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Simple Summary: In the present work we have confirmed that gliomas with isocitrate dehydrogenase
1/2 mutations are “cold” tumors, whereas the immune content of their wild-type counterparts is
more heterogeneous. A large subgroup of wild-type glioblastomas is characterized by an important
immune component, particularly enriched in myeloid cells, and an elevated expression of the ligand of
programmed death ligand 1 (PD-L1) in the immune compartment. The rest contain few lymphocytes
and myeloid cells. Notably, we have observed a direct correlation between the immune content and the
presence of vascular alterations, as well as with the reduced expression of Tau, a microtubule-binding
protein that we described as a negative regulator of angiogenesis. Using syngeneic mouse models,
we show that overexpression of Tau reduces the immune content, delaying tumor growth.

Abstract: Background: Gliomas remain refractory to all attempted treatments, including those using
immune checkpoint inhibitors. The characterization of the tumor (immune) microenvironment has
been recognized as an important challenge to explain this lack of response and to improve the therapy
of glial tumors. Methods: We designed a prospective analysis of the immune cells of gliomas by flow
cytometry. Tumors with or without isocitrate dehydrogenase 1/2 (IDH1/2) mutations were included in
the study. The genetic profile and the presence of different molecular and cellular features of the
gliomas were analyzed in parallel. The findings were validated in syngeneic mouse models. Results:
We observed that few immune cells infiltrate mutant IDH1/2 gliomas whereas the immune content of
IDH1/2 wild-type tumors was more heterogeneous. Some of them contained an important immune
infiltrate, particularly enriched in myeloid cells with immunosuppressive features, but others were
more similar to mutant IDH1/2 gliomas, with few immune cells and a less immunosuppressive profile.
Notably, we observed a direct correlation between the percentage of leukocytes and the presence of
vascular alterations, which were associated with a reduced expression of Tau, a microtubule-binding
protein that controls the formation of tumor vessels in gliomas. Furthermore, overexpression of Tau
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was able to reduce the immune content in orthotopic allografts of GL261 cells, delaying tumor growth.
Conclusions: We have confirmed the reduced infiltration of immune cells in IDH1/2 mutant gliomas.
By contrast, in IDH1/2 wild-type gliomas, we have found a direct correlation between the presence of
vascular alterations and the entrance of leukocytes into the tumors. Interestingly, high levels of Tau
inversely correlated with the vascular and the immune content of gliomas. Altogether, our results
could be exploited for the design of more successful clinical trials with immunomodulatory molecules.

Keywords: gliomas; IDH mutations; immune profiling; tumor microenvironment; Tau

1. Background

Gliomas are classified as lower-grade gliomas (LGGs) (grade II and III) or glioblastomas (GBMs)
(grade IV). Among the first, detection of 1p/19q co-deletions discriminates oligodendrogliomas from
astrocytomas, the latter being enriched in a-thalassemia/mental retardation syndrome X-linked (ATRX)
mutations. By contrast, all GBMs have an astrocytic lineage and they accumulate diverse genetic
alterations. Gliomas must be now classified based on the presence or absence of isocitrate dehydrogenase
1/2 (IDH1/2) mutations, as this is a strong prognosis indicator [1].

In the last decade, immunotherapy with checkpoint inhibitors (ICIs) has been remarkably
successful across several tumor types. By contrast, recent clinical trials using anti-programmed cell
death 1 (PD-1) antibodies in recurrent GBM has shown very few responses [2], even though the ICls
seem to reach the brain [3]. Compared to responsive cancers, gliomas harbor a lower burden of
somatic mutations, fewer infiltrative T cells and a more immunosuppressive tumor microenvironment
(TME) [4-6]. These factors could explain why glial tumors remain largely refractory to ICIs. Nonetheless,
gliomas are far from being a homogenous entity and disparities in their immune content might also
condition their response to different therapeutic strategies. In order to classify the immunological
profile of glial tumors, several groups have used computational and immunohistochemical (IHC)
analysis approaches [7-10]. Here, we have performed a comprehensive characterization of the tumors
by flow cytometry. Our results suggest that there is a correlation between the vascular phenotype
and the entrance and/or the function of the hematopoietic cells on gliomas. Our group has recently
described that Tau, a microtubule-binding protein, impairs the neovascularization of gliomas [11].
Here, we have shown that overexpression of Tau reduces the immune content in human samples
and in orthotopic glioma models, modifying tumor growth. This knowledge suggests that vascular
features could be used as a surrogate marker of the immune infiltrate and opens new venues to find
synergistic therapeutic interventions.

2. Methods

2.1. Ethics Approval, Consent to Participate, and Data Availabilty

All patients (Table S1) gave written informed consent and the hole study was performed with
the approval of the Ethical Committee at “Hospital 12 de Octubre” (CEI_14/023 and CEI_18/024).
Consent for publication was not applicable since there are no personal data in the manuscript. All data
generated or analyzed during this study are included in this published article [and its supplementary
information files].

2.2. Molecular Characterization of the Tumors

The presence of IDH1 R132H mutations was tested by IHC staining on FFPE tissue sections with
anti-IDH1 R132H (DIA HO09; dilution 1:200; Dianova, Hamburg, Germany). Moreover, we used a
custom Ampliseq (PCR-based) gene-targeted NGS (next generation sequencing) panel that analyzed
30 genes that were previously demonstrated to be frequently mutated in gliomas (including IDH1 and
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IDH?2) [12]. DNA from formalin-fixed paraffin-embedded (FFPE) tumor tissues was extracted using the
QIAamp DNA FFPE Tissue Kit (Qiagen, Venlo, Netherlands). DNA was quantified using a Qubit2.0
Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Libraries were constructed from 10 ng
of DNA using the Ion-AmpliSeq Library-Kit v2.0 (Thermo Fisher), according to the manufacturer’s
instructions. Libraries were multiplexed, submitted to emulsion PCR and loaded into the chip using
the Ion Chef System. Libraries were sequenced using Ion GeneStudio S5 system (Thermo Fisher
Scientific) according to the manufacturer’s instructions, at average target panel coverage of 800X.
O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation analysis was performed
as previously reported [12].

2.3. Flow Cytometry Analysis

Tumor suspensions were obtained after mechanical and enzymatic disaggregation (Accumax
(Merck Millipore, Burlington, MA, USA) (15 min, room temperature (RT)) and filtered through
70 uM nylon mesh cell strainer (Thermo Fisher Scientific). Erythrocytes were lysed with Quicklysis
buffer (Cytognos, Salamanca, Spain) and cells were incubated with hFcR Blocking (Miltenyi Biotec,
Bergisch Gladbach, Germany), previous to antibody (Table S2) incubation (20 min at 4 °C in PBS
1% fetal bovine serum (FBS)). Cells were labelled with a Fixable Viability Stain (Becton Dickinson,
Franklin Lakes, NJ, USA) (20 min, RT). The analysis was conducted in a Macsquant10 flow Cytometry
(Miltenyi Biotec). Subset definition was: Neutrophils: CD45*CD11b*CD16*CD15"CD14~CD337;
myeloid-derived suppressor cells (MDSCs): CD45*CD11b*CD16*CD15-CD14*/~CD33*; Macrophages:
CD45*CD11b*CD16-CD15-CD14*~CD33~MHCII*; Tregs: CD45*CD3*CD4*CD25*CD127%.

2.4. Western Blot

The protein extract was generated by mechanical disaggregation using lysis buffer (50 mM Tris-pH
7.5,300 mM NacCl, 0.5% SDS, and 1% Triton X-100) (15 min with agitation at 95 °C). Protein content
was quantified using BCA Protein Assay Kit (Thermo Fisher Scientific,) and 20 ug of protein was
resolved by 10% or 12% SDS-PAGE and then transferred to a nitrocellulose membrane (Amersham
Biosciences, Little Chalfont, UK). The membranes were blocked (1 h, RT in PBS and 0.1% Tween-20
with 5% skimmed milk) and then incubated with the primary (Table S2) (overnight 4 °C) and the
secondary (HRP-conjugated anti-mouse or -rabbit, Agilent Technologies, Santa Clara, CA, USA) (2 h,
RT) antibodies diluted in PBS-T. Proteins were visualized with ECL (Bio-Rad Laboratories, Hercules,
CA, USA) using the Imager 680 (Amersham).

2.5. Immunohistochemistry (IHC)

Samples were fixed in 10% formalin overnight, dehydrated through a series of graded ethanol
baths and then infiltrated with paraffin. Then, 5-um-thick sections were obtained in a microtome and
then sections were rehydrated and permeabilized (1% triton X-100). Antigen retrieval was performed
with Citrate Buffer (10 mM, pH 6) in a pressure cooker (2 min). Endogenous peroxidase inhibition
and blocking with normal horse serum was also performed before the incubation with primary
antibodies (Table S2) (overnight, 4 °C) and biotinylated secondary antibodies (15 min). Sections were
then incubated with SAV-HRP (10 min) and with DAB (3 min). The IHC score was judged from
0 (no staining) to 4 (the strongest positive staining) in 10 high magnification pictures from each
sample. For the quantification of the vasculature, we counted the number of dilated vessels per
high-magnification field and the relative area covered by the CD34 positive staining. For the latter,
6 fields per sample were counted using the Image]J program and applying the vascular density plugin.

2.6. qRT-PCR Assay

RNA was extracted from the tissue using an RNA Isolation Kit (Roche, Basel, Switzerland).
Total RNA (1 ug) was reverse transcribed with a PrimeScript RT Reagent Kit (Takara Bio Inc., Kusatsu,
Japan). Quantitative real-time PCR was performed using the Light Cycler 1.5 (Roche) with the SYBR
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Premix Ex Taq (Takara) and specific primers for each gene (Table S3). Gene expression was quantified
by the delta-delta Ct method.

2.7. Cell Culture

The GL261 murine glioma cells were maintained in DMEM plus 10% FBS, 2mM L-glutamine,
0.1% penicillin (100 U/mL) and streptomycin (100 pg/mL). GL261 murine glioblastoma cells were
obtained from the NCI-Frederick Cancer Research Tumor Repository (Frederick, MD, USA).

2.8. Lentivirus Preparation and Infection

Pseudotyped lentivectors were produced using reagents and protocols as previously described [1]
and Addgene lentiviral protocols [11]. GL261 cells were infected for 48 h adding the lentiviral
supernatant (LV-GFP and LV-Tau) and 4 pg/mL of polybrene. These GL261 cells were implanted into
C57/BL6 mice.

2.9. Mouse Model Study

Animal experiments were reviewed and approved by the Research Ethics and Animal Welfare
Committee at “Instituto de Salud Carlos III” (PROEX 244/14 and 02/16), in agreement with the European
Union and national directives. Intracranial transplantations to establish orthotopic allo-grafts were
performed injecting 50,000 cells (resuspended in 2 uL of culture medium) with a Hamilton syringe into
the striatum of C57Bl/6 mice (A-P, —0.5 mm; M-L, +2 mm, D-V, =3 mm; related to Bregma) using a
Stoelting Stereotaxic device.

2.10. In-Silico Studies

For studies of gene expression and gene profiling, the cancer genome atlas (TCGA) merged
dataset (LGG+GBM) was used with 1153 enrolled patients and a set of 702 patients with LGG and
GBM tumors with RNAseq values (IlluminaHiSeq). The different immune cell signatures (Activated
CDS8 cell, Central memory CD4 cell, Central memory CDS8 cell, Regulatory cell, Type 1 helper cell,
Type 2 helper cell, Macrophages, MDSC and Neutrophils) were obtained from [13]. For the GSEA (Gene
Set Enrichment Analysis) study, the Tau/MAPT expression was continuously computed through the
LGG+GBM dataset using the expression by RNAseq, then we used the method, continuous class label,
and gene sets from the “CGP: chemical and genetic perturbations” and “CP (Canonical Pathways):
BioCarta gene sets”. For correlation studies, the expression values were obtained from xena-browser
RNA-seq dataset (TCGA merge LGG+GBM n =702), who were filtered on the sequenced data (n = 661).
For gene ontology analysis, the DAVID gene ontology 6.8 program was used (1 = 500 genes).

2.11. Statistical Analysis

The quantified data were represented as mean + SEM, compared between two groups using the
two-tailed Student’s t-test. Differences are presented with statistical significance or p-value (* p < 0.05;
**p <0.01; ** p < 0.001 and ns, not significant). For the correlation analysis between each protein,
we used Pearson’s correlation coefficient (R2). An ANOVA test was used to compare multiple groups
and contingency graphs (Chi-square tests) were performed for the analysis of the vascular and cellular
scores in the tumors. P-values were calculated using the GraphPad program. For survival analysis,
we used the Kaplan—-Meier method and log-rank test using the SPSS program.

2.12. Data Availability

All data generated or analyzed during this study are included in this published article (and its
supplementary information files).
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3. Results

3.1. Stratification of Gliomas Based on the Immune Profile

Samples from 28 patients diagnosed with glioma (Table 1) were dissociated and analyzed by flow
cytometry (individualized data in Table S1). Tumors were classified based on the histology (GBM
vs. LGG) and based on the presence of IDH mutations. As expected, the majority of LGGs were
IDHmut (7/9), whereas only 3 out of 19 GBMs carried these mutations. The gating strategy described in
Figure S1 was used to characterize different immune populations. In agreement with the literature [14],
there was a significant increase in the number of CD45+ cells in IDHwt GBMs compared to IDHmut
GBMs or to LGGs (Figure 1A). This increase was observed in both the lymphoid (Figure 1B) and the
myeloid (Figure 1C) components. Among the IDHwt GBMs, we observed a heterogeneous profile:
some of the tumors showed a low content of CD45+ cells, with a very similar percentage of immune
cells to the one measured in IDHmut tumors (either LGGs or GBMs), whereas in others there was a
strong presence of leukocytes, reaching 50% of the tumor content in some cases (Figure 1D). In order
to find possible differences that could explain their distinct leukocyte extravasation, we decided to
separate the IDHwt GBMs into two subgroups. Those GBMs that contained higher numbers of CD45+
cells (more than 10% of the cellular suspension) and increased amounts of lymphocytes (more than 1%
of the cellular suspension) were included in the GBMwt_hi subgroup, and the rest of the tumors in
the GBMwt_lo subgroup. As a confirmation, the average content of CD45+ (Figure 1E), lymphoid
(Figure 1F) and myeloid (Figure 1G) cells was clearly enriched in the first group compared to the rest
of gliomas.

Table 1. Characteristics of the study population. KPS: Karnofsky Performance Scale; ATRX:
a-thalassemia/mental retardation syndrome X-linked; IDH: isocitrate dehydrogenase; MGMT:
O6-methylguanine-DNA-methyltransferase; w/t: wild type.

n 28
Age (years)
Median 52 years
Range 30-82 years
Gender
Female n=12;43%
Male n =16;57%
Grade of resection
Complete n = 23;82%
Partial n=>5;18%
KPS after surgery
100 n =10; 36%
90 n=9;32%
80 n =4;14%
70 n=>5;18%
Histological
Diagnosis
Astrocitoma n = 25; 89%

Oligodendroglioma n=23;11%

Tumor grade

11 n=3;11%
111 n=6;22%
v n=19; 67%
IDH 1/2
Mutated n =10; 36%

w/t n =18; 64%
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Figure 1. Flow cytometry analysis of the immune infiltrate of gliomas. (A-C) Percentage of CD45" (A),
lymphoid (CD45*CD11b~SSC®) (B) and myeloid (CD45*CD11b*SSC® or SCCM) (C) cells on total tumor
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suspensions in lower-grade glioma (LGG) (circles) (1 = 7) and glioblastoma (GBM)-expressing mutant
IDH (GBMmut) (triangles in A and squares in B and C) (n = 3) and wild-type IDH (GBMwt) (squares
in A and triangles in B and C) (n = 16). (D) Percentage of lymphoid or CD11b*CD45M populations
on total tumor suspension in individual samples. (E-G) Percentage of CD45" cells (E), lymphoid
(CD45*CD11b~SSC®) (F) and myeloid (CD45*CD11b*SSC® or SCCM) (G) cells on total tumor
suspensions in the four groups of gliomas: LGG (circles) (n = 7), GBMmut (squares) (n = 3), GBMwt_lo
(triangles) (n = 6), GBMwt_hi (inverted triangles) (n = 10). * p < 0.05, ** p < 0.01, ** p < 0.001,
ns: not significant.

We then performed an analysis of the genetic profile of the tumors. As expected, epidermal growth
factor receptor (EGFR) alterations were enriched in IDH1wt GBMs, whereas TP53 mutations were
common among the IDHImut gliomas (Figure S2A). However, we did not detect clear differences
between the genetic profile of GBMwt_lo and GBMwt_hi tumors. Regarding the clinical data (Table 1),
patients carrying IDH mutations were significantly younger (p = 0.003) (IDHmut: median age: 40 years,
range: 30-76 years; GBMwt_lo: median age: 57 years, range: 42-70 years; GBMwt_high: median age:
65 years, range: 38-82 years) and survived longer than their wild-type counterparts (Figure S2B).
However, there was no significant differences in the clinical behavior of patients from both GBMwt
immune subgroups (Figure S2B).

3.2. Characterization of the Myeloid and the Lymphoid Compartments in the Different Subgroups of Gliomas

In order to gain further insight into the composition of the immune infiltrate in the glioma
subgroups, we dissected out the myeloid component in the tumor suspension. We combined the
LGG and GBM IDH1Imut (herein called IDHmut) for the subsequent comparisons with the other two
groups of IDHwt GBMs. We observed that the percentage of neutrophils (Figure 2A), myeloid-derived
suppressor cells (MDSCs) (Figure 2B) and macrophages (Figure 2C) was increased in GBMwt _hi
compared to both IDHmut and GBMwt_lo gliomas. We also analyzed the presence of CD206, a typical
marker of alternatively activated (M2) myeloid cells. We found a higher proportion of CD11b+CD206+
cells in GBMwt_lo and GBMwt_hi compared to IDHmut gliomas (Figure 2D). Our panel was not
designed to recognize specifically resident microglia, but we found no differences in the transcription of
P2RY12, which is highly expressed on microglia, between the three subgroups (Figure S3A). Moreover,
ionized calcium binding adaptor molecule 1 (IBA1) positive cells were detected in high proportion
in all the tumors analyzed (Figure S3B). The number of microglial cells (Figure S3C), as well as the
total amount of IBA1 protein (Figure S3D-E), was very homogenous among the different gliomas.
These results suggest that the main differences in the immune compartment of the distinct glioma
subgroups are due to the entrance of cells from the blood. Notably, the ratio of myeloid to lymphoid
cells was lower in GBMwt_hi compared to the other two subgroups (Figure 2E), suggesting that T cells
infiltrate this subgroup of gliomas in particular. In agreement with that, we observed that the proportion
of T cells (CD3+) (Figure 2F), in particular the CD4+ subset (Figure 2G) was higher in GBMwt_hi
tumors than in the other two subclasses. However, there was an increase in the percentage of CD3+
cells in GBMwt_lo compared to IDHmut gliomas (Figure 2F). Furthermore, there was no difference
between the percentages of CD8+ cells between the two subgroups of GBMs (Figure 2H), which was
higher in both compared to IDHmut tumors. As a result, the CD4/CD8 ratio was lower in the GBMwt_lo
compared to GBMwt_hi tumors (Figure 2I). This ratio has been linked to the appropriate lymphocyte
function in other types of cancer [15]. Moreover, the proportion of PD1+ cells, which labels T cell
exhaustion, was higher in GBMwt_hi compared to GBMwt_lo gliomas (Figure 2J), whereas the amount
of regulatory T cells (Tregs) was similar in the two groups (Figure 2K). By contrast, IDHmut gliomas
presented fewer exhausted T cells (Figure 2J) and Tregs (Figure 2K). Taken together, these findings
highlight the important dissimilarities in the immune profile of IDHmut vs. IDHwt gliomas and
suggest that the GBMwt_lo subgroup resembles IDHmut gliomas in their percentage of myeloid cells.
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Besides, we found differences in the lymphocyte content and function between the two subgroups
of GBMs.
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Figure 2. Proportions of myeloid and T cell subsets in glioma samples. (A—C) Percentage of neutrophils
(A), myeloid-derived suppressor cells (MDSCs) (B) and macrophages (C) on total tumor suspensions
from IDHmut (IDHmut LGG and GBM) (n = 6), GBMwt_lo (1 = 5), and GBMwt_hi (1 = 6) gliomas.
(D-E) Percentage of CD206* myeloid cells (D) and myeloid to lymphoid ratio (E) on total tumor
suspensions from IDHmut (1 = 4), GBMwt_lo (1 = 6), and GBMwt_hi (n = 10) gliomas. (F-I) Percentage
of T cells (F), CD4" T cells (G) and CD8* T cells (H) and ratio of CD4* to CD8" T cells (I) on total tumor
suspensions from IDHmut (n = 4), GBMwt_lo (n = 6), and GBMwt_hi (n = 10) gliomas. (J-K) Percentage
of PD1* T cells (J) and T regs (K) within the CD45" tumor subset of IDHmut (n = 5), GBMwt_lo (1 = 6),
and GBMwt_hi (1 =7) gliomas. * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant.

3.3. Enrichment of Programmed Death Ligand 1 (PD-L1) Expression in the Immune Cells of Highly
Infiltrated Gliomas

Our flow cytometry analysis in gliomas revealed two levels of expression of PD-L1 (herein
defined as PD-L1_lo and PD-L1_hi) (Figure 3A), both in tumor (CD45-) and in immune (CD45+)
cells. The expression profile was similar in GBMwt_lo and IDHmut tumors and very different from
the GBMwt_hi gliomas (Figure 3B), which showed a strong increase in the percentage of CD45/PDL1
double positive cells. The increment was significant in both the PD-L1_hi (Figure 3C) and the PD-L1_lo
(Figure 3D) populations. Notably, there were no differences in the amount of tumor cells expressing
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high levels of PD-L1 among the different subgroups of gliomas (Figure 3E). Altogether, our data
suggest that there is a subgroup of IDHwt GBMs that contain a high immune infiltrate, enriched in
myeloid cells and with a strong immunosuppressive profile: high content of MDSCs, CD206+ myeloid
and PD-L1+ cells.
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Figure 3. Programmed death ligand 1 (PD-L1) expression in gliomas. (A) The histograms show the
isotype control labelling in grey line (negative) and low (lo) and high (hi) levels of expression of
PD-L1 in the total tumor suspension (top, black line), or in the CD45+ subset (bottom, blue line) of a
representative GBMwt_hi tumor. (B) The tart diagrams show the percentage of PD-L1° and PD-L1M
tumor cells (CD45™) and leukocytes (CD45%) on total tumor suspensions in each glioma subgroup:
IDHmut (n = 6), GBMwt_lo (n = 4) GBMwt_hi (n = 5). (C-E) Percentage of PD-L1MCD45* (C),
PD-L1°CD45* (D) and PD-L1MCD45~ (E) in each glioma subgroup. * p < 0.05, ** p < 0.01, *** p < 0.001,
ns: not significant.

3.4. The Immune Stratification of the Tumors Correlates with Different Vascular Phenotypes

It has been proposed that the three different transcriptomic subtypes of gliomas (Proneural, PN,
Classical, CL and Mesenchymal, MES) are associated with a different immune microenvironment [7].
When we analyzed our cohort of gliomas using qRT-PCR, we noticed that, as expected, PN and MES
transcripts were enriched (Figure S4A—C) and diminished (Figure S4D-F), respectively, in IDHmut
gliomas compared to their wild-type counterparts. However, there were no differences in the expression
of PN (Figure S4A-C) or MES (Figure S4D-F) markers between the two subgroups of IDHwt GBMs.
Therefore, neither the genetic (Figure S2A) nor the expression profiles seem to explain the existence of
two distinct immune patterns in the aggressive IDHwt gliomas.

In order to find disparities between the two subgroups of IDHwt GBMs that could correlate with
their distinct immune landscapes, we performed a macroscopic analysis of the tumors. Preoperative
magnetic resonance imaging (MRI) revealed clear differences between IDHmut and IDHwt gliomas,
especially in the contrasting enhanced sequences (Figure 4A) [16]. However, the T1+C and T2 images
of GBMwt_lo tumors were very similar to the ones obtained in the immune-high GBM subgroup
(Figure 4A). In agreement with that, the macroscopic analysis of different vascular features revealed
that the blood vasculature score (unbiased annotations from neurosurgeons) (Figure 4B) and the
cellularity (Figure 4C) of the tumors were not significantly different in the two subgroups of GBMwt
tumors. By contrast, we observed a slight increase in the CD248 IHC staining (Figure 4D and Figure
S5), which labels tumor-pericytes in gliomas [17]. Accordingly, the number of vessels with a large
lumen (herein called dilated blood vessels (BVs)) were higher in the GBMwt_hi tumors (Figure 4E
and Figure S5). Moreover, the number of dilated vessels (Figure 4F), as well as the CD34 density
(Figure 4G), correlated with the percentage of CD45+ cells measured by flow cytometry. To obtain
an independent confirmation of these results, we performed a qRT-PCR analysis. We found a strong
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correlation between the CD45 content and the expression of the endothelial marker CD34 (Figure 4H),
as well as with the expression of CD248 (Figure 4I). Moreover, the transcription of CD34 (Figure 4]),
EMCN (another marker of endothelial tumor cells) (Figure 4K) and CD248 (Figure 4L) was increased
in the GBMwt_hi group compared to the rest of gliomas. Notably, only the expression of CD248,
was increased in GBMwt_lo tumors compared to IDHmut gliomas (Figure 4L), which correlated with
the higher CD248 score measured by IHC (Figure 4D and Figure S5), suggesting a direct correlation
between the absence of IDH mutations and the increase in tumor pericytes, as we have recently
described [11].
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Figure 4. Correlation between the immune infiltrate and the vascular alterations in gliomas. (A) Representative
magnetic resonance imagings (MRIs) (T1 post contrast (T1+C) and T2 FLAIR) of gliomas with low (LO) or



Cancers 2020, 12, 3230 11 of 18

high (HI) immune infiltrate. (B) Quantification of the blood vasculature score (macroscopic evaluation
of the tumor vascularization (blood vessel (BV) macro) during surgery) in IDHmut (n = 9), GBMwt_lo
(n = 6) GBMwt_hi (n = 8) tumors. (C-E) Quantification of the cellularity (estimated in the Hematoxilin &
Eosine stainings) (C), the CD248 score (D), and the number of dilated blood vessels (BV) (E) in IDHmut
(triangles) (n = 9), GBMwt_lo (squares) (n = 6) GBMwt_hi (circles) (n = 8) tumors. (F-G) Correlation
between the percentage of CD45" cells and the number of dilated BVs (F) and the density of CD34
staining (G) in the tissue sections (circles represent each individual tumor) (n = 21). (H-I) Correlation
between the percentage of CD45* cells and levels of CD34 (H) and CD248 (I) transcription measured
by qRT-PCR analysis (circles represent each individual tumor) (n = 21). (J-L) gRT-PCR analysis of
CD34 (G), EMCN (H), and CD248 (I) expression in normal tissue (NT) (n = 6) and in the three different
glioma subgroups: IDHmut (1 = 9), GBMwt_lo (1 = 6) and GBMwt_hi (1 = 8). HPRT transcription was
used for normalization. * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant.

3.5. Inverse Correlation of the Immune Content with Tau Expression

We have recently described that Tau, a protein associated with neurodegenerative diseases,
is also expressed in glioma cells, particularly in the less aggressive tumors, where it obstructs glioma
progression by blocking the formation of novel and aberrant tumor vessels. These effects were
associated with a limited capacity of the gliomas cells to contribute to the pool of pericytes in Tau-high
tumors, which results in a reduced number of dilated BVs and a less efficient fueling of tumor
growth [11]. We measured the amount of Tau in our cohort of gliomas and we observed that it
accumulates in IDHmut gliomas (Figure 5A,B). This result was not surprising given that the MAPT/Tau
gene is epigenetically induced by the presence of mutant IDH proteins [11]. However, we also found an
enrichment of Tau in GBMwt_lo compared to GBMwt_hi tumors (Figure 5A,B). Moreover, we found an
inverse correlation between the levels of Tau protein and the immune content of gliomas (Figure 5C-E).
The in silico analysis of the TCGA database also revealed a strong inverse correlation between the
amount of MAPT/Iau transcription and overall survival or the expression of vascular- (CD34 and
CD248) (Figure 5F and Figure S6A,B) and immune- (CD3, CD4, CD11b and CD68) (Figure 5F and
Figure S6C-F) related genes. Notably, the transcript levels of MAPT/Tau and CD248 were inversely
and directly correlated, respectively, with several of the signatures associated with different immune
cell populations (Figure 5F) and with the inflammatory- and cytokine-related pathways (Figure 5G).
We also analyzed which genes were downregulated in Tau-high gliomas and we found that many of
them were linked to the immune response (Figure S6G). Altogether, these results suggest that Tau
could modulate the immune landscapes of gliomas.

To obtain further insight into the function of Tau in the glioma microenvironment, we overexpressed
this protein in GL261 cells, a well-known mouse glioma model. Tau overexpression reduced tumor
growth (Figure S6H) and increased survival (Figure 5H) of mice bearing orthotopic tumors, which is
in agreement with the increased survival of patients with low MAPT/Iau expression (Figure S6l).
The analysis of the tumors revealed a decrease in the amount of infiltrating CD3 lymphocytes, in parallel
with a reduction in the number of dilated BVs in the Tau-overexpressing gliomas (Figure 51-]).
The transcriptomic analysis of the tumor tissues confirmed the inhibition of the expression of vascular-
(Figure 5K) and immune- (Figure 5L) related genes in GL261-Tau tumors, compared to their control
counterparts. Moreover, the expression of Tau reduced a signature of cytokines and chemokines
(Figure 5M) already described as inducers of immune recruitment in brain tumors (Figure 5G) [18].
In agreement with that, we found a decrease in the amount of CD11b upon Tau overexpression, with no
changes in the levels of IBA1 protein (Figure S6]). These findings support the idea that Tau modulates
both the vascular features of gliomas and the entrance of immune cells.
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Figure 5. Tau expression correlates inversely with the immune content in gliomas. (A) Western blot
(WB) analysis of Tau expression in extracts from IDHmut, GBMwt_lo and GBMwt_hi tumors. GAPDH
level was used as a loading control. (B) Quantification of the WB in (A) (n = 26), the uncropped Western
blots have been shown in Figure S8. (C-E) Correlation between the percentage of CD45+ (C), lymphoid
(D) and myeloid (E) cells and Tau protein expression (circles represent each individual tumor) (n = 23).
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(F) Expression (RNAseq) of IDH1, CD34, CD248 and 9 different immune population signatures in
gliomas (the cancer genome atlas (TCGA) cohort). Samples were arranged according to their levels of
expression of MAPT/Iau (n = 702). (G) Gene Set Enrichment Analysis (GSEA)-enrichment plot analysis
using Tau gene expression values as template and the inflammatory and cytokine pathway gene set from
the Biocarta pathways database. (H) Kaplan—Meier overall survival curves of C57Bl/6 mice that were
orthotopically injected with GL261 cells that overexpressed Tau or GFP proteins (n = 5). Quantification
of the amount of Tau/MAPT transcription in the tumors is shown on the right. (I) Representative
pictures of CD3 (red) and endomucin (gray) staining in tumors from (H). (J) Quantification of the
number of CD3* cells and the number of dilated BVs per field in (I). (K-L) Expression of vascular (K)
and immune (L) genes in the GL261 tumors (H) (n = 4). (M) Expression of cytokines and chemokynes
in the GL261 tumors (H) (1 = 4), the statistical analysis used for the global comparison was paired
T-test. Scale bar: 10um. * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant.

We have previously shown that the Tau expression is induced by IDH mutations and repressed
by wild-type IDH1 [11]. In agreement with these data, we found that total IDH1 expression was
upregulated in those GBMs with a higher immune content (Figure S7A). This result suggests an
explanation for the downregulation of Tau expression in the GBMwt_hi subgroup, which could be
responsible, at least in part, for the increase in the vascular abnormalities and with the immune-enriched
TME observed in these gliomas. However, we cannot discard that epigenetic changes induced by
a higher amount of wild-type IDH could be affecting the expression of other immunomodulatory
molecules as well. One such gene could be HLA-A, whose expression can be modulated by epigenetic
mechanisms [19]. As a matter of fact, we observed a decrease in the amount of HLA-A transcription
in the G-CIMP gliomas (Figure S7B), a phenotype associated with the presence of IDH mutations.
When we analyzed our cohort, we observed that HLA-A transcription was elevated in the GBMwt_hi
subgroup, in comparison with the rest of gliomas (Figure S7C). Moreover, we found a strong correlation
between the expression of HLA-A and IDHIwt in the TCGA dataset (Figure S7D), similar to the one
observed between MAPT/Tau and IDH1. Taken together, our results suggest that the balance between
mutant and wild-type IDH function in gliomas is controlling the expression of Tau, and probably other
proteins, to shape the vascular and the immune niche of gliomas.

4. Discussion

A recent pan-cancer immunogenomic analysis has emphasized the unique microenvironment of
glioma with an enrichment of the lymphocyte-depleted and the macrophage-enriched signatures in
GBMs, whereas LGGs showed an immunologically quiet (“cold”) expression pattern [4]. Our detailed
characterization of the immune content of different gliomas suggests that the presence of IDH1/2
mutations, even more than the histological grading, is the best predictor of a reduced immune
infiltration in gliomas. This observation is in agreement with the results obtained in mouse models [14]
and with the retrospective analysis of human data [7,8,20-22]. The paucity of immune cells in IDHmut
gliomas could participate in the reduced aggressiveness of IDHmut gliomas, as leukocytes facilitates
tumor proliferation [23]. As a drawback, tumors bearing IDH mutations could have an inferior
response to immunotherapy. For that reason, several clinical trials have been designed combining
inhibitors of mutant IDH with ICIs and vaccinations [24], a strategy that has proven to be effective in
preclinical models [21,22]. However, it remains a pending task to prove that anti-tumor leukocytes can
enter IDHmut gliomas in an efficient way.

GBM, even if we exclude IDHmut tumors, is not a homogenous entity. Here, we have described
different levels of immune extravasation in IDHwt GBMs, which has allowed us to classify these
tumors based on the presence of high or low levels of leukocytes. Notably, the expression of PN or MES
markers did not allow us to distinguish between these two immune GBM subgroups. These results
differ from some computational [7] and IHC [9,10] studies, showing the enrichment of myeloid and
lymphoid cells in the MES subtype. Another study, however, observed an accumulation of CL tumors
among GBMs with a high immune infiltrate [8]. In any case, we have recently observed at least
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two subgroups of CL GBMs and a poor molecular definition of MES tumors based on molecular
alterations [25], suggesting a blurred frontier between these two groups of aggressive gliomas.

The immune compartment of the GBMwt_high subgroup can account for half of the tumor mass,
basically at the expense of recruited cells. Notably, no clear differences were found in the amount of
microglia amid the different subgroups. Our results are in agreement with recently published data
showing that the main immune signature in IDHmut gliomas corresponds to microglia, whereas in
the wild-type tumors there is an accumulation of infiltrating myeloid and T cells [26,27]. Notably,
we have found a high level of expression of CD206, a marker of pro-tumoral M2 macrophages,
in myeloid cells in the GBMwt_high tumors, and a strong increase in PD-L1 expression between this
subgroup and the rest of gliomas. This increment is mostly due to its presence on the surface of the
immune cells, where myeloid cells are enriched. Although we cannot discard the presence of PD-L1
in lymphocytes [28], its expression has already been described in GBM infiltrating macrophages [29].
Based on our results, strategies to impair the high immunosuppressive environment of GBMwt_hi
tumors are essential. In agreement with that, it has been recently reported that targeting of myeloid
cells increases the response to anti-PD-1 in glioma mouse models [30]. By contrast, the low PD-L1
expression in the rest of gliomas could be hampering the result of antibodies targeting this molecule.
However, the lower CD4/CDS8 ratio and the scarcity of myeloid cells in the GBMwt_lo gliomas could
make them more prone to respond to different immunotherapies not only based on the PD-1-PD-L1
axis. In any case, our results highlight the relevance of a patient selection, reasonably based on the
vascular-immune profile, to improve the success of future immunotherapies.

Several groups have attributed the scarcity of T cells in IDHmut gliomas to the accumulation of
the oncometabolite 2-hydroxyglutarate [14,21,22,24]. However, these mutations could be affecting
other components of the TME, specially macrophages and MDSCs through different mechanisms,
such as implementing a specific cytokine program as it has been discovered in IDH mutant gliomas [31].
Here, we propose that, secondary to IDH mutations and/or to a reduction in the amount of wild-type
IDH enzymes, Tau accumulates in the tumors. By contrast, GBMwt_hi gliomas, which contain the
higher expression of IDHwt, had a reduced amount of Tau. It is important to point out that the
balance of wild-type and mutant IDH proteins controls the clinical outcome of gliomas, including
their sensitivity to radiation and chemotherapy [32]. Notably, the wild-type isoform of this gene is
upregulated in primary GBMs and promotes aggressive growth and therapy resistance [33]. Moreover,
it has been shown that IDHwt expression reshapes the methylome and also affects gene expression [34],
which could explain Tau downregulation. In agreement with our previous results [11], we have
shown here that as the level of Tau decreases, the number of pericytes increases and the tumor
vasculature appears distorted, with numerous enlarged vessels. Moreover, we have observed a striking
positive correlation between the presence of the immune infiltrate and the appearance of these vascular
abnormalities. Additionally, and in agreement with our hypothesis, the levels of Tau decreased in
parallel to these changes in the immune profiles. Furthermore, the analysis of different orthotopic
mouse and human glioma models has confirmed that overexpression of Tau reduces the amount of both
leukocytes and myeloid cells in the tumors, in parallel to changes in the cytokine and inflammatory
signatures as well as with the normalization of the vessels.

Regarding clinical implications, there is evidence of a possible correlation between the presence of
innate immunity cells and the aggressive behavior of gliomas [6]. However, our survival analysis could
not detect significant differences in the clinical behavior of the two IDHwt GBM subgroups, as other
investigators have shown [20]. Although our study is conditioned by the limited number of cases to
test survival differences, these results suggest that tumors with a low immune content do not represent
a less aggressive entity that would progress into a GBMwt_hi tumor. This is in agreement with their
similar appearance at MRI or in the macro-vascular analysis. Alternatively, changes in the cellular
composition of the vessels and/or in the expression of adhesion molecules could determine the entrance
of the immune cells in the different GBMs. In any case, our results underline the intricate connection
between the two main components of the glioma niche. In relation to that, the main angiogenic
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factor, vascular endothelial growth factor (VEGF), can inhibit the function of T cells and increase the
recruitment of regulatory Tregs and MDSCs [35]. Moreover, it has been shown that pericytes can
support tumor growth via immunosuppression [36]. However, once in the tumors, the immune cells
can also induce changes in the vascular compartment as they have a strong pro-angiogenic role [37,38].
Our data do not allow us to discriminate which came first: the chicken or the egg. In the presence of
low levels of Tau, an increase in the number of glioma-derived pericytes and the subsequent changes
in the blood-brain barrier (BBB), could directly ease the extravasation of hematopoietic cells. However,
we cannot discard that the downregulation of Tau might inhibit directly the secretion of molecules
that attract myeloid cells, and this could further contribute to the vascular phenotype. Moreover,
other proteins epigenetically induced or repressed by the balance between mutant and wild-type IDH
will probably participate in the formation of the different immune-vascular landscapes. In any case,
our results suggest that combined strategies targeting these two components of the tumors” stroma
might lead to promising results, as it is already being tested in recurrent GBMs, using nivolumab and
bevacizumab (NCT03452579, NCT03743662, NCT03890952). However, based on our results, an effort
should be made to understand which group of patients could benefit most from these combinatorial
treatments and also to design new treatment schemes.

5. Conclusions

Our results show that there is a reduced infiltration of immune cells in IDH mutant gliomas.
By contrast, the immune profile of their wild-type counterparts is more heterogeneous, with some
tumors highly enriched in immunosuppressive cells (with strong PD-L1 expression) and others with
few lymphocytes and myeloid cells. The cellular and molecular characterization of gliomas revealed a
direct correlation between the presence of vascular alterations and the arrival of leukocytes into the
tumors. By contrast, both features inversely correlated with the levels of the microtubule-binding
protein, Tau. We propose that the expression of Tau, which is governed by the IDH genetic status,
regulates the vascular and the immune content of gliomas simultaneously. These results highlight the
strong connection between the two compartments of the glioma microenvironment and suggest that
synergistic approaches should be considered.
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Abbreviations

ATRX a-thalassemia/mental retardation syndrome X-linked

BBB blood-brain barrier

BV blood vessels

cGp chemical and genetic perturbations

CL classical

FFPE formalin-fixed paraffin-embedded

CpP canonical pathways

GSEA gene set enrichment analysis

GBM glioblastoma

. a subgroup of IDH wild-type tumors with a high content of CD45+ cells (more than 15% of

GBMwt_hi .

the cellular suspension)
a subgroup of IDH wild-type tumors with a low content of CD45+ cells (less than 15% of

GBMwt_lo .

the cellular suspension)

IBA1 ionized calcium binding adaptor molecule 1

ICI immune checkpoint inhibitors

IDH1/2 isocitrate dehydrogenase 1/2

IHC immunohistochemistry

LGG lower-grade glioma

MDSC Myeloid-derived suppressor cells

MES mesenchymal

MGMT O6-methylguanine-DNA-methyltransferase

mut mutant

ns not significant

PCR polymerase chain reaction

PD-1 programmed cell death 1

PD-L1 programmed death ligand 1

PN proneural

RT room temperature

SEM standard error of the mean

TCGA the cancer genome atlas

TME tumor microenvironment

Tregs regulatory T cells

VEGF vascular endothelial growth factor

wt wild-type

References

1. Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.;
Wiestler, O.D.; Kleihues, P; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of
the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803—-820. [CrossRef] [PubMed]

2. Filley, A.C.; Henriquez, M.; Dey, M. Recurrent glioma clinical trial, CheckMate-143: The game is not over yet.
Oncotarget 2017, 8, 91779-91794. [CrossRef] [PubMed]

3.  Cloughesy, T.E; Mochizuki, A.Y.; Orpilla, ].R.; Hugo, W.; Lee, A.H.; Davidson, T.B.; Wang, A.C.; Ellingson, B.M.;
Rytlewski, J.A.; Sanders, C.M.; et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit
with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 2019, 25, 477-486.
[CrossRef] [PubMed]

4. Thorsson, V.; Gibbs, D.L.; Brown, S.; Wolf, D.; Bortone, D.S.; Yang, T.-H.O.; Porta-Pardo, E.; Gao, G.F;
Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2018, 48, 812-830. [CrossRef]
[PubMed]

5. Antunes, A.R.P; Scheyltjens, I.; Duerinck, J.; Neyns, B.; Movahedi, K.; Van Ginderachter, J.A. Understanding

the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic
strategies. eLife 2020, 9, 9. [CrossRef]


http://dx.doi.org/10.1007/s00401-016-1545-1
http://www.ncbi.nlm.nih.gov/pubmed/27157931
http://dx.doi.org/10.18632/oncotarget.21586
http://www.ncbi.nlm.nih.gov/pubmed/29207684
http://dx.doi.org/10.1038/s41591-018-0337-7
http://www.ncbi.nlm.nih.gov/pubmed/30742122
http://dx.doi.org/10.1016/j.immuni.2018.03.023
http://www.ncbi.nlm.nih.gov/pubmed/29628290
http://dx.doi.org/10.7554/elife.52176

Cancers 2020, 12, 3230 17 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Gieryng, A.; Pszczolkowska, D.; Walentynowicz, K.A.; Rajan, W.D.; Kaminska, B. Inmune microenvironment
of gliomas. Lab. Investig. 2017, 97, 498-518. [CrossRef] [PubMed]

Wang, Q.; Hu, B.; Hu, X,; Kim, H.; Squatrito, M.; Scarpace, L.; Decarvalho, A.C.; Lyu, S.; Li, P; Li, Y.; et al.
Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in
the Microenvironment. Cancer Cell 2017, 32, 42-56. [CrossRef]

Luoto, S.; Hermelo, I.; Vuorinen, E.M.; Hannus, P.; Kesseli, J.; Nykter, M.; Granberg, K. Computational
Characterization of Suppressive Immune Microenvironments in Glioblastoma. Cancer Res. 2018, 78,
5574-5585. [CrossRef]

Martinez-Lage, M.; Lynch, TM.; Bi, Y.; Cocito, C.; Way, G.P; Pal, S.; Haller, ]J.; Yan, R.E.; Ziober, A;
Nguyen, A.; et al. Immune landscapes associated with different glioblastoma molecular subtypes.
Acta Neuropathol. Commun. 2019, 7, 203. [CrossRef]

Kaffes, I.; Szulzewsky, F.; Chen, Z.; Herting, C.J.; Gabanic, B.; Vega, ].E.V.; Shelton, J.; Switchenko, ].M.;
Ross, J.L.; McSwain, L.F; et al. Human Mesenchymal glioblastomas are characterized by an increased
immune cell presence compared to Proneural and Classical tumors. Oncolmmunology 2019, 8, e1655360.
[CrossRef]

Gargini, R.; Segura-Collar, B.; Herrdnz, B.; Garcia-Escudero, V.; Romero-Bravo, A.; Nufez, FJ;
Garcia-Pérez, D.; Gutiérrez-Guaman, J.; Ayuso-Sacido, A.; Seoane, J.; et al. The IDH-TAU-EGFR triad
defines the neovascular landscape of diffuse gliomas. Sci. Transl. Med. 2020, 12, eaax1501. [CrossRef]
[PubMed]

Cantero, D.; De Lope, A.R.; De La Presa, M.R.; Septlveda, ] M.; Borrds, ] M.; Castresana, J.S.; D"Haene, N.;
Garcia, ].F.; Salmén, I; Mollejo, M.; et al. Molecular Study of Long-Term Survivors of Glioblastoma by
Gene-Targeted NGS. J. Neuropathol. Exp. Neurol. 2018, 77, 710-716. [CrossRef]

Charoentong, P,; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z.
Pan-cancer Inmunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of
Response to Checkpoint Blockade. Cell Rep. 2017, 18, 248-262. [CrossRef]

Amankulor, N.M.; Kim, Y.; Arora, S.; Kargl, J.; Szulzewsky, F.; Hanke, M.; Margineantu, D.H.; Rao, A.;
Bolouri, H.; Delrow, J.; et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas.
Genes Dev. 2017, 31, 774-786. [CrossRef] [PubMed]

Shah, W.; Yan, X,; Jing, L.; Zhou, Y.; Chen, H.; Wang, Y. A reversed CD4/CDS ratio of tumor-infiltrating
lymphocytes and a high percentage of CD4(+)FOXP3(+) regulatory T cells are significantly associated with
clinical outcome in squamous cell carcinoma of the cervix. Cell. Mol. Immunol. 2011, 8, 59-66. [CrossRef]
[PubMed]

Lai, A.; Kharbanda, S.; Pope, W.B.; Tran, A.; Solis, O.E.; Peale, F; Forrest, W.E,; Pujara, K.; Carrillo, J.A.;
Pandita, A.; et al. Evidence for Sequenced Molecular Evolution of IDH1 Mutant Glioblastoma From a
Distinct Cell of Origin. J. Clin. Oncol. 2011, 29, 4482-4490. [CrossRef] [PubMed]

Simonavicius, N.; Robertson, D.; Bax, D.A.; Jones, C.; Huijbers, 1.].; Isacke, C.M. Endosialin (CD248) is a
marker of tumor-associated pericytes in high-grade glioma. Mod. Pathol. 2008, 21, 308-315. [CrossRef]
Pitter, K.L.; Tamagno, I.; Alikhanyan, K.; Hosni-Ahmed, A.; Pattwell, S.S.; Donnola, S.; Dai, C.; Ozawa, T.;
Chang, M.; Chan, T.A ; et al. Corticosteroids compromise survival in glioblastoma. Brain 2016, 139, 1458-1471.
[CrossRef] [PubMed]

Berghoff, A.S.; Kiesel, B.; Widhalm, G.; Rajky, O.; Ricken, G.; Woéhrer, A.; Dieckmann, K.; Filipits, M.;
Brandstetter, A.; Weller, M.; et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes
in glioblastoma. Neuro Oncol. 2015, 17, 1064-1075. [CrossRef] [PubMed]

Jeanmougin, M.; Havik, A.B.; Cekaite, L.; Brandal, P; Sveen, A.; Meling, TR,; Agesen, T.H.; Scheie, D.;
Heim, S.; Lothe, R.A ; et al. Improved prognostication of glioblastoma beyond molecular subtyping by
transcriptional profiling of the tumor microenvironment. Mol. Oncol. 2020, 14, 1016-1027. [CrossRef]
Kohanbash, G.; Carrera, D.A,; Shrivastav, S.; Ahn, B.J.; Jahan, N.; Mazor, T.; Chheda, Z.S.; Downey, K.M.;
Watchmaker, P.B.; Beppler, C.; et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell
accumulation in gliomas. J. Clin. Investig. 2017, 127, 1425-1437. [CrossRef]

Bunse, L.; Pusch, S.; Bunse, T.; Sahm, F; Sanghvi, K.; Friedrich, M.; AlAnsary, D.; Sonner, J.K,;
Green, E.; Deumelandt, K.; et al. Suppression of antitumor T cell immunity by the oncometabolite
(R)-2-hydroxyglutarate. Nat. Med. 2018, 24, 1192-1203. [CrossRef]


http://dx.doi.org/10.1038/labinvest.2017.19
http://www.ncbi.nlm.nih.gov/pubmed/28287634
http://dx.doi.org/10.1016/j.ccell.2017.06.003
http://dx.doi.org/10.1158/0008-5472.CAN-17-3714
http://dx.doi.org/10.1186/s40478-019-0803-6
http://dx.doi.org/10.1080/2162402X.2019.1655360
http://dx.doi.org/10.1126/scitranslmed.aax1501
http://www.ncbi.nlm.nih.gov/pubmed/31969485
http://dx.doi.org/10.1093/jnen/nly048
http://dx.doi.org/10.1016/j.celrep.2016.12.019
http://dx.doi.org/10.1101/gad.294991.116
http://www.ncbi.nlm.nih.gov/pubmed/28465358
http://dx.doi.org/10.1038/cmi.2010.56
http://www.ncbi.nlm.nih.gov/pubmed/21200385
http://dx.doi.org/10.1200/JCO.2010.33.8715
http://www.ncbi.nlm.nih.gov/pubmed/22025148
http://dx.doi.org/10.1038/modpathol.3801006
http://dx.doi.org/10.1093/brain/aww046
http://www.ncbi.nlm.nih.gov/pubmed/27020328
http://dx.doi.org/10.1093/neuonc/nou307
http://www.ncbi.nlm.nih.gov/pubmed/25355681
http://dx.doi.org/10.1002/1878-0261.12668
http://dx.doi.org/10.1172/JCI90644
http://dx.doi.org/10.1038/s41591-018-0095-6

Cancers 2020, 12, 3230 18 of 18

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Hambardzumyan, D.; Gutmann, D.H.; Kettenmann, H. The role of microglia and macrophages in glioma
maintenance and progression. Nat. Neurosci. 2016, 19, 20-27. [CrossRef]

Friedrich, M.; Bunse, L, Wick, W.; Platten, M. Perspectives of immunotherapy in isocitrate
dehydrogenase-mutant gliomas. Curr. Opin. Oncol. 2018, 30, 368-374. [CrossRef] [PubMed]

Gargini, R.; Segura-Collar, B.; Sanchez-Gomez, P. Cellular Plasticity and Tumor Microenvironment in Gliomas:
The Struggle to Hit a Moving Target. Cancers 2020, 12, 1622. [CrossRef]

Klemm, F; Maas, RR; Bowman, RL.; Kornete, M.; Soukup, K., Nassiri, S; Brouland, J.-P;
Iacobuzio-Donahue, C.A.; Brennan, C.; Tabar, V.; et al. Interrogation of the Microenvironmental Landscape
in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell 2020, 181, e1617. [CrossRef]
Friebel, E.; Kapolou, K.; Unger, S.; Nufiez, N.G.; Utz, S.; Rushing, E.J.; Regli, L.; Weller, M.; Greter, M.;
Tugues, S.; et al. Single-Cell Mapping of Human Brain Cancer Reveals Tumor-Specific Instruction of
Tissue-Invading Leukocytes. Cell 2020, 181, 1626-1642.e20. [CrossRef] [PubMed]

Nduom, E.K.; Wei, J.; Yaghi, N.K.; Huang, N.; Kong, L.Y.; Gabrusiewicz, K.; Ling, X.; Zhou, S.; Ivan, C;
Chen, J.Q.; et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncol. 2016, 18, 195.
[CrossRef]

Antonios, J.P; Soto, H.; Everson, R.G.; Moughon, D.; Orpilla, J.R.; Shin, N.P; Sedighim, S.; Treger, J.; Odesa, S.;
Tucker, A.; et al. Inmunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance
via a PD-1/PD-L1 mechanism in glioblastoma. Neuro-Oncol. 2017, 19, 796-807. [CrossRef]

Flores-Toro, J.A.; Luo, D.; Gopinath, A.; Sarkisian, M.R.; Campbell, ].J.; Charo, LE,; Singh, R.; Schall, T.J.;
Datta, M.; Jain, R.K,; et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor
effect to slow progression of resistant murine gliomas. Proc. Natl. Acad. Sci. USA 2020, 117, 1129-1138.
[CrossRef]

Venteicher, A.S.; Tirosh, I.; Hebert, C.; Yizhak, K.; Neftel, C.; Filbin, M.G.; Hovestadt, V.; Escalante, L.E.;
Shaw, M.L.; Rodman, C.; et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas
by single-cell RNA-seq. Science 2017, 355, 1391. [CrossRef]

Ichimura, K.; Narita, Y.; Hawkins, C.E. Diffusely infiltrating astrocytomas: Pathology, molecular mechanisms
and markers. Acta Neuropathol. 2015, 129, 789-808. [CrossRef] [PubMed]

Calvert, A.E.; Chalastanis, A.; Wu, Y.; Hurley, L.A.; Kouri, EM.; Bi, Y.; Kachman, M.; May, J.L.; Bartom, E.;
Hua, Y.; et al. Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the
Absence of Mutation. Cell Rep. 2017, 19, 1858-1873. [CrossRef]

Turcan, S.; Rohle, D.; Goenka, A.; Walsh, L.A.; Fang, E; Yilmaz, E.; Campos, C.; Fabius, AWM,; Lu, C,;
Ward, PS.; et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nat. Cell Biol.
2012, 483, 479-483. [CrossRef]

Yang, J.; Yan, J.; Liu, B.-R. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front. Immunol. 2018,
9, 978. [CrossRef]

Sena, LF.G.; Paiva, A.E.; Prazeres, PH.D.M.; Azevedo, P.O.; Lousado, L.; Bhutia, S.K.; Salmina, A.B.; Mintz, A.;
Birbrair, A. Glioblastoma-activated pericytes support tumor growth via immunosuppression. Cancer Med.
2018, 7, 1232-1239. [CrossRef] [PubMed]

Tian, L.; Goldstein, A.; Wang, H.; Lo, H.C.; Kim, LS.; Welte, T.; Sheng, K.; Dobrolecki, L.E.; Zhang, X;
Putluri, N.; et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming.
Nat. Cell Biol. 2017, 544, 250-254. [CrossRef]

Sidibe, A.; Ropraz, P.; Jemelin, S.; Emre, Y.; Poittevin, M.; Pocard, M.; Bradfield, P.F.; Imhof, B.A. Angiogenic
factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours.
Nat. Commun. 2018, 9, 355. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1038/nn.4185
http://dx.doi.org/10.1097/CCO.0000000000000478
http://www.ncbi.nlm.nih.gov/pubmed/30102604
http://dx.doi.org/10.3390/cancers12061622
http://dx.doi.org/10.1016/j.cell.2020.05.007
http://dx.doi.org/10.1016/j.cell.2020.04.055
http://www.ncbi.nlm.nih.gov/pubmed/32470397
http://dx.doi.org/10.1093/neuonc/nov172
http://dx.doi.org/10.1093/neuonc/now287
http://dx.doi.org/10.1073/pnas.1910856117
http://dx.doi.org/10.1126/science.aai8478
http://dx.doi.org/10.1007/s00401-015-1439-7
http://www.ncbi.nlm.nih.gov/pubmed/25975377
http://dx.doi.org/10.1016/j.celrep.2017.05.014
http://dx.doi.org/10.1038/nature10866
http://dx.doi.org/10.3389/fimmu.2018.00978
http://dx.doi.org/10.1002/cam4.1375
http://www.ncbi.nlm.nih.gov/pubmed/29479841
http://dx.doi.org/10.1038/nature21724
http://dx.doi.org/10.1038/s41467-017-02610-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Background 
	Methods 
	Ethics Approval, Consent to Participate, and Data Availabilty 
	Molecular Characterization of the Tumors 
	Flow Cytometry Analysis 
	Western Blot 
	Immunohistochemistry (IHC) 
	qRT-PCR Assay 
	Cell Culture 
	Lentivirus Preparation and Infection 
	Mouse Model Study 
	In-Silico Studies 
	Statistical Analysis 
	Data Availability 

	Results 
	Stratification of Gliomas Based on the Immune Profile 
	Characterization of the Myeloid and the Lymphoid Compartments in the Different Subgroups of Gliomas 
	Enrichment of Programmed Death Ligand 1 (PD-L1) Expression in the Immune Cells of Highly Infiltrated Gliomas 
	The Immune Stratification of the Tumors Correlates with Different Vascular Phenotypes 
	Inverse Correlation of the Immune Content with Tau Expression 

	Discussion 
	Conclusions 
	References

