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Abstract: Extracellular vesicles (EVs) are important mediators of intercellular communication that
participate in many physiological/pathological processes. As such, EVs have unique properties
related to their origin, which can be exploited for drug delivery applications in cell regeneration,
immunosuppression, inflammation, cancer treatment or cardioprotection. Moreover, their cell-like
membrane organization facilitates uptake and accumulation in specific tissues and organs, which can
be exploited to improve selectivity of cargo delivery. The combination of these properties with the
inclusion of drugs or imaging agents can significantly improve therapeutic efficacy and selectivity,
reduce the undesirable side effects of drugs or permit earlier diagnosis of diseases. In this review,
we will describe the natural properties of EVs isolated from different cell sources and discuss strategies
that can be applied to increase the efficacy of targeting drugs or other contents to specific locations.
The potential risks associated with the use of EVs will also be addressed.

Keywords: extracellular vesicles (EVs); exosomes; microvesicles; targeting; tracking;
drug delivery; theranostics

1. Introduction

The ability of drugs to exert their therapeutic effects is limited by their stability in circulation
and their capacity to cross cellular barriers and reach the desired tissue. In cancer, for example,
most therapies have limited efficacy as drugs have low selectivity, which results in a considerable
number of side effects in the organism. For this reason, efforts currently focus on the development of
therapeutic agents that can be targeted to specific sites in the body. The availability of such agents
would improve the therapeutic opportunities, the efficiency of the treatment and the survival of the
patients, while reducing undesired side effects.

The utilization of nanomaterials has revolutionized research in drug delivery due to the physical
and chemical characteristics of nanoscale materials. Moreover, nanoparticles (NPs) have the potential
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to combine multiple therapeutic functions on the same platform, for example by incorporating
drugs or agents that increase cell penetration, labelling agents or biopolymers, among others.
Current strategies aim to develop intelligent nanomaterials that incorporate multiple functions
and are capable of selectively reaching the therapeutic target, diagnosing the disease and carrying out
treatment simultaneously.

Despite the great potential of nanomaterials, the majority of synthetic NPs developed never reach
clinical trials, because they fail to overcome the multiple barriers present in the organism. Most of the
nanoparticles are captured by the mononuclear phagocytic system and retained in the liver and spleen
for subsequent elimination. The NPs that manage to overcome these barriers must cross others, such as
the blood-brain barrier that prevents the passage of 99% of the molecules. Furthermore, to reach their
intended cellular location, NPs are confronted with other obstacles, such as poor vascularization in the
case of cancer cells, cell impermeability, endosomal escape, as well as resistance mechanisms involving
efflux pumps [1].

As a result, there is a need for nanovehicles with the ability to evade these multiple barriers
in the organism and at the same time increase selective targeting to specific cellular locations.
Recently, the utilization of extracellular vesicles (EVs) for drug delivery in different fields of
therapeutics has gained popularity as they are natural carriers of biological material between cells [2–11].
These vesicles are secreted by almost all cell types and can be isolated from different body fluids, such as
urine, blood and cerebrospinal fluid, as well as from other external sources, such as plants, fruits and
milk. The EV contents are determined by their origin and include various cell-specific molecules, such as
integrins, immunoglobulin family members, heat-shock proteins, RNA, miRNA, antigen-presenting
proteins and tetraspanins, which make them interesting for diagnostics and immunotherapy. EVs have
also been shown to be highly tunable structures and efficient vehicles for drug delivery [12]. As the
homing properties of these vesicles are determined by specific cell-membrane components, the drug
selectivity can be improved by isolating EVs with natural tropism to the brain, liver, lung, cancer cells
or others. These properties can be further enhanced by loading EVs with drugs, lipids, peptides, NPs,
imaging agents or by engineering cells to produce EVs that express a specific molecule to improve
their targeting or therapeutic effectiveness [13–16].

Designing a good strategy for targeted therapy can be challenging when considering the multiple
alternatives of EV-producing cells or biological fluids, the different properties of each type of EV
and the targeting/drug-loading methods currently available. Choosing the most appropriate strategy
depending on the therapeutic target can have a great impact on therapy outcome. In this review,
we will focus particularly on the utilization of the natural properties of EVs to favor targeting and
efficacy towards specific cells and discuss different strategies to enhance and combine that potential for
cell-specific targeting, drug delivery and imaging purposes. Further, the potential risks and limitations
in the use of EVs will be discussed.

2. Extracellular Vesicles

EVs are particles surrounded by a lipid bilayer which are released by most eukaryotic
and prokaryotic cells as a means of intercellular communication in an evolutionarily conserved
process [17,18]. EVs can be found in different body fluids, such as blood, saliva, urine, seminal fluid,
and breast milk. Importantly, increasing evidence points towards their potential to serve as biomarkers
in the diagnosis and prognosis of a variety of pathologies [19–23]. These vesicles are capable of
transporting cytosolic and membrane proteins, including receptors and major histocompatibility
complexes, as well as DNA fragments and RNA molecules (mRNA, microRNA and other non-coding
RNAs) and even organelles (large EVs) [19,24–26]. Moreover, EVs display different properties
depending on the cell type from which they were isolated. For instance, EVs from immune cells
express markers, such as MHC or CD3 molecules, on their surface, which allow them to trigger specific
responses in the immune system [19,27].
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According to their biogenesis, EVs can be separated into three main groups—exosomes,
microvesicles (MVs) and apoptotic bodies. Exosomes are stored in multivesicular bodies (MVBs) and
subsequently released into the extracellular space when these bodies merge with the plasma membrane.
MVs are formed by shedding from the plasma membrane and apoptotic bodies are released by dying
cells. Since there is still no consensus on a specific marker for EV-specific subtypes [17], the international
society for extracellular vesicles recommends using a general terminology rather than assigning the
EVs to a particular biogenesis pathway. It has also been suggested to segregate them into subcategories
according to their size (small, medium or large EVs), their density or their biochemical composition
(i.e., CD63+). However, given that there is still no standardized nomenclature for the different vesicle
subpopulations, we will use the more general term and refer to them as EVs throughout this review,
focusing on summarizing data from publications relating to exosomes and MVs.

EVs for Drug Delivery

EVs have great potential for drug delivery, due to their natural properties and versatility
which we will address in the following sections. These vesicles have an intrinsic capacity to cross
biological barriers, are capable of transporting various components and protect their content from
degradation [26,28,29]. As natural regulators of the cellular microenvironment, they also play an
important role in cellular communication [30–32]. EVs are endowed with specific properties related to
their biogenesis that can be used to improve the effectiveness of therapy [4,11,33–37]. Examples of this
are oral absorption (milk EVs [11]), anti-inflammatory effect (grape EVs [38]), and presence of specific
receptors (e.g., transferrin, major histocompatibility complexes, folate [27,39–41]). Some EVs can also
increase their residence time in circulation by displaying antiphagocytic surface markers to evade
clearance by the mononuclear phagocytic system [42]. Different compounds can be incorporated into
such vesicles, such as drugs, nanoparticles, lipids, proteins, peptides, RNA, siRNA and fluorescent
markers [13–15]. Lipophilic drugs or compounds will preferentially intercalate into the membrane
bilayer, while hydrophilic compounds will prefer the lumen. Additionally, the surface of the EVs can be
modified to improve their functionality. Various techniques have been proposed to favor the inclusion
of therapeutic molecules in EVs. One of the most used is electroporation, which involves applying an
electric field to a suspension containing the EVs and the active molecule, to create pores that facilitate
movement of the drug to the vesicle interior [43]. Electroporation has the advantage of not requiring a
vector to incorporate the drug and benefits from the technology developed to include molecules in
liposomes. However, it can affect colloidal stability, causing EV properties to be lost or altered. It can
also promote aggregation of the loaded molecules such as siRNA and it is overall difficult to scale
up [19,44,45]. Some authors have also proposed the possibility of including drugs in EVs by sonication
or direct incubation of the vesicles with the active ingredients [6,46]. The sonication method is useful
for encapsulating lipophilic and hydrophilic drugs because the vibrations disrupt the membranes and
facilitate entry. However, this method is only applicable for small molecules and might cause the
adhesion of the molecule to the EV surface, which could change the biodistribution and release of the
drug [19,47]. On the other hand, direct incubation is one of the simplest techniques and usually does
not require the addition of any additional reagents; however, it is also limited to small and generally
lipophilic compounds [19,46]. Another method used is cell transfection that involves transferring
specific genes to the parental EV-producing cells where the molecule of interest is generated and then
included during EV biogenesis [48,49]. Currently, there are genetic editing tools that facilitate the use
of this technique; however, they are usually time consuming and difficult to scale up. Although the cell
transfection technique was originally proposed exclusively to encapsulate genetic material inside EVs,
some authors have proposed using the same concept to incorporate other types of active ingredients.
For example the antineoplastic drug Paclitaxel has been incorporated into stromal mesenchymal
cells, which were resistant to the drug and incorporated it into EVs, which displayed cytotoxic effects
against cancer cells [50]. Another recent example is the incorporation of gold nanoparticles (AuNPs),
which were incubated and taken up by cells to promote their passage through the MVB and inclusion
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in EVs [13]. The pre-cargo-loading strategies permit obtaining EVs containing therapeutic compounds
without the need for membrane-disruptive techniques. Further, such EVs can then be modified
post-isolation with lipophilic drugs, fluorescent markers or targeting agents (Figure 1).

Figure 1. Simultaneous incorporation of hydrophilic drugs, lipophilic compounds and targeting
agents into EVs. Pre-cargo and post-cargo strategies can be combined to simultaneously load EVs
with multiple therapeutic agents. Loading hydrophilic molecules can be achieved without membrane
surface disruption by incubating cells with the cargo molecules. After the cargo is incorporated by the
cells, it may follow the endocytic pathway and be released inside exosomes or be directly liberated
from the cell surface inside MVs. The resulting EVs carrying the therapeutic cargo can additionally
be loaded with small lipophilic molecules, such as a fluorescent dyes or drugs by direct incubation
strategies. Finally, the resulting double-loaded EVs can be externally modified with targeting agents
(e.g., peptides, antibodies, drugs) by chemical approaches.

3. Relevant Parameters Involved in the Application of EVs for Drug Delivery

3.1. Targeting Properties

As mentioned above, EVs can be loaded with multiple therapeutic agents simultaneously
(e.g., targeting peptides, drugs and imaging agents) which makes them highly versatile vectors for
drug delivery strategies. However, what makes EVs even more interesting in comparison to other drug
delivery vehicles is the variety of natural properties they possess. Although their genesis is still not
well understood, available evidence suggests that they have multiple therapeutic benefits for targeting
strategies, such as enhanced cellular uptake, organ tropism and immunomodulation. These properties
are endowed by the presence of different adhesion and immunoregulatory molecules, as well as
cell-specific receptors, which can be used to enhance accumulation in specific tissues. Examples of the
latter are shown in Figure 2 and Table 1. In the next section, we will focus on these natural properties
and discuss how they can be finetuned to specific applications by isolating the EVs from different
cell types.
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Figure 2. Naturally occurring features of EVs for targeting applications. EVs contain several surface
molecules than will determine their systemic distribution and targeting to specific cell populations.
Tetraspannins, glycans, fibronectin and intercellular adhesion molecule (ICAM) composition modulate
their uptake, while integrins play an important role in defining their accumulation in specific organs.
Immunoregulatory molecules influence their recognition by immune cells which can have an impact
on their distribution and uptake. Lipids, receptors and cell-specific proteins can also modulate the
responses of target cells by activating multiple cell signaling pathways.

3.1.1. EV Cellular Uptake

The uptake of EVs is a complex process that involves a combination of different pathways [51],
such as caveolae-dependent endocytosis, clathrin-dependent endocytosis, phagocytosis, pinocytosis,
receptor-mediated endocytosis and fusion with the plasma membrane [52–56]. This variety of
mechanisms provide EVs with some significant advantages in comparison to other synthetic drug
delivery systems with respect to their mode of interaction with host cells and their ability to transfer
therapeutic molecules [57]. There is still no consensus on which of the uptake mechanisms is
more important; however, available evidence shows that internalization is an active process that
is significantly decreased at 4 ◦C or after blocking protein interactions using specific antibodies.
The high degree of EV heterogenicity depending on their cellular origin contributes significantly to
their uptake and available evidence suggests that this can be selectively enhanced by choosing specific
cell models [13,58].

3.1.2. Cell Type-Dependent Uptake

There is increasing evidence that the specificity of EV uptake depends on their cellular origin [59–61].
For instance, EVs from mesenchymal stem cells are taken up more efficiently by their own cells when
compared to other immune cells [62]; neuroblastoma EVs are endocytosed preferentially by glial
cells [63]; ovarian cancer EV cells also showed increased uptake by tumor cells when compared to
epithelial cell-derived EVs [64]. A recent study compared the uptake of multiple-source EVs with their
corresponding cells and showed that melanoma EVs were taken up more efficiently by melanoma
cells rather than immune cells, fibroblast and endothelial cells [13]. Interestingly, the uptake of colon
adenocarcinoma EVs (by melanoma cells) was also higher than non-tumor EVs, suggesting that
cancer-specific molecules may play an important role in promoting the uptake of these vesicles by
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tumor cells. Although there is still not enough evidence for the cell type-specific uptake in vivo models,
it could potentially represent an effective strategy to direct drugs towards specific cells and reduce the
therapy-associated side effects. The mechanisms involved in the preferential uptake of EVs are also not
totally understood; however, there is evidence that tetraspanins and integrins play an important role
in target selection. For example, Tspan8 is important for the uptake and targeting towards endothelial,
kidney and pancreas cells, while CD151 is more important for lung and lymph node cell uptake [65].
On the other hand, EV expression of other surface proteins, such as ICAMs, has been implicated in
enhanced uptake by immune cells [66]. Alternatively, surface heparan sulfate proteoglycans have been
shown to play an important role in the uptake by cancer cells [67]. We summarized some examples of
the evidence for enhanced uptake of specific EVs by different cells in Table 1. As we discuss in the
following sections, improving tracking techniques will be essential to corroborate this hypothesis and
exploit EV potential to target specific cells.

3.1.3. EV Biodistribution

EVs also have natural advantages relating to their biodistribution, such as their reduced aggregation
potential and the ability to avoid clearance by the reticuloendothelial system (RES) by presenting
antiphagocytic markers [42]. Their small size favors their accumulation in highly vascularized tissues
with low lymphatic drainage such as tumors, due to the enhanced permeability and retention (EPR)
effect, which can be used as a strategy to increase targeting towards tumors. The distribution of the
EVs depends on different factors, such as the administration route, cellular origin, concentration and
time. In circulation, most EVs are captured by the mononuclear phagocytic system and delivered
primarily to the liver, followed by spleen, lungs and the gastrointestinal tract [37]. This pattern of
accumulation is similar to that of other NPs, such as synthetic liposomes, suggesting that the size also
plays an important role in the uptake of EVs. The administration route is important in determining
the biodistribution and accumulation of the EVs. For instance, intraperitoneal administration results
in increased accumulation in the pancreas, while subcutaneous injection can result in increased
accumulation in the GI tract [37]. Intravenous injection is the most studied administration route and
usually results in increased delivery to the liver and spleen and reduced accumulation in pancreas [37].
Intratumoral administration has also been used to facilitate tumor accumulation, which is elevated
in comparison with other NPs, such as liposomes [57]. Intranasal administration is also interesting
as an effective strategy to promote EV-delivery to the brain [3]. Oral administration represents the
overall preferred route of administration in patients, but is one of the most challenging options due to
the multiple barriers of the digestive system. Curiously, EVs isolated from plants, milk and intestinal
epithelial cells have an unique potential to reach the circulation after oral administration, which makes
them interesting carriers to improve the bioavailability of drugs [68]. There is currently limited
information available concerning the clearance of the extracellular vesicles due to technical difficulties
related to their rapid uptake and the non-specific transfer of the fluorescent dyes to extracellular
proteins [69]. Recently, some authors have shown that EVs have a short half-life in circulation and
their blood concentration is determined by a complex balance between secretion into the bloodstream
and rapid blood clearance (fast uptake by multiple cells) [70].

3.1.4. EV Organ Tropism

The cell of origin of the EVs also has an important effect on their distribution and tropism to specific
organs. For example, EVs from dendritic cells show increased accumulation in spleen, while melanoma
EVs are more likely to accumulate in lungs [37]. Interestingly, some EVs show tropism towards organs
related to their cellular origin (Table 1). Endothelial EVs from the brain can accumulate in the cerebral
tissue [71], while melanoma EVs target preferentially melanoma metastases [13]. MSC-EVs showed
increased accumulation in kidneys of mice with acute kidney injury, suggesting that the presence
of a particular disease also affects their biodistribution [72]. Although the specific targeting of EVs
is still not totally understood, there have been some advances in discovering important molecules
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involved in the process. For instance, integrins are important cell adhesion molecules involved in
organ-specific metastasis of tumor cells [73,74]. Interestingly, as shown in Table 1, different adhesion
molecules have an important impact in the organ tropism (e.g., lung, liver and pancreas). For example,
the presence of α6β4 and α6β1 is important in EV tropism to the lungs, while expression of αvβ5
promotes accumulation in the liver [74,75]. There is also evidence that CD47 expression in EVs is
important for avoiding phagocytosis, increasing time in circulation and uptake by micropinocytosis [42].
It is important to mention that a controversy exists concerning the distribution of EVs from different
cell sources and, contrary to what we mentioned above, some articles reported a similar distribution of
EVs isolated from different cell models [76,77]. Therefore, more information and better experimental
approaches are needed to test this hypothesis

Table 1. Examples of natural EV targeting to specific cells.

Isolated from/Enriched in Targeting to Reference

Human placental MSCs MSCs [62]

Neuroblastoma N2a cells Glial cells [63]

Brain endotelia bEND.3 cells Brain [71]

Bone marrow DCs Spleen [37]

Ovarian cancer SKOV3 cells SKOV3 cells [64]

Melanoma B16F10 cells B16F10 cells, lungs and pulmonary metastasis [13,37]

Melanoma B16BL6 cells B16BL6 cells [60]

Bone marrow MSCs kidneys on acute kidney injury model and M2
type macrophages on injured spinal cord [72,78]

Fibroblast CD47+ Pancreatic cancer [42]

Breast cancer MDA-MB-231 under hipoxia Hypoxic MDA-MB-231 cells [79]

Heparan sulfate proteoglicans on hepatic cell lines AML12 and MLP29 Hepatic (Huh7), fibroblastoid (M1) cells and
osteoblast (U2-OS) cells [67]

Tspan 8 expresion in pancreatic adenocarcinoma cells BSp73AS Pancreas and lung [65]

Fibronectin in microvascular endothelial cells MVECs Oligodendrocyte precursor cells [80]

ICAM on bone marrow DCs Naïve T cells [66]

αvβ5 expression on multiple cells (refeer to publication) Liver tropism [75]

α6β4 and α6β1 expression on multiple cells (refeer to publication) Lung tropism [75]

3.2. Therapeutic Properties

3.2.1. Antitumoral Effects

EVs are involved in various processes related to the development and progression of cancer.
For this reason, they are of great interest as possible diagnostic markers and potential candidates for
directed therapy against malignant cells. Their natural potential to accumulate in specific tissues
(as described above) makes them ideal systems to improve the delivery towards tumors located in zones
that are difficult to access, such as the brain or hypoxic tumor sites. As other NPs, EVs benefit from the
enhanced permeability and retention (EPR) effect, which allows them to passively accumulate in the
tumors. As we mentioned before, there is evidence that tumor EVs can actively and preferentially target
other tumor cells, which is an interesting approach for drug delivery purposes. Moreover, EVs have
been used for antigen presentation strategies (vaccinations strategies) and to promote inflammation or
cytotoxic effects in tumor cells (inflammation strategies) as we will summarize below and in Figure 3.
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Figure 3. Using the natural features of EVs for therapy and tissue repair. EVs play a key role in
modulating cellular responses by enhancing or suppressing immune responses in target cells. These
properties can be exploited for therapeutic purpose by isolating EVs with the desired characteristics
(e.g., antitumoral activity, cell regeneration or cardioprotection). Combining these effects together to
modulate the target microenvironment is an interesting approach to reduce the side effects of drugs,
improve efficacy and generate more personalized medicines. DCs: dendritic cells; NKs: natural killer
cells; TCs: T cells; MSCs: mesenchymal stem cells.

Antigen presentation strategies. Tumor cell-derived EVs (TEVs) have been shown to carry cancer
antigens that promote antitumor effects by stimulating dendritic cells (DCs), which is an interesting
strategy to enhance the immune responses against cancer cells [81]. For example, patient TEVs have
been shown in clinical trials to produce specific antitumor immune cell responses [82]. As tumor
antigens on TEVs are recognized by immune cells, once sensitized, they can selectively target and
destroy malignant cells. Therefore, this strategy holds great promise to be used in the future as a way
to develop cancer vaccines. Other authors have shown that EVs from malignant cells can also activate
T lymphocytes and NK cells to facilitate the transfer of antigens to DCs. The antigen-activated immune
cells can be administrated to the patient/animal (instead of tumor EVs) which subsequently increase
the immune response. In this way, the side effects related to the administration of malignant EVs can
be avoided [8,83,84]. Another related strategy involves using immune cell-derived EVs, as they can
express specific markers, such as MHC molecules or CD3 (important for immune effects) and can be
previously activated to generate a specific antitumoral effect. An example of such an approach which
has reached clinical trials is using tumor cell peptides to activate DCs and then isolating EVs from
activated-DCs to promote an immune response against cancer [19,83,85,86].

Inflammation strategies. As natural killers, NK cells are provided with several lytic proteins that
are used to destroy pathogens. NK-EVs not only possess specific NK markers but also contain proteins,
such as FasL, perforins, granzymes and granulysin, which promotes cytotoxic activity and have been
effectively used to kill cancer cells [87]. The utilization of macrophage-derived EVs has also emerged
as a novel therapeutic approach, because of their ability to modulate the tumor microenvironment and
increase the sensitivity of tumor cells to drugs. While tumor-associated macrophages have been shown
to promote tumor progression, angiogenesis, immunosuppression and metastasis, a study by Cheng
et al. describes that their EVs actually promote inflammation-related responses, which can enhance
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immunotherapy effects against cancer cells [88]. Moreover, other studies suggest that by using EVs
from macrophages polarized towards an M1-like phenotype (which has antitumoral features), it is
possible to decrease the proliferation of malignant cells, enhance immune responses and increase the
effectiveness of drugs [89].

3.2.2. Modulation of Inflammation

While acute inflammation plays a positive role in our defense systems against pathogens,
prolonged inflammation can lead to the development of several chronic diseases, such as arthritis,
cancer, Alzheimer, diabetes and cardiovascular diseases. Extracellular vesicles play an important role
as mediators of pro-inflammatory or anti-inflammatory responses which can be exploited to treat
chronic diseases (Figure 3). For instance, T cell-derived EVs inhibit production of the pro-inflammatory
cytokines IL-1β and TNF [90], while neutrophil-derived EVs contain anti-inflammatory proteins
that inhibit leukocyte/endothelium interactions [91]. Platelets also participate in important
anti-inflammatory effects by driving the differentiation status of macrophages, dendritic cells and
T cells towards less-reactive states [92,93]. Endothelial EVs promote anti-inflammatory effects by
reducing ICAM-1 expression [94] and together with platelets have been attributed a protective role in
sepsis [95]. MSC-derived EVs have been reported to reduce T lymphocyte proliferation, as well as the
percentage of CD4+ and CD8+ T cell subsets [96]. Macrophage EVs also play an important role in
immune surveillance after exposure to mycobacterial infections as they transport bacterial components
that can induce pro-inflammatory responses [18,97]. Interestingly, some authors proposed that EVs
could also be used to modulate aging speed by regulating age-related pro-inflammatory status [98,99].
Evidence suggest that EVs are involved in a crosstalk between telomere dysfunction and inflammation
which contributes to aging-related disorders [100]. As EV miRNA profiles changes during aging,
the use of EV from young donors could be an interesting approach to increase cell longevity [98,99,101].

3.2.3. Cell Regeneration

Mesenchymal stem cells (MSCs) have revealed great potential in tissue regeneration.
Their administration, however, may lead to serious side effects, such as differentiation into undesirable
tissues, or inducing unfavorable immune responses. Some authors have indicated that MSCs induce
such effects by paracrine signaling rather than direct cell-to-cell interactions. This has led to the
hypothesis that their therapeutic effect may be mediated by EVs [102]. Indeed, MSC-EVs may represent
an interesting approach to avoid the side effects of whole cell therapies. For example, MSC-EVs have
been shown to accelerate skeletal muscle regeneration and promote hepatic regeneration after liver
injury [103,104]. By equilibrating peripheral immune responses, MSC-EVs can also improve neuronal
regeneration and prevent post-ischemic immunosuppression after intravenous administration [102].
Other EVs are also provided with interesting features for cell regeneration, such as endothelial EVs
which can increase the number and differentiation state of human endothelial progenitor cells [105].
Schwann cell-derived EVs (SC-EVs) are also interesting, as they have been shown to enhance axonal
regeneration and neuronal survival after the application of damaging stimuli to neurons [106].
Interestingly, these effects were specific for SC-EVs and mediated by the inhibition of the GTPase Rho,
involved in axon retraction. These examples suggest that EVs from different sources may be useful in
promoting tissue regeneration after damage (Figure 3).

3.2.4. Cardiovascular Diseases

EVs are implicated in cardiovascular homeostasis, where they play an important role in preventing
damage during stress conditions, which makes them interesting candidates for cardioprotective
applications. Evidence suggest that EVs from cardiac progenitor cells can inhibit cardiomyocyte
apoptosis and improve cardiac function after myocardial infarction [107]. MSC-EVs have also shown
great potential in preventing cardiac tissue damage. Some remarkable findings are their potential
to increase myocardial viability and reduce ischemia/reperfusion damage to the myocardia [108]
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and kidney [109]. The mechanism of cardioprotection is suggested to be linked to a decrease in
oxidative stress and activation of the PI3K/Akt pathway, which increases viability and promotes
remodeling of the myocardia [110]. Interestingly, such beneficial functions also apply to renal
stress conditions, as MSC-EVs can protect against acute tubular injury [111] and reduce damage of
ischemia/reperfusion-induced acute renal failure [112].

3.3. Modulating the Targeting of EVs

EV targeting can be modified using different approaches, such as changing the isolation method,
subjecting the cells to stress prior to isolation or changing the administration route. Targeting of EVs
can be further changed by introducing structural modifications to enhance different properties, such as
stability and homing towards specific cells. Combining the natural properties of EVs with pre-cargo
and post-cargo strategies can enhance the potential of EVs for therapeutic applications, targeting
and imaging.

3.3.1. Isolation Conditions

In addition to the cell source, it is also important to consider the isolation conditions as they can
have an important impact on the uptake or biodistribution of the EVs. For example, EVs isolated
by ultrafiltration and ultracentrifugation yielded different purity, and protein/vesicle ratios which
resulted in different patterns of in vivo accumulation in lungs [113]. Antibody-based isolation
methods can also impact on EV targeting as they can select for specific vesicle subpopulations
(e.g., CD63+ vesicles), which may lead to alterations in the distribution pattern. Subjecting the cells
to different stimuli before isolation has also been shown to have important effects on EV targeting.
For instance, the uptake by hypoxic tumor cells can be enhanced by using EV-derived from cells
subjected to hypoxia prior to isolation [79]. Similar effects have also been observed when using EVs
from cells exposed to other stress conditions, such as radiation, thermal stress or changing the pH
of the medium [114,115]. The mechanisms that explain the increased targeting after stress are not
totally understood; however, there is evidence that the cargo content of EVs can change under these
conditions [116]. For example, after pH stress VEGF accumulates inside EVs in its bioactive form,
which favors the stimulation of recipient cells [114]. The lipid composition is also modified under
such conditions, changing EV rigidity and increasing fusion efficiency [115]. Finally, the protein
HSP90, which is involved in adhesion and migration, is also increased after heat-shock stress [116,117].
Subjecting cells to stress may not only improve targeting but also their therapeutic properties. ER stress,
for example, can promote the release of pro-inflammatory EVs that stimulate macrophage chemotaxis
by interfering with sphingosine-1-phosphate signaling [118].

3.3.2. Engineering Targeting

As with other drug delivery systems, the natural targeting of EVs can be manipulated to improve
their uptake and biodistribution. The surface modification or addition of a targeting ligand can be
achieved by direct strategies involving the manipulation of isolated EVs or indirect strategies involving
the modification of cells before EV isolation. The most common strategies are summarized in Figure 4
and discussed below. We also provide some examples of multiple engineered targeting strategies in
Table 2.
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Figure 4. Engineering targeting strategies. EV targeting can be manipulated by adding targeting
ligands using different strategies. (1) Transfection of the cell with a plasmid to generate the target
protein within the cell and thereby facilitate secretion in EVs. (2) Modification of the targeting molecule
with a lipid that can be anchored to the membrane of the cells and then indirectly secreted on EVs or (3)
by directly adding lipid-linked molecules to the surface of EVs. (4) Covalently linking the targeting
agent into the surface of EVs. (5) Using a cationic compound to promote electrostatic interactions with
the EVs.

Covalent linkage: In this case, the desired targeting molecule is attached to the EV surface
by a chemical reaction. The amine/carboxylic groups present in the membrane of the EVs can be
functionalized using the EDC/NHS reaction giving rise to stable covalent amide bonds. This strategy
can be combined with click chemistry, which permits incorporating complex ligands in a fast reaction
with high specificity [12,14,119].
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Table 2. Examples of EVs engineered strategies to improve targeting towards specific cells.

Method Isolated from Engineered with Targeting to Reference

Covalent linkage

Bone marrow
MSCs αvβ3 integrin targeting peptide c(RGDyK) Ischemic brain [12]

Macrophages
RAW 264.7 neuropilin-1-targeted peptide (RGERPPR) Glioma [14]

Direct lipid linkage
Macrophages RAW 264.7 Sigma receptor targeting ligand

z(aminoethylanisamide, AA) Pulmonary metastasis [125]

Cardiosphere-derived cells cardiac homing peptide CSTSMLKAC (CHP) Myocardial infarction [121]

Indirect lipid linkage

Leukemia cells
K562 αvβ3 integrin targeting peptide c(RGDyK) Angiogenic blood vessel [122]

Umbilical vein endothelial
cells (HUVECs) Biotin HepG2 tumors [126]

Transfection

Immature mouse DCs αvβ3 integrin targeting peptide (CRGDKGPDC)
(iRGD) MDA-MB-231 tumors [123]

Embryonic kidney cells
(HEK293) IL3 ligand Chronic myelogenous

leukemia (CML) [124]

Bone marrow
DCs

αvβ3 integrin targeting peptide
YTIWMPENPRPGTPCDIFTNSRGKRASNG (RVG) Brain [28]

Embryonic kidney cells
(HEK293) cardiac-targeting peptide APWHLSSQYSRT (CTP) Cardiac tissue [9]

Embryonic kidney cells
(HEK293) Epstein–Barr virus protein (gp350) B cell tropism [16]

Passive adsorption MSCs Spermine cationized pullulan Liver tissue [120]

Electrostatic interaction: This strategy refers to the utilization of positively charged molecules
that can be attached to the EVs via electrostatic interactions. This is possible because the EV surface is
negatively charged, so this simple method does not require any chemical reactions [120].

Direct lipid linkage: This method involves attaching the targeting ligand to a lipid or
lipid-like molecule, which will spontaneously insert into the vesicle surface exposing the targeting
compound. An example here is the coupling of a cardiac homing peptide to the neutral phospholipid
dioleoylphosphatidylethanolamine (DOPE). This is achieved by conjugating DOPE-NHS with the
desired peptide for targeted heart therapy [121].

Indirect lipid linkage: An alternative to the previous method is to incubate the cells with a lipid
complex conjugated to polyethylenglycol (PEG) which is incorporated into the membrane and then
released on the surface of EVs. Pegylation of EVs is an excellent way to enhance stability, circulation
time and allows further functionalization with other molecules to enhance targeting [15]. For example,
a DSPE–PEG–RGD complex was incubated with K562 cells for membrane inclusion. The complex was
later found on EVs which had increased targeting towards blood vessels [122].

Cell transfection: This is a more complex process, as it involves engineering cells to secrete EVs
including the desired targeting molecule. This process is achieved by transfecting genetic material
into cells which is then stably or transiently incorporated in the cells to produce the target protein.
The effectivity of this strategy was demonstrated by Tian et al. 2014, who engineered cells to express
the EV membrane protein Lamp2b fused to an αv integrin-specific peptide for targeted antitumor
therapy [123]. Similar approaches have been studied to target EVs towards chronic leukemia cells [124],
brain [28] and cardiac tissue [9].

3.3.3. Tracking Studies of EVs

The use of EVs likely represents a key approach to selectively target organs; however, many
technological limitations exist that make it difficult to analyze the effects of these vesicles in vivo.
In order to exploit the targeting properties of the EVs for multidisciplinary applications, it is necessary
to be able to track their uptake and distribution throughout the organism. Currently, several imaging
techniques are available in the clinic for diagnostic applications, such as computed tomography (CT),
magnetic resonance imaging (MRI), X-ray, ultrasound, positron emission tomography (PET) and
single-photon emission computed tomography (SPECT). All of these techniques could potentially be
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used to image EVs with high sensitivity and endow them simultaneously with therapeutic properties
to allow theranostic applications as we discuss below and in Figure 5.

Figure 5. Theranostic EV. Combining the natural properties of EVs with drug loading and targeting
strategies leads to multiple therapeutic benefits, such as enhanced uptake/targeting, prolonged
circulation time, immunomodulation, tracking and therapy. The utilization of NPs is interesting,
as they can add multiple features simultaneously (e.g., tracking and therapy) reducing the requirement
of multiple drugs. SPION: superparamagnetic iron oxide nanoparticles; CT: computed tomography;
PEG: polyethylenglycol.

Fluorescence is the most common way of EV tracking because of its high versatility. EVs can
be labelled simply by incubation with a great variety of lipophilic fluorescent markers that combine
different excitation/emission wavelengths. It has been suggested that the lipophilic marker is quickly
stabilized in the membrane of the extracellular vesicles. As tissue transparency is attained only using
wavelengths above 780 nm (therapeutic window), near-infrared dyes have become quite popular
and are currently the most used for in vivo imaging of EVs. Although tracking fluorescence is a
widely used technique for imaging, it is still not a reliable technique for clinical use. The stability and
performance of fluorophores are limited by several effects such as scattering, tissue autofluorescence
and photobleaching. In addition, they can be easily degraded by oxidation reactions in the organism.
Recently, it has been reported that lipophilic fluorescent dyes can be transferred from EVs to other
extracellular components, leading to unspecific labelling [69]. Moreover, dyes can spontaneously
form micelles which also stain cells, limiting the conclusions that can be drawn concerning uptake
and distribution of EVs [69,127]. Naturally expressing fluorescent proteins such as GFP/RFP by
transfecting cells would result in a more stable labelling. However, these are still limited by their
fluorescence in the visible light spectrum which makes them poorly reliable for in vivo analysis [128].
Therefore, novel approaches have been developed to improve EV imaging. As an alternative to
the commonly used fluorescence probes, Zhang et al. 2018 proposed indirectly labelling EVs by
covalently conjugating membrane phospholipids with fluorescent markers, which permits reducing
the non-specific extracellular labelling [129]. By taking advantage of the sulfhydryl groups on the EV
surface, maleimide-conjugated Alexa-fluor dyes were covalently added to the EV surface by simple
incubation [130]. Protein-based labelling of EVs has also been achieved by using luciferase reporters
on cells to produce bioluminescent proteins that are later transferred to the EVs which permit stable
real time monitoring [131,132].

Gold nanoparticles are another very interesting class of nanomaterials that can be used for EV
tracking because of their high tunability, biocompatibility and unique optical properties related to
their surface plasmon resonance [133,134]. These properties allow AuNPs to be used for enhancing
CT imaging, photoacoustic imaging and photothermal therapy, which is useful for simultaneous
imaging and tumor ablation in cancer therapy. These NPs have been effectively incorporated into
EVs and used for therapeutic purposes, to analyze the EV sorting pathways in cells, as well as for CT
analysis [3,135]. Betzer et al. 2017 incorporated gold nanoparticles into EVs from MSCs and used them
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for in vivo neuroimaging by computer tomography and ex vivo analysis by inductively coupled plasma
spectrometry (ICP), which allows quantitative analysis of EV distribution [3]. As direct gold labelling
techniques may affect the distribution, we developed a double labelling method to incorporate AuNPs
indirectly into EVs by incubating them with cells and combining this with direct fluorescent labelling
of the EVs to permit analyzing EV biodistribution by neutron activation analysis, NIR fluorescence,
CT imaging and gold-enhanced microscopy imaging. We showed that the indirect gold labelling
strategy did not affect biodistribution and were able to identify the presence of AuNP-labelled
melanoma EVs in small metastatic foci in the animal lungs [13].

Superparamagnetic iron oxide nanoparticles (SPIONs) are also interesting systems for imaging as
they can be used for magnetic resonance imaging. They have the additional advantage that they can be
used to facilitate EV isolation using magnets [40,136] and for simultaneous therapy using a magnetic
field [40]. These NPs have also been effectively incorporated into EVs and used for in vivo imaging by
magnetic particle imaging [79] and MRI [2,43,137]. Other authors have encapsulated quantum dots
(QDs) into EVs. These strongly fluorescent materials could be useful for variety of fluorescence analysis
techniques, because of their enhanced stability and the possibility of using them simultaneously for
photodynamic therapy [138].

Combining multiple imaging compounds may represent a workable strategy for multimodal
imaging in combination with therapy. Rehman et al. 2018 developed an interesting method to indirectly
load gold and Fe nanoclusters into EVs. The authors pre-incubated cells with the salts HAuCl4 and FeCl2
to produce the required nanoclusters in cells and then release them as EV cargos [139]. Although the
authors did not provide evidence that the EVs retained their biodistribution after the loading, this may
represent an interesting strategy to load EVs with multiple NPs for theranostic applications.

4. The potential Risks and Limitations Associated with the Use of EVs

4.1. Therapeutic Risks

EVs have great potential for the treatment and prevention of several diseases. However,
it is important to consider that there are multiple limitations associated with their utilization and
little information exists concerning the risk after prolonged exposure to these natural signaling
vesicles. Several authors have reported studies that reveal the risk of EVs in cancer, particularly of
tumor-derived EVs (TEVs), which have been shown to facilitate drug resistance, tumor progression
and metastasis [20,140,141]. Some important examples include the role of melanoma EVs in facilitating
metastasis by supporting tumor growth, preparing the metastatic niche, inducing vascular leakiness
and reprograming of bone marrow cells [141]. Further, TEVs have been reported to promote tumor
growth by suppressing NK cell function [142], inducing lymphocyte apoptosis [143] and driving
epithelial mesenchymal transition [140]. The presence of a variety of signaling molecules in the EVs is
often linked to these effects. For example, the presence of CAV-1 in EVs from breast metastatic cells is
associated with enhanced migration and invasion of recipient cells [144] and the EV transfer of MET
with melanoma metastasis to the bone marrow [141]. Recent studies also point towards negatives
effects in the cardiovascular system. For example, cardiac fibroblast-derived EVs have been shown
to activate the angiotensin II receptor type I pathway, which is involved in hypertrophy and heart
failure [145]. Moreover, neutrophil EVs have been shown to contribute to vascular inflammation and
atherogenesis [146]. There is currently limited information about approaches focusing on modifying EVs
to ameliorate these problems without affecting their therapeutic potential. For example, an interesting
challenge ahead will be to develop a strategy that permits removing the malignant cargos from TEVs
while maintaining their targeting and immunomodulatory properties.

4.2. Technical Limitations

In addition to their therapeutic risk, there are several technical challenges that need to be
addressed for effective commercialization of EVs as biological drugs. Considering their heterogeneity,
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the preparation of EVs from cell cultures or blood needs to be standardized to obtain reproducible
batches with similar biological activity. Good manufacturing guidelines should be developed to
obtain products with similar quality. Producing large amounts of EVs is essential for worldwide
marketing. Therefore, scaling-up strategies should be developed by using novel isolation methods or
improving the limitations of the current ones (e.g., low yield and poor sorting of EV subpopulations).
Some authors suggest that for MSCs, a total of 500 million cells will be needed to obtain enough EVs for
a given therapeutic intervention. This value was extrapolated from experiments in mice considering
that 80 µg is approximately the amount of exosomes released from 2 million MSCs in 48 h [147,148].
Achieving this will require improving current manufacturing strategies, such as bioreactor culture
platforms, as well as concentration and separation technologies [148]. The stability of the EVs is also
an issue as the vesicle content of proteins or RNA can be altered by changes in temperature. Currently,
−80 ◦C is the most accepted storage condition to preserve EVs for longer periods of time. However,
multiple freeze/thawing cycles of the samples can also alter their vesicular structure and their biological
activity [149]. Therefore novel stabilization strategies, such as using buffers or polymers, should be
developed as a way to overcome these issues. Finally, the characterization techniques should also be
improved in order to determine the molecular composition of each type of EV, standardize their quality
and determine the batch-to-batch variability between samples [150]. These procedures will be of
particular importance for clinical applications of EVs from external sources (e.g., plants, milk or patient
EVs), which are mostly limited by their variability and will greatly benefit from quality standardization.
In the future, we may be able to profile the therapeutic properties of EVs and generate easily-scalable
synthetic systems that contain specific EV molecules for personalized medicine.

5. Summary and Future Perspectives

EVs have shown great potential for the development of multiple drug delivery and vaccination
strategies. As natural modulators of cellular communication, EVs provide a unique source of biological
information which will depend on their cellular origin and can be exploited for therapeutic or diagnostic
approaches. EVs can provide multiple benefits in comparison with other drug delivery systems. Here,
we reviewed some of their natural advantages, which include their organ tropism, cardioprotective
effects, and antitumoral properties, as well as their ability to modulate inflammation and promote tissue
regeneration. These effects could be useful for more personalized medicines in order to increase the
effectiveness or reduce the side effects of drugs, for instance by modulating the tumor microenvironment
to overcome drug resistance and reducing the cardiotoxicity of chemotherapy. The evidence of cell
type-dependent uptake and distribution holds great promise for targeted therapy. Exploiting these
properties obliviates the need for functionalization or chemical modifications, thereby facilitating
translation to the clinic. Detecting and analyzing EV distribution are important in order to understand
their trafficking inside our body and the mechanisms involved as well as to uncover new adhesion
molecules that determine their homing selectivity. This information will also help to develop novel
synthetic delivery systems with similar homing properties and fewer side effects than EVs that can
be produced on an industrial scale. Multimodal imaging of EVs may be achieved by using different
types of nanoparticles and fluorophores which, when combined with the targeting abilities of these
vesicles, could lead to the development of powerful tools in theranostics. As novel technological
approaches arise, we may be able to determine and control the risk associated with EVs after prolonged
exposure. Standardization of the isolation of different EV subtypes and upscaling their preparation
will be essential to exploit the potential of these very heterogeneous membrane-based structures. In the
future, EVs loaded with contrast agents could be used for early diagnosis of diseases, such as cancer,
by imaging techniques such as CT and MRI. Further, they may serve as vectors for the selective delivery
of drugs to specific parts of the body, thereby reducing side effects and improving patient outcome.
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