Skip to main content
. 2020 Nov 27;2(4):lqaa098. doi: 10.1093/nargab/lqaa098

Table 2.

TOUCAN best-performing models per test set sliding windows and overlaps in A. niger

Sliding Training Post-
window Overlap set Classifier process P R F-m
10 000 50% 50%–50% mlp merge3 1 0.871 0.931
10 000 50% 40%–60% mlp merge3 1 0.753 0.859
10 000 50% 30%–70% mlp merge2 1 0.706 0.828
10 000 50% 20%–80% mlp merge2 1 0.706 0.828
10 000 50% 10%–90% mlp merge3 1 0.647 0.786
10 000 50% 5%–95% mlp merge3 1 0.447 0.618
7000 50% 50%–50% logit merge3 0.929 0.765 0.839
7000 50% 40%–60% logit merge3 1 0.741 0.851
7000 50% 30%–70% mlp merge3 0.969 0.729 0.832
7000 50% 20%–80% mlp merge3 1 0.741 0.851
7000 50% 10%–90% mlp merge3 1 0.694 0.819
7000 50% 5%–95% mlp merge3 1 0.647 0.786
5000 50% 50%–50% logit merge3 0.817 0.788 0.802
5000 50% 40%–60% logit merge3 0.914 0.753 0.826
5000 50% 30%–70% logit merge3 0.953 0.718 0.819
5000 50% 20%–80% logit merge3 1 0.718 0.836
5000 50% 10%–90% mlp merge3 0.913 0.741 0.818
5000 50% 5%–95% mlp merge3 0.923 0.706 0.800
10 000 30% 50%–50% mlp merge3 1 0.847 0.917
10 000 30% 40%–60% mlp merge3 1 0.741 0.851
10 000 30% 30%–70% mlp merge2 1 0.694 0.819
10 000 30% 20%–80% mlp merge2 1 0.671 0.803
10 000 30% 10%–90% mlp merge3 1 0.6 0.750
10 000 30% 5%–95% mlp merge3 1 0.459 0.629
7000 30% 50%–50% mlp merge3 0.95 0.906 0.928
7000 30% 40%–60% mlp merge3 1 0.824 0.903
7000 30% 30%–70% mlp merge2 1 0.741 0.851
7000 30% 20%–80% mlp merge3 1 0.741 0.851
7000 30% 10%–90% lsvc merge3 1 0.553 0.712
7000 30% 5%–95% mlp merge3 1 0.635 0.777
5000 30% 50%–50% logit merge3 0.908 0.812 0.857
5000 30% 40%–60% logit merge3 0.985 0.788 0.876
5000 30% 30%–70% logit merge3 1 0.753 0.859
5000 30% 20%–80% mlp merge3 0.985 0.776 0.868
5000 30% 10%–90% mlp merge3 0.984 0.729 0.838
5000 30% 5%–95% mlp merge3 1 0.706 0.828