Skip to main content
. 2020 Nov 3;10(11):165. doi: 10.3390/bios10110165

Table 3.

Overview of integrated systems for bottom-up methods.

NPs Type Enabling Technologies/Modules Crucial Parameters NP Size (nm) Costs 1 Year Reference
CdSe Continuous-microflow synthesis
High-pressure microreactor
Solvent phase
Concentration
Temperature
Residence time
~3–6 ★★★★ 2008 Marre [94]
CdSe Combinational microreactors Temperature
Reaction time
Reaction additive concentration
~2–4.5 ★★★★ 2010 Toyota [95]
CdTe, CdSe, alloy CdSeTe Multichannel droplet reactor ★★★★ 2013 Nightingale [91]
InP/ZnSeS Millifluidic reactor system Flow rate
Reactor temperature
Shell precursor concentration
5.9 ± 1.2 ★★★ 2018 Vikram [96]
PbS Droplet-based microfluidic Temperature
Flow rate
2–6 ★★ 2015 Lignos [97]
Au Millifluidic benchtop reactor system
“Y” mixer
Flow synthesis
Concentration ~2–40 ★★★ 2013 Lohse [100]
Au Zigzag micromixer Seeds volume
Residence channel length
75 ± 6 ★★★ 2017 Thiele [117]
Au, bimetallic AuPd Millifluidics
Continuous flow
Flow rate
Reactor geometry
6.4 ± 1.5 (I-shape connection)/6.3 ± 1.3 (helical reactor) ★★ 2019 Cattaneo [102]
Ag Droplet-based microfluidic reactor Static mixing
Temperature
Flow rate
4.37–11.45 ★★★ 2018 Kwak [104]
Ag Drop-based microfluidics Concentration ratios
Flow rates
4.9 ± 1.2 ★★ 2016 Xu [118]
Nobel metal Millilitre-sized droplet reactors Capping agent
Reductant
Reaction temperature
~9–50 ★★★ 2014 Zhang [101]
Nobel metal Multichannel droplet reactor Capping agent
Reductant
Reaction temperature
~2.5 ★★★ 2018 Niu [105]
Pd-Pt, Pd@Au (core@shell) Duo-microreactor Concentration 18.0 ± 2.7 ★★★★ 2019 Santana [119]
BaSO4, Au, CaCO3 Segmented flow microchannel
Passive picoinjection
Injection volume 30–40 (BaSO4)
32–91 (Au)
★★★★ 2018 Du [120]
Superparamagnetic iron oxide Micellar electrospray 36 ± 6 ★★★★ 2014 Duong [121]
Ni Continuous flow microreactor Flow rates ~6.43–8.76 ★★★ 2015 Xu [122]
Fe3O4 Flow synthesis
“T” mixer
Linear velocity
Residence time
Reactor dimension
4.9 ± 0.7 ★★ 2015 Jiao [123]
PLGA@HF, PLGA@AcDX Multiplex microfluidics Flow rates ~60–550 ★★ 2017 Liu [108]
PLGA Microfluidic origami chip Flow rates ~100 ★★ 2013 Sun [106]
PLGA, hydrophobic chitosan, acetylated dextran 3D coaxial flows
Glass capillaries
~100–400 ★★★ 2015 Liu [107]
Metal-organic frameworks (MIL-88B) Nanolitre continuous reactor
Segmented flow
Residence time
Temperature
Volume slug
90–900 ★★★ 2013 Paseta [124]
Silica, polymersomes, niosomes Microreaction technology Flow rates 238–361 (silica)/275–75 (niosomes) ★★★ 2019 Bomhard [125]
Ag Liquid flame spray Passing times ~10–100 ★★★ 2017 Brobbey [92]
SnO2 Single droplet combustion
Flame spray pyrolysis
Metal-precursor concentration ~3–39 ★★★★ 2020 Li [112]
α-Al2O3 Flame synthesis Ratios of oxygen and acetyl 50–150 ★★★ 2014 Kathirvel [114]
Cs0.32WO3 Flame-assisted spray pyrolysis Flame temperature
Flow rate
~6–300 ★★★ 2018 Hirano [116]
Fe/Al2O3 Flame spray pyrolysis Precursor molar ratio
Multicomponent structures
183–187 ★★★ 2016 Hafshejani [115]
Carbon Flame synthesis
Conical chimney
Combustion regime ~200 ★★★ 2016 Esmeryan [113]
Carbon nanotube Flame synthesis
Methane diffusion flames
Sampling time
Sampling height
Sampling substrate
30–110 ★★★ 2018 Chu [111]
Onion-like carbon “Wick-and-oil” flame synthesis ~25 ± 5 ★★★ 2016 Mohapatra [93]

1 The number of asterisks (★) represents the cost of synthesis system; 1 means relatively low cost, while 5 means expensive.