn
+

Ds

δxs
+ λ∆x

)
(11)

AN =
( Dn

δxn

)
(12)

AS =
( Ds

δxs

)
(13)

Ao
P =

(∆x
∆t

)
(14)

SC = (µ∆x)So
P (15)

Equation (10) is valid for all internal nodal points of the domain, except for boundary volumes
(upper and bottom). The coefficients AP, AN, and AS represent the contributions of diffusive transport
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between point P and its corresponding neighbors. The term Ao
P represents the influence of the C

variable value in the previous time over its value at the current time.

• Control volumes for the upper boundary

For this control volume, there is a diffusive flux at the upper border, which must be replaced
according to the considered boundary condition. In this type, the water flux at the upper border is
described by Equation (4). Considering the diffusive flux at the control volume interface, and making
the necessary substitutions, we obtain the following expression for the diffusive flux at the upper border:

C′′1 =


Dn
δxn

CP −
Dn
δxn

Co
n

1 + Dn∆t
δxnL1

 (16)

Thus, after the discretization process of Equation (1), the following type of control volume
is obtained: (

CP −Co
P

)∆x
∆t

= −C′′1 −Ds

(CP −CS

δxs

)
−

(
λCP − µSo

P

)
∆x (17)

Substituting Equation (16) into Equation (17) and rearranging the terms, the following discretized
linear algebraic equation is obtained (valid for the nodal point of the upper border):

APCP = ASCS + Ao
nCo

n + Ao
pCo

p + SC (18)

where

AP =

∆x
∆t

+
1

δxn
Dn

+ ∆t
L1

+
Ds

δxs
+ λ∆x

 (19)

AS =
( Ds

δxs

)
(20)

Ao
n =

 1
δxn
Dn

+ ∆t
L1

 (21)

AS =
( Ds

δxs

)
(22)

SC = (µ∆x)So
P (23)

• Control volumes for the bottom boundary

The valid equation for this type of control volume is obtained in a similar way to Equation
(18). However, for this case, the diffusive flux at the bottom boundary is considered, which must be
replaced according to the boundary condition established in Equation (5). Thus, after all mathematical
manipulations, the discretized Equation (5) takes the following form:

C′′2 =


Ds
δxs

CP −
D
δxs

Co
S

1 + Ds∆t
δxsL2

 (24)

Performing all the numerical procedures described previously, the discretized linear algebraic
equation valid for the nodal point of the bottom boundary control volume will be given by:

APCP = ANCN + Ao
SCo

S + Ao
PCo

P + SC (25)

where

AP =

∆x
∆t

+
1

δxs
Ds

+ ∆t
L2

+
Dn

δxn
+ λ∆x

 (26)
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AN =
( Dn

δxn

)
(27)

Ao
S =

 1
δxs
Ds

+ ∆t
L2

 (28)

Ao
P =

(∆x
∆t

)
(29)

SC = (µ∆x)So
P (30)

Equations (10), (18), and (25), applied to their respective nodal points of the control volumes,
form a system of equations whose solution indicates the free water molecule concentration within the
composite material during the moisture absorption process.

2.3.2. The Bonded Molecule Concentration

The discretized equations for the bonded solute concentration inside the solid is obtained using
the analogous procedure for the free water molecule concentration. However, for this case, an explicit
formulation was used to estimate the values. Thus, integrating Equation (2) into the volume and time
period, the following expression is obtained:(

SP − So
P

)∆x
∆t

= (λCP − µSP)∆x (31)

Thus, reorganizing the terms of Equation (31), the following discretized linear algebraic equation
is obtained:

APSP = Ao
pSo

P + SS (32)

where
AP =

(∆x
∆t

+ µ∆x
)

(33)

Ao
P =

(∆x
∆t

)
(34)

SS = λ∆xCP (35)

Equation (32) is valid for all control volumes of the studied domain.

2.3.3. Average and Local Moisture Contents

The local moisture content is obtained from the sum of the free and bound water molecule
concentrations at each nodal point according to Equation (6). The average moisture content of the
composite at each time point is obtained from the process of discretization of Equation (7), assuming
the following form:

M =
1

2a

np−1∑
i=2

Mi∆xi (36)

where np represents the number of nodal points used in the simulation. Thus, np-2 represents the
number of control volumes in the studied domain.

2.3.4. Numerical Simulation Procedure

To solve the discretized equations, a computational code was developed on the Mathematica®

platform. As the numerical results obtained from a given mathematical model were strongly dependent
on the geometry, boundary conditions, the number of points in the mesh, and the time step considered,
studies of the mesh refining and time step were performed. From this study, a numerical mesh with
30 nodal points (np = 30) and a time step of 20 s (∆t = 20s) was chosen. The algebraic equation
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system obtained from Equation (25) was solved iteratively using the Gauss–Seidel method, where the
following convergence criterion was assumed at each nodal point:∣∣∣Cn+1

P −Cn
P

∣∣∣ ≤ 10−10 (37)

where n represents the nth iteration for each time point.

2.3.5. Evaluated Cases

In order to simulate the water absorption behavior inside the composite material and to evaluate
the influence of the distance between the surface of the composite and the surface of the water layer
in this process, different arbitrary cases were considered, as specified in Table 1. The absorption
process was simulated considering an equilibrium moisture content of Me = 0.14488 kg/kg and a total
process time of approximately 2250 h, equivalent to approximately 94 days. The values for the process
parameters used in the simulations were defined based on the results reported in the literature [24,25].

Table 1. Process parameters (Temperature, thickness, probabilities and diffusivity) values used in
the simulations.

Case

Parameter

Water Composite

Te (◦C) To (◦C) 2a (m) L1 (m) L2 (m) µ

(10−6s−1)
λ

(10−6s−1)
D

(10−12m2s−1)

1 25 25 0.003 0.100 0.100 5 1 5
2 25 25 0.003 0.100 0.010 5 1 5
3 25 25 0.003 0.100 0.001 5 1 5
4 25 25 0.003 0.010 0.100 5 1 5
5 25 25 0.003 0.001 0.100 5 1 5
6 25 25 0.003 0.001 0.001 5 1 5

Te: Water bath temperature. To: Initial temperature.

3. Results and Discussions

In this research, the water absorption process in vegetable-fiber-reinforced polymer composites
was studied. The focus was to analyze the effect of the distance between the tested sample surface
and the water level in the container used; that is, the influence of the layer thickness water in the
sorption process. Thus, the main idea is to offer a better interpretation of the experimental data,
and consequently a more detailed description of the physical phenomenon.

Figure 3 illustrates the graph of the average moisture content in the material along the process for
different arbitrary cases, as reported in Table 1. During the absorption process, water tends to penetrate
into the material through the concentration gradient until reaching the saturation condition, whereby
the equilibrium with the external environment is reached. From analysis of Figure 3, it is possible to
observe that the water absorption is faster in the initial process, increasing almost linearly until a state
known as “pseudo equilibrium”, which is characteristic of the absorption behavior predicted by the
Fickian diffusion law. Following this, the absorption curve begins to assume a concave shape in relation
to the abscissa axis. With continuous exposure of the composite to the water, the process becomes
slower until reaching the hygroscopic saturation point, which varies according to the previously
established physical and geometric conditions. It is possible to verify that the water layer thickness
close to the composite surface strongly affects the water absorption process. This effect is not restricted
only to the water migration rate into the material, but also the maximum amount absorbed by it.

For the case 1 (L1 = 0.1 m e L2 = 0.1 m), the average moisture content tends towards the equilibrium
moisture content (0.1423 kg/kg), whereas for the case 6 (L1 = 0.001 m e L2 = 0.001 m), the value
approaches 0.0517 kg/kg. This behavior happens due to the difference in the water amount available for
the diffusive process in contact with the composite surface; that is, the change in the composite water
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level distance causes variations in the absorption kinetics that can be explained for the concentration
gradient behavior on the composite surface. This phenomenon can be understood when separately
plotting the graphs for the free water molecule concentration, bound water molecule concentration,
and local moisture as a function of the position inside the material.Polymers 2020, 12, x FOR PEER REVIEW 10 of 19 

 10 

 
(a)           (b) 

Figure 3. (a) Average moisture content as a function of the process time for different physical 
saturations. (b) Detailed view of (a). 

Figure 4 shows the local moisture contents obtained from the sum of the free and bound water 
molecule concentration along the thickness of the material for different process times and different 
simulated cases. From the analysis of this figure, it is possible to observe that the largest moisture 
content gradients are found on the surfaces. In those regions the absorption is faster due to the higher 
concentration of water, which then decreases towards the central region of the solid, showing 
increased immersion time until reaching a characteristic equilibrium state for each simulated case. 
Symmetry can also be observed in the results when the geometric parameters L1 and L2 are equal. 

Figures 5 and 6 illustrate the transient behavior of free and bound water molecules in the 
material along the thickness for different process times. In Figure 5, it can be observed that increasing 
the immersion time causes changes in the diffusion behavior of the free water molecules. For the 
initial times (Figure 5a), the curve follows symmetrical behavior, with the highest concentration 
gradients at the surface of the material. With the increase in exposure time, the curve assumes an 
asymmetric behavior that depends on the previously specified values (Figure 5b–d), causing 
variations in the concentration gradient. 

The bound water molecule concentration along the material, in turn, is dependent on the process 
time, which varies according to the free molecule concentration. From the analysis of Figure 6, it can 
be observed that the largest concentration gradients of the bound water molecules are present on the 
material surfaces, mainly for cases 1 and 6, due to the symmetry of the process. For other cases, the 
curve behavior changes according to the water layer thickness on the bottom and upper surfaces of 
the composite material. In all cases, the process occurs until reaching equilibrium. The time taken is 
dependent on the physical and geometric conditions established. It is important to note that 
Langmuir's model predicts that the saturation balance is attained when the following condition is 
satisfied: 

SC μ=λ  (38)

Figure 3. (a) Average moisture content as a function of the process time for different physical saturations.
(b) Detailed view of (a).

Figure 4 shows the local moisture contents obtained from the sum of the free and bound water
molecule concentration along the thickness of the material for different process times and different
simulated cases. From the analysis of this figure, it is possible to observe that the largest moisture
content gradients are found on the surfaces. In those regions the absorption is faster due to the higher
concentration of water, which then decreases towards the central region of the solid, showing increased
immersion time until reaching a characteristic equilibrium state for each simulated case. Symmetry
can also be observed in the results when the geometric parameters L1 and L2 are equal.

Figures 5 and 6 illustrate the transient behavior of free and bound water molecules in the material
along the thickness for different process times. In Figure 5, it can be observed that increasing the
immersion time causes changes in the diffusion behavior of the free water molecules. For the initial
times (Figure 5a), the curve follows symmetrical behavior, with the highest concentration gradients
at the surface of the material. With the increase in exposure time, the curve assumes an asymmetric
behavior that depends on the previously specified values (Figure 5b–d), causing variations in the
concentration gradient.

The bound water molecule concentration along the material, in turn, is dependent on the process
time, which varies according to the free molecule concentration. From the analysis of Figure 6, it can
be observed that the largest concentration gradients of the bound water molecules are present on
the material surfaces, mainly for cases 1 and 6, due to the symmetry of the process. For other cases,
the curve behavior changes according to the water layer thickness on the bottom and upper surfaces
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of the composite material. In all cases, the process occurs until reaching equilibrium. The time
taken is dependent on the physical and geometric conditions established. It is important to note
that Langmuir’s model predicts that the saturation balance is attained when the following condition
is satisfied:

λC = µS (38)
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The condition (Equation (38)) was proven in this study for all cases analyzed. The hygroscopic
saturation for cases 1 and 6 were achieved in 1944 and 500 h, respectively. In these times,
the concentrations of free water (Ce) and bound water (Se) molecules in the equilibrium condition
were 0.1185 and 0.0238 for case 1, and 0.0431 and 0.0086 for case 6, respectively. Another important
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result is related to the absolute values of the free and bound water molecule concentrations. Analyzing
Figures 5 and 6, it can be seen that C >> S was ensured at all points of the domain and any process
times, especially in the final stages of process.Polymers 2020, 12, x FOR PEER REVIEW 12 of 19 
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Different studies agree that the water diffusion in polymer composites occurs via three different
mechanisms. First, water molecules diffuse through defects present in the matrix, such as microcracks
and pores. Then, the diffusion continues by capillarity along the interface, infiltrating in the different
hydrophilic components of the fibers and finally penetrating the hollow fiber parts, causing swelling.
This effect results in the break of hydrogen bonds between molecules in the fiber; thus, the hydroxyl
groups or other polar groups form new bonds with water molecules. This phenomenon causes an
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increase in the free volume of the structure, and consequently a reduction in the properties of the
materials produced [6,22,26].Polymers 2020, 12, x FOR PEER REVIEW 13 of 19 
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The concentration gradients of the free and bound molecules and local moisture have huge
influences on the diffusive process behavior; some values for these parameters are reported in Table 2.
The concentration gradient represents the water molecules flux across a frontier; therefore, the variation
in this parameter depends on the contact area between the water and the composite material. From the
analysis of Table 2, it is observed that the higher gradients are found in the regions where L assumes a
higher value; thus, for the cases where L1 >> L2, the diffusion will occur predominantly in the direction
of L1 and vice versa. For the cases where the distances between L1 and L2 are equal, there is no change
in its values; that is, the concentration variation rate is the same on both surfaces and the symmetry
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of the phenomenon is verified. With the increase in the process time, the values of these parameters
decrease, as observed in Figures 4–6. It is interesting to state that according to Figure 3, no changes in
the absorption curve were verified in the reciprocal cases (cases 2–5). This fact can be better understood
from the analysis of the gradient behavior. For these cases, only a change in the moisture flux direction
occurs due to the orientation of the x axis; modification of the average moisture content inside the solid
was not verified, rather the moisture content distribution and the free and bound water concentrations
distributions were modified.

Furthermore, according to Table 2, the concentration gradients of the bound water molecules are
higher than the free water molecules gradients in most of the process, mainly for short times.

Table 2. Values for the concentration gradients of the free and bound water molecules and the local
moisture content at the surface of the material for each simulated case.

t (h) x (m)
Case

L1 = 0.100m
L2 = 0.100m

L1 = 0.100m
L2 = 0.010m

L1 = 0.100m
L2 = 0.001m

L1 = 0.010m
L2 = 0.100m

L1 = 0.001m
L2 = 0.100m

L1 = 0.001m
L2 = 0.001m

56

∂C/∂x
0.000 −61.30 −61.94 −66.07 −51.11 −9.79 −12.88
0.003 61.30 51.11 9.790 61.94 66.10 12.88

∂S/∂x
0.000 −180.53 −180.55 −180.7 −179.2 −172.26 −172.40
0.003 180.53 179.20 172.3 180.5 180.73 172.40

∂M/∂x
0.000 −241.83 −242.50 −246.8 −230.3 −182.10 −185.28
0.003 241.83 230.30 182.1 242.5 246.81 −185.28

194

∂C/∂x
0.000 −8.610 −12.56 −27.51 −2.289 7.026 −0.4140
0.003 8.610 2.290 −7.060 12.56 25.51 0.4140

∂S/∂x
0.000 −18.02 −18.61 −21.11 −16.56 −13.11 −14.450
0.003 18.02 16.56 13.11 18.606 21.11 14.450

∂M/∂x
0.000 −26.63 −31.17 −48.61 −18.85 −6.082 −14.860
0.003 26.63 18.85 6.090 31.17 48.61 14.860

500

∂C/∂x
0.000 −0.190 −4.730 −11.57 3.811 3.702 −0.0020
0.003 0.190 −3.810 −3.702 4.733 11.56 0.0020

∂S/∂x
0.000 −0.180 −1.010 −2.773 0.670 0.799 −0.0610
0.003 0.180 −0.670 −0.799 1.097 2.773 0.0610

∂M/∂x
0.000 −0.370 −5.830 −14.34 4.481 4.501 −0.0620
0.003 0.370 −4.481 −4.501 5.830 14.34 0.0620

1944

∂C/∂x
0.000 −0.003 −3.769 −4.867 3.226 1.564 −5.41 × 10−6

0.003 0.003 −3.226 −1.564 3.769 4.867 5.41 × 10−6

∂S/∂x
0.000 −0.002 −0.781 −1.137 0.666 0.365 −0.00015
0.003 0.002 0.666 −0.365 0.781 1.137 0.00015

∂M/∂x
0.000 −0.005 −4.551 −6.004 3.892 1.929 −0.00016
0.003 0.005 −3.892 −1.929 4.551 6.004 0.00016

Figure 7 shows the behavior of the variation rates of free (Figure 7a) and bound (Figure 7b) water
molecules and the local moisture content (Figure 7c) as a function of time in the center of the composite.
From the analysis of the figures, it is possible to observe that the water absorption process is faster at
the beginning of the process until reaching a maximum absorption point, followed by a decrease that
tends towards the saturation equilibrium point.

In the initial time period, the material starts to moisten at an increasing rate, because it is
completely dry at the beginning of the process. After reaching an absorption peak, these values start to
drop, the material starts to soak, and the water starts to diffuse with more difficulty, slowing down
the process.
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For case 1, it is observed that the material presents a maximum absorption point at around
22 h, where it accumulates a local moisture percentage of about 40%. The free water concentration
reaches a peak at around 21 h, while that bound water molecules reach a peak at around 70 h; thus,
in comparison, the bound water molecules have a lower variation rate than the free water molecules.
However, in the equilibrium state, the point where the material reaches its absorption capacity is only
reached after 2250 h. This behavior complements the theories reported in the literature. According to
Chenetal [27], in the absorption process, the free water has the ability to move independently through
the empty spaces, while the bound water is restricted to polar groups of the material, which explains
the difference in the maximum times obtained.

For case 6, the maximum peak was observed at around 18 h, with 66% of the local moisture content
percentage being achieved due to the lower amount of water available for diffusion. For the other
cases, there is a smaller variation in the maximum absorption times. However, there is a difference in
the moisture content values obtained of about 18% between the reciprocal cases (cases 2–5), reinforcing
the idea that the established process conditions and the experimental variations, in terms of the sample
positions in gravimetric tests, influenced the water absorption process behavior.

In order to verify the composite water absorption behavior, from the results provided by the
Langmuir’s model, the temporal variation rates of C, S, and M for the initial and maximum values
were obtained and are reported in Table 3. From the analysis of this table, it was concluded that the
maximum temporal variation rate of the free water molecule concentration was approximately 10
times greater than for bound water molecules. Another important point is that the maximum variation
rate ∂C/∂t|max occurs on the first day of the process, whereas ∂S/∂t|max occurs with a certain delay on
the third day of the process. Furthermore, it was found that the maximum C value is approximately
87.3% of the local moisture content M, which explains the fact that in many situations, the Fick’s model
adequately predicts the process from a mathematical point of view.

Table 3. Values for the concentrations of C, S, and M, and the maximum absorption value at the center
of the composite.

Case t
(h)

C
(kg/kg)

∂C/∂t
(kg/kg/s)

t
(h)

S
(kg/kg)

∂S/∂t
(kg/kg/s)

t
(h)

M
(kg/kg)

∂M/∂t
(kg/kg/s)

1 20.8 0.01918 0.00166 69.4 0.00659 0.00015 22.2 0.02197 0.00172
2 20.8 0.01892 0.00163 69.4 0.00641 0.00014 20.8 0.01932 0.00169
3 18.1 0.01310 0.00141 55.6 0.00372 0.00011 19.4 0.01535 0.00146
4 19.4 0.01659 0.00162 69.4 0.00638 0.00014 20.8 0.01923 0.00168
5 18.1 0.01252 0.00135 55.6 0.00357 0.00011 19.4 0.01467 0.00140
6 16.7 0.00948 0.00113 45.8 0.00202 7.9 × 10−5 18.1 0.01124 0.00116

4. Conclusions

This research presented an advanced one-dimensional, isothermal, and transient mathematical
model that predicts the water absorption process in vegetable-fiber-reinforced polymer composites
(Langmuir-type model). The proposed model complements previous work, because it considers the
effect of the water layer thickness on the material surface.

From the numerical results obtained using the finite volume method, it can be concluded that:

(a) The water absorption is faster at the initial time points of the process, and with continuous
exposure the process becomes slower until reaching the hygroscopic saturation point, which varies
according to the physical and geometrical parameters;

(b) The water layer thickness on the composite surface strongly affects the moisture absorption
kinetics and the moisture content gradients inside the material. The higher gradients are found in
the regions where L1 or L2 has a higher value.

(c) The largest concentration gradients of free and bound water molecules are found on the composite
surface, and a symmetric behavior is found when the geometric parameters L1 and L2 are equal;
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(d) The equilibrium moisture content of the composite is dependent on the water layer thickness on
the material surface. For L1 = L2 = 0.100 m, the average moisture content tends towards moisture
equilibrium content of approximately 0.1423 kg/kg, whereas for L1 = L2 = 0.001 m this value
approaches 0.0517 kg/kg, due the small quantity of water available for diffusion;

(e) The water absorption process is faster at the beginning of the process, until reaching a maximum
absorption point, after which it decreasing until reaching saturation equilibrium. For L1 = L2 =

0.100 m, the material presents a maximum absorption point at around 22 h, where it accumulates
a local moisture percentage of about 40%, meanwhile for L1 = L2 = 0.001 m the maximum peak is
observed around 18 h of process, with 66% local moisture;

(f) The values of the free water molecules are higher than for bound water molecules at all points of
the domain and at any process times, especially in the final stages of the process;

(g) The temporal variation rate of the free water molecule concentration is higher than the bound
water molecule concentration in the center of the sample. The maximum variation rate for free
water molecules occurs on the first day of the process and for the bound water molecules occurs
after two days.

Thus, this research strongly contributes to the field of composite materials, providing detailed
information from mathematical and physical perspectives on the water absorption behavior,
and consequently its effects on the product lifetime during operation. Therefore, this information
will assist engineers and researchers to more efficiently design products based on vegetable fibers for
specific applications.
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