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Abstract

Interferons (IFNs) are well known as mediators of the antimicrobial response but also serve as 

important immunomodulatory cytokines in autoimmune and autoinflammatory diseases. An 

increasingly critical role for IFNs in evolution of skin inflammation in these patients has been 

recognized. IFNs are produced not only by infiltrating immune but also resident skin cells, with 

increased baseline IFN production priming for inflammatory cell activation, immune response 

amplification and development of skin lesions. The IFN response differs by cell type and host 

factors and may be modified by other inflammatory pathway activation specific to individual 

diseases, leading to differing clinical phenotypes. Understanding the contribution of IFNs to skin 

and systemic disease pathogenesis is key to development of new therapeutics and improved patient 

outcomes. In this review, we summarize the immunomodulatory role of IFNs in skin, with a focus 

on type I, and provide insight into IFN dysregulation in autoimmune and autoinflammatory 

diseases.

Intro/Background

The skin comprises a critical physical and chemical barrier, and resident skin cells and 

resident and migratory immune cells secrete immunomodulatory proteins to protect us from 

colonization and invasion by foreign microorganisms. Interferons (IFNs) are one important 

class of signaling proteins secreted to combat potential infection. While IFNs can serve a 

protective role, they also contribute to the pathogenesis of autoimmune and 

autoinflammatory diseases. Pathognomonic skin lesions frequently herald systemic 

autoimmune disease onset and represent key features that assist in diagnosis. Critically, an 

important role for type I IFNs in cutaneous and systemic disease pathogenesis has been 

recognized.
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Types and role of interferons

There are three main classes of IFNs, with type I IFNs representing the largest class. Type I 

IFNs in humans encompass 17 members, including 13 IFNα subtypes, IFNβ, IFNω, IFNε 
and IFNκ(1). While most cell types produce IFNβ, the primary producers of IFNα are 

hematopoietic cells(2). There exists only a single type II interferon, IFNγ, which is 

produced predominantly by T and NK cells, and also assists in the antiviral immune 

response(3). The third class of IFNs, type III IFNs, is comprised of 4 IFNλ subtypes (IFNλ 
1, 2, 3 or 4), with receptor expression mostly restricted to epithelial cells, myeloid cell 

subsets and neuronal cells(4). IFNλ is structurally similar to interleukin-10 family cytokines 

and has similar signaling effects to type I IFNs, exhibiting a role in the antimicrobial 

response of epithelial cells(5).

Type I interferons serve an important immunomodulatory role in healthy skin, leading to 

promotion of antigen presentation and NK cell activation through shaping the innate 

immune response, activation and augmentation of the adaptive immune system and 

induction of an antimicrobial state(1, 2). Type I IFNs also perform an anti-proliferative and 

tumor immune surveillance role. Type II IFNs can specifically inhibit keratinocyte 

proliferation(6). Type III IFNs are induced by nucleic acid signaling but their overall 

function in the skin requires additional study.

Downstream signaling of type I interferons

All type I IFNs bind to the same heterodimeric transmembrane receptor, the IFNα/β 
receptor (IFNAR), composed of IFNAR1 and 2; however, binding affinity and tissue-specific 

receptor expression can influence biological activity of the type I IFNs(7–10). The IFNAR is 

found on nearly all nucleated cells. Binding of type I IFNs to the IFNAR leads to activation 

of the Janus activated kinase-signal transducer and activation of transcription (JAK-STAT) 

pathway(11). IFNAR1 is associated with tyrosine kinase 2 (TYK2), and IFNAR2 is 

associated with JAK1. Once JAK1 and TYK2 are activated, they phosphorylate tyrosine 

residues on cytoplasmic tails of the IFNAR, which serve as binding sites for the Src-

homology-2 (SH2) domain of STAT proteins 1–6(12, 13). Relative STAT expression also 

influences specific STAT activation. Classically, a phosphorylated STAT1 and STAT2 dimer 

translocates to the nucleus, associates with interferon response factor 9 (IRF9), resulting in 

formation of the IFN-stimulated gene factor 3 (ISGF3) complex(14). ISGF3 then binds to 

interferon-stimulated response elements (ISREs), resulting in activation of interferon-

stimulated genes (ISGs) (Figure 1).

Localization of interferons in skin

In healthy resident skin cells, keratinocytes produce interferons at baseline, with minimal to 

no detectible production from fibroblasts or endothelial cells(15). This baseline interferon 

production is a result of chronic IFNκ production, with no apparent contribution from other 

type I IFNs(15, 16). IFNκ expression increases upon treatment with type I or II 

interferons(16), and chronic elevation of baseline IFNκ amplifies basal IFN responses(15). 

In inflammatory states, exposure to cytokines like TNF-α or antimicrobial peptides prime 

for additional type I IFN expression, particularly IFNβ(17).
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Upon appropriate stimulation, many cell types are capable of type I IFN production. 

Immune cells, similar to keratinocytes, are poised to respond more rapidly to low levels of 

interferons. Plasmacytoid dendritic cells (pDCs) are able to rapidly secrete large amounts of 

IFNα and are known to accumulate in key tissues affected by inflammation in rheumatic 

disease. In autoimmune skin lesions, pDCs are recruited to the dermal-epidermal 

junction(18), contributing to interface dermatitis, a defining histopathologic feature in lupus 

and dermatomyositis. Immune complexes in cutaneous lupus lesions can induce type I IFN 

production in pDCs(19). Langerhans cells, a specialized subset of dendritic cells residing in 

skin, also produce interferons and release increased amounts of IFN-induced chemokines 

upon stimulation with Toll-like receptor (TLR) 3 agonist polyinosinic:polycytidylic acid 

(poly(I:C)) as compared to monocyte-derived DCs(20). Inflammatory monocytes have also 

been shown to be critical IFN producers in skin upon ultraviolet B (UVB) stimulation(21). 

Interestingly, IFNARKO mice demonstrate increased skin inflammation, suggesting a 

protective role for type I IFNs after UVB radiation in wild-type mice(21).

Triggers and regulation of IFN production in skin

Triggers for IFN production in skin can include ultraviolet radiation, infection, injury and 

cell death, all of which generate damage or pathogen-associated molecular patterns (DAMPs 

or PAMPs, respectively). Upon sensing of DAMPs or PAMPs by pattern recognition 

receptors (PRRs), IFN production is induced. The IFN response can differ depending on the 

underlying trigger, responding receptor and cell type, immune response and various host 

modifying factors. Keratinocytes express a wide range of PRRs, including toll-like receptors 

(TLRs) and cytoplasmic nucleic acid sensors, all with a unique ligand (PAMP or DAMP) 

preference (Table 1). Altered TLR and increased cytosolic nucleic acid sensor expression is 

noted in autoimmune skin diseases(22, 23), suggesting a general disease mechanism by 

which an environment with chronically elevated IFNs may modify IFN response 

mechanisms. UV radiation exposure to the skin of healthy volunteers and also mice has been 

shown to stimulate a striking cutaneous type I IFN response(21, 24). Which pathways sense 

and activate IFNs after UV exposure and how this differs in autoimmune disease are 

currently being investigated.

Multiple factors serve to modulate the cellular response to type I IFNs, including IFNAR 

downregulation, negative regulator and microRNA upregulation, differential STAT 

activation, cooperation of STATs with interferon regulatory factors (IRFs), post-translational 

modification and chromatin remodeling(2). As an example of potential host modifying 

factors, commensal microbial flora can serve as a rheostat of IFN responsiveness to viral 

infections in mice(25). Antibiotic-treated mice have been shown to demonstrate decreased 

IFN responsiveness after mucosal or systemic viral infection, and expression of IFN and 

IFN-stimulated genes (ISGs) is reduced in macrophages from antibiotic-treated mice(25). In 

human keratinocytes, treatment with interferons in vitro leads to decreased barrier gene 

expression and increased S. aureus adherence which may induce further IFN production(26).

IFN effects and involvement in pathogenesis of autoimmune skin disease

Cutaneous lupus erythematosus (CLE)—Cutaneous disease in SLE can be an 

isolated feature or associated with underlying systemic manifestations. Skin inflammation is 
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present in the majority of patients and is often the first harbinger of disease onset or a 

disease flare, offering a crucial opportunity to potentially intervene even prior to onset of 

systemic inflammation. Multiple subtypes of cutaneous lupus exist, including acute CLE 

(ACLE), subacute CLE (SCLE), chronic CLE (CCLE, including discoid lupus) and 

intermittent CLE (ICLE or tumid lupus)(27). Cutaneous lupus lesions demonstrate a 

hallmark interface dermatitis, or inflammatory infiltrate bordering the dermoepidermal 

junction (DEJ), characterized by apoptotic keratinocytes, vacuolar changes, CD8+ 

lymphocytes and pDCs(28, 29). Even in SLE patients with no clinically apparent skin 

lesions, molecular signatures in non-lesional skin can still indicate an aberrant immune 

response. Both lesional and non-lesional skin from adults with lupus exhibit chronic 

upregulation of type I interferons(15, 30), and comparison of isolated CLE vs. systemic 

lupus associated CLE demonstrate similar gene expression profiles(31).

Although incompletely understood, the pathogenesis of CLE lesions is thought to be driven 

by IFNs (Figure 1A). CLE patients exhibit an elevated IFN signature in peripheral blood that 

correlates with clinical cutaneous disease activity as assessed by the Cutaneous Lupus 

Erythematosus Disease Area and Severity Index (CLASI)(32, 33). IFNĸ production is 

increased at baseline in non-lesional SLE keratinocytes, leading to increased type I IFN 

responsiveness and UV light sensitivity(15, 34). Lupus keratinocytes also demonstrate a 

hypersensitive response to IFN stimulation, with a larger magnitude of change in ISG 

expression upon IFN treatment as compared to control keratinocytes(35). ISG expression, 

including Myxovirus resistance gene A (MxA), is upregulated at baseline in both the 

epidermis and dermis of lesional CLE skin(36). IFN-inducible CXCL9, CXCL10 and 

CXCL11 are 3 of the 5 most upregulated chemokines in lesional CLE skin, and their 

receptor (CXCR3) is among the top 3 most differentially regulated chemokine receptors(37, 

38). MxA, CXCL9 and CXCL10 cutaneous expression patterns also differ by CLE subtype, 

suggesting that IFNs may have a role in directing differing clinical phenotypes(39).

Key genetic risk variants involved in IFN signaling pathways have also been described in 

SLE, including IRF5 and STAT4(40–42), but how each of these relates to skin disease hasn’t 

been delineated. SLE patients with these genetic risk variants have also been noted to have 

differences in disease phenotype, which may in part be explained through altered IFN 

signaling. As an example, SLE patients with high risk IRF5 genotypes were demonstrated to 

have elevated serum IFNα activity, with the highest levels observed in patients with anti-

double-stranded DNA (dsDNA) or anti-RNA binding protein (RBP) autoantibodies(43). 

SLE patients with STAT4 risk alleles are diagnosed at a younger age and also more likely to 

have nephritis and anti-dsDNA autoantibodies(44, 45). Genetic risks for CLE have also been 

linked to IFN signaling as polymorphisms in IFNK(46) are associated with skin disease in 

African American and European ancestry females with SLE, and mutations in TREX1, a 

DNA exonuclease that when inhibited leads to accumulation of nucleic acids and increased 

IFN production, result in familial chilblain lupus (47, 48).

It is well known that UV radiation is a trigger for cutaneous inflammation and disease flare 

in SLE patients. UV radiation is known to amplify the IFN response to nucleic acids in 

keratinocytes, and mice lacking TREX1 develop UV-induced skin lesions(49). ISGs are 

increased in lupus-prone mice and human patients vs. healthy controls after UV radiation 
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(50, 51) and this coincides with enhanced CD123+ dendritic cell and CD68+ macrophage 

recruitment in SLE skin after UV radiation (50). In C57BL/6J mice, UV radiation induces 

not only a type I IFN response in skin, but also a type I IFN response in peripheral blood and 

kidney tissue, suggesting a role for UV radiation and cutaneous IFNs in the initiation of 

systemic inflammation(24). Interestingly, this type I IFN response is more pronounced in 

female vs. male mice, lending insight into a potential mechanism by which females may be 

more susceptible to select autoimmune diseases such as SLE(24). In addition, IFNs repress 

UVB-mediated Treg induction in lupus-prone mice, which contributes to T cell 

activation(51). Importantly, persistence of IFN responses in CLE patients after UV exposure 

correlated with endothelial cell activation, likely contributing to leukocyte recruitment and 

development of clinical lesions(52). In pDCs, supernatant from UV-treated, apoptotic 

monocytes induces type I IFN production in combination with SLE total IgG (pooled from 

plasma of two patients), and both RNase and DNase treatment decrease type I IFN 

induction(53), suggesting that immune complexes predispose to inflammation following 

UVB.

Dermatomyositis—Dermatomyositis (DM) is an idiopathic inflammatory myopathy 

characterized by pathognomonic rash, muscle weakness and variable involvement of other 

organ systems, including the lungs, gastrointestinal tract and heart. In children, skin 

inflammation is the most common presenting symptom and most classically manifests as 

scaly, erythematous, raised lesions over the knuckles, or reddish purple discoloration of the 

upper eyelids with associated edema(54).

Similar to CLE, skin inflammation can be an important indicator of ongoing disease activity, 

photosensitivity is common, and lesions exhibit an interface dermatitis(55, 56). However, the 

pathophysiology of DM skin lesions is not as well understood. Type I IFN signaling is 

upregulated in DM and juvenile dermatomyositis (JDM) skin(57) as well as in muscle(58) 

and peripheral blood(59). The type I IFN signature in peripheral blood in DM and JDM has 

also been reported to correlate with disease activity(60, 61). Immunostaining of DM lesional 

skin demonstrates increased MxA staining in the epidermis, endothelial cells and 

inflammatory cell infiltrate(62, 63). CXCL10 expression is also higher in DM lesional skin, 

predominantly in the upper dermis in the presence of lymphocytic infiltrate and also in the 

epidermis near areas of interface dermatitis(62). In DM skin disease, similar to CLE, type I 

IFNs have been purported to lead to recruitment of CXCR3+ lymphocytes, with increased 

MxA staining correlating with higher numbers of CXCR3+ lymphocytes(62, 64). In anti-

melanoma differentiation-associated 5 gene (MDA5) autoantibody-positive DM patients, 

MxA immunostaining in skin was distributed in blood vessels in the dermis, suggesting a 

role for IFNs in the vasculopathy that characterizes DM(65). Even non-lesional JDM skin 

has been described as altered, with increased numbers of pDCs and mast cells(66).

A recent analysis of two dermatomyositis skin microarray datasets revealed both a type I and 

type II IFN signature(67). Similarly, dermatomyositis muscle has been reported to have both 

a type I and II IFN signature, although the type I IFN signature may be somewhat more 

specific to DM versus other idiopathic inflammatory myopathies(68). IFNβ expression in 

the skin has been shown to correlate with ISGs(57), but whether IFNκ also plays a role in 

DM skin remains to be determined.
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Scleroderma—Scleroderma is an autoimmune disorder with features of fibrosis, 

vasculopathy, and inflammation, contributing to pathogenesis at various stages of 

disease(69–71). In systemic sclerosis (SSc), the extent of skin involvement associates with 

prognosis, with lower survival in patients with a higher baseline skin score and improved 

survival in those patients with improvement in skin thickening(72).

IFN treatment has been known to trigger both systemic and localized scleroderma, leading to 

speculation on the role of IFNs in scleroderma pathogenesis. Localized scleroderma (LSc) 

has been described at IFNβ injection sites(73). SSc has also been reported in multiple 

sclerosis (MS) patients after IFNα and IFNβ treatment(74, 75). Immunostaining for MxA in 

lesional LSc biopsies shows expression that is most prominent in the deep dermis and 

subcutis near inflammatory infiltrates(76). CXCL10 staining is apparent in the dermal 

perivascular lymphoplasmacytic infiltrate(77). In pediatric LSc, bulk RNA sequencing of 

lesional skin confirms upregulation of IFNγ and ISGs, including CXCL9, CXCL10 and 

CXCL11, and LSc patients with more active skin lesions had higher IFN scores(78). A SSc 

skin microarray study also revealed ISGs as the top upstream transcriptional regulators, with 

IFNα and IFNγ as the top upstream activated cytokines(79). In this same study, 

approximately 75% of patients had a fibroinflammatory signature, which included gene 

expression scores of ISGs, that was found to correlate with the modified Rodnan skin score 

(mRSS)(79). Cutaneous expression of ISGs IFI44 and SIGLEC-1 has also been 

demonstrated to correlate with the mRSS(80). Interestingly, IFNκ was shown to be 

downregulated in SSc keratinocytes, suggesting that there may be different sources of type I 

IFNs based on cell type and individual autoimmune diseases(81).

Similar to gene expression studies in skin, an IFN signature in peripheral blood has been 

noted in both localized and systemic scleroderma patients(77, 82). As compared to the 

peripheral blood IFN signature in SLE, SSc patients were found to have upregulation of 

endothelial adhesion molecules, suggestive of the underlying vasculopathy that is central to 

the disease pathogenesis in SSc(82).

It has been suggested that IFN upregulation might play a role in the earlier stages of 

scleroderma pathogenesis. A study focused on patients with early SSc described that a type I 

IFN signature is still present in peripheral blood, despite the absence of clinical evidence of 

fibrosis(83). In fact, in early and non-fibrotic compared to fibrotic SSc patients, the IFN 

score was higher(83). pDCs have been shown to produce IFNα upon treatment with sera 

from SSc patients combined with necrotic material(84) in an FcgammaRII and RNA-

dependent manner, suggesting a role for immune complexes(85). Indeed, TLR8 

overexpression in a murine model of disease exacerbates fibrosis(86), and expression of 

ISGs also increases in skin and fibroblasts from SSc patients upon TLR3 stimulation(87). In 

SSc patients treated via hematopoietic stem cell transplantation (HSCT), there is a decrease 

in type I IFN expression in skin that correlates with decreased fibrosis and capillary 

regeneration(88).

Sjogren’s syndrome—Sjogren’s syndrome (SS) is characterized by inflammation of the 

lacrimal and salivary glands, resulting in exocrine dysfunction, with clinical features of 

keratoconjunctivitis sicca/xeropthalmia and xerostomia. SS can be both a primary disease or 
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secondary to/associated with another underlying rheumatic disease and is associated with 

hypergammaglobulinemia and production of the classic autoantibodies SSA/Ro and SSB/La. 

Cutaneous manifestations in SS occur in up to 50% of patients and can include xerosis, 

angular cheilitis, eyelid dermatitis, pruritis, cutaneous vasculitis and skin lesions with 

histologic similarity to CLE(89, 90). Gene expression studies from both peripheral blood 

and salivary gland tissue highlight an IFN signature(91, 92), with a predominant type I IFN 

signature in peripheral blood and type II IFN signature in salivary gland tissue(92). 

Intriguingly, the type I IFN signature correlates with apoptotic gene expression(92), but 

whether this contributes to skin disease remains unknown. Monocytes from patients with 

primary SS also have a type I IFN signature in 55% of patients as compared to healthy 

controls(93). The importance of IFNs in SS is also reinforced by evidence in murine models, 

with SS mice that have a non-functional IFN receptor failing to develop clinical disease(94).

Psoriasis—Type I IFN activation has also been described in psoriasis and psoriatic 

keratinocytes. Genetic polymorphisms which lead to activation of cytosolic signaling 

pathways and IFN production are risk factors for psoriasis(95); indeed, DDX58 (RIG-I) 

activation is required for IL-23 activation and psoriasis in murine models(96). Type I IFNs 

and ISGs are significantly elevated in psoriatic plaques (97–100). A phase I trial of 

MEDI-545, an, anti-IFN-α monoclonal antibody was unable to show clinical benefit in 

patients with chronic psoriatic plaques, which may support the hypothesis that IFNs are 

involved in initiation of psoriasis but not in chronic plaque formation (101). Further work to 

understand how IFNs contribute to psoriatic development is required.

IFN effects and involvement in pathogenesis of autoinflammatory skin disease

Interferonopathies—The interferonopathies are autoinflammatory disorders 

characterized by overproduction of IFN due to mutations in genes involved in regulation of 

nucleic acid sensing. Through the study of interferonopathies, we have gained insight into 

the pathogenic role of interferons and underlying disease mechanisms driven by interferons. 

A spectrum of cutaneous manifestations are seen in the clinical presentation of 

interferonopathies especially vasculopathy (chilblain-like rash, microangiopathic 

vasculopathy, gangrene/ulcers/infarcts in acral areas) and skin eruptions of nodular erythema 

and violaceous plaques in cold-sensitive acral areas(102). Further, undifferentiated 

autoinflammatory disease patients with elevated IFN-response-gene scores more commonly 

had neutrophilic panniculitis(103). Further study has suggested that some disorders may 

favor NF-κB driven pathology over that mediated by interferons(103) but that IFN signature 

elevation is associated with erythematous, macular skin lesions and Gottron’s papules (skin 

lesions common in patients with DM). Understanding the balance between IFN-mediated 

and other inflammatory activation is an important goal for future research.

Aicardi-Goutieres Syndrome (AGS)—AGS patients were first described with 

progressive encephalopathy, basal ganglia calcifications, white matter hypodensities and 

persistent cerebrospinal fluid lymphocytosis(104). It was later noted that the most 

pathognomonic extra neurological symptom of AGS was the cutaneous finding of chilblain-

like lesions on the digits and that these patients also had elevated IFNα in cerebrospinal 

fluid (CSF) and serum(105). Chilblain-like lesions are reported in approximately half of 
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AGS patients, most often on the fingers and toes, but also other acral surfaces, including the 

ears(106).

Mutations in genes encoding the cellular nucleases TREX1(107), RNASEH2 complex(108), 

and SAMHD1(109) among others have been discovered in AGS patients. While these 

mutations lead to increased IFN generation, how these mutations directly lead to skin 

manifestations isn’t well understood. TREX1 encodes a 3’−5’ exonuclease that degrades 

ssDNA(110, 111), dsDNA(112), and ssRNA(113). Accumulation of nucleic acids causes a 

rise in IFN production in a cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes 

(STING) dependent manner, and deletion of TREX1 in keratinocytes raises ISG production 

in keratinocytes(114) (Figure 1B). However, mice with a dysfunctional TREX1 do not get 

spontaneous skin lesions(112). This suggests that triggers are needed for phenotype. Indeed, 

mice with dysfunctional TREX1 exhibit increased ear swelling and inflammation when 

injected with DNA, independent of its oxidation status (wild type mice develop lesions only 

from UV-oxidized DNA, which is resistant to TREX1 degradation)(115). Other mutations 

associated with TREX1 may also impact UVB sensitivity. Mutations in RNASEH2 can lead 

to defective repair of damaged RNA which increases the propensity for UVB-mediated 

damage and type I IFN production in response(116). Case reports have linked AGS with 

photosensitivity(117), but how individual mutations contribute remains to be determined. In 

C57BL/6J mice exposed to UV radiation, both the type I IFN response in skin and 

peripheral blood is primarily dependent on the cGAS-STING pathway in the early response 

phase at 6 hours post-radiation, lending insight into a potential role for cGAS-STING in the 

early type I IFN response and subsequent innate inflammatory cell recruitment(24).

CANDLE (Chronic Atypical Neutrophilic Dermatosis With Lipodystrophy and 
Elevated Temperature)—CANDLE is categorized as a proteasome-associated 

autoinflammatory syndrome (PRAAS) and is manifested by recurrent fevers, annular, 

purpuric rash, lipodystrophy and multisystem inflammation. Skin biopsies from CANDLE 

patients demonstrate mononuclear cell and neutrophilic infiltrate with dermal collagen 

degeneration(118). Mutations in the PSMB8 gene were initially found in 8/9 patients from a 

CANDLE cohort, accompanied by elevated serum levels of CXCL10 and IFN signaling as a 

top dysregulated pathway on whole blood gene expression analysis (pathway gene list 

including both type I and type II IFN-induced genes) (118). Additional mutations in genes 

involved in proteasome activity have since been identified that result in a CANDLE 

phenotype, including PSMB4, PSMA3, PSMB9 and POMP, which encodes a proteasome 

maturation protein(119). In patients with proteasome alterations other than in PSMB8, skin 

biopsies demonstrated increased ubiquitin-positive keratinocytes and ubiquitin-rich 

inclusions in keratinocytes. CANDLE patient keratinocytes showed impairment in 

proteasome assembly, and siRNA knockdown of patient proteasome mutations resulted in 

type I IFN induction(119). Indeed, in CANDLE, IFNs may participate in a feed-forward 

loop in which normal triggers of type I IFN production, such as UV light or infections, result 

in cellular stress and oxidized proteins that cannot be degraded, which results in further type 

I IFN production, upregulation of the immunoproteasome and subsequent inflammation 

(Figure 1B).

Turnier and Kahlenberg Page 8

J Immunol. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SAVI (STING-associated vasculopathy with onset in infancy)—Another group of 

patients exhibiting lupus-like malar rash and vasculitic skin lesions in conjunction with 

interstitial lung disease have been described to harbor TMEM173 mutations, leading to gain-

of-function in stimulator of interferon genes (STING) and subsequent IFN 

overproduction(120, 121) (Figure 1B). At baseline, SAVI patients have maximal 

upregulation of type I IFN and ISGs with constitutive STAT1 phosphorylation(121). 

Lesional skin from SAVI patients is characterized by vascular inflammation of capillaries 

and microthrombosis, and dermal fibroblasts from SAVI patients are hypersensitive to 

treatment with even low-dose cyclic GMP-AMP (cGAMP), resulting in increased IRF3 

phosphorylation and type I IFN transcription(121).

Murine models of SAVI-associated mutations also develop profoundly elevated ISG 

signatures. However, systemic disease is independent of the type I IFN receptor, suggesting 

other inflammatory pathways or other types of IFNs contribute to disease, at least in 

mice(122). Mice harboring SAVI-associated mutations have not been reported to develop 

skin disease, so how the type I IFN pathways participate in SAVI-associated skin 

manifestations is not yet known.

Insight into disease mechanisms by targeting the IFN pathway

Anifrolumab: Anifrolumab is a monoclonal antibody that binds to subunit 1 of the type I 

IFN receptor (IFNAR1), thereby blocking type I IFN activity. Trials of anifrolumab for 

treatment of SLE have shown promise for improvement in CLE disease activity. In a phase 

IIb, randomized, double-blind, placebo-controlled study of anifrolumab in adults with 

moderate-to-severe SLE (MUSE trial), there was greater efficacy of anifrolumab in patients 

with a higher IFN signature, including improvement in skin disease activity as assessed by 

the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K), CLASI and 

British Isles Lupus Assessment Group (BILAG) index(123, 124). Improvement in rash was 

only significantly improved as assessed by the BILAG in the low IFN signature 

subgroup(124). In the Treatment of Uncontrolled Lupus via the IFN Pathway (TULIP) trial 

II, there was ≥50% decrease in CLASI scores in half of the anifrolumab group compared to 

only 25% of the placebo group (p = 0.04)(125). In systemic scleroderma patients, 

anifrolumab treatment has also been shown to decrease type I ISG expression in patient skin 

biopsies collected 28 days after dosing with anifrolumab(126).

Janus Kinase (JAK) inhibitors—JAK inhibitors block one or multiple JAKs (JAK1, 

JAK2, JAK3, TYK2), which are tyrosine kinases that bind to a wide variety of cytokine 

receptors (including all three types of IFNs) and thereby affect the immune response(127, 

128). CLE lesions have been shown to exhibit high expression of phospho-JAK2 similar to 

CXCL10 and MxA, and treatment of keratinocytes and a 3d epidermis model with 

ruxolitinib after poly(I:C) stimulation decreases type I ISG expression(129). Treatment of 

murine lupus with tofacitinib resulted in improvement of both systemic and cutaneous 

disease manifestations(130). In DM, skin disease has shown improvement after treatment 

with ruxolitinib, further supporting a role for IFNs in DM pathogenesis(131). Treatment of 

18 interferonopathy patients with baricitinib led to a decrease in IFN scores and clinical 

symptoms, with improvement in cutaneous disease also reported although not specifically 
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scored(132). Similarly, treatment of cutaneous lesions in familial chilblain lupus with 

baricitinib leads to improvement in skin disease(133). Liu et al also demonstrated that 

treatment of SAVI patient T and B cells with JAK inhibitors blocks constitutive 

phosphorylation of STAT1(121).

Anti-BDCA2 antibody (BIIB059)—BIIB059 is a humanized monoclonal antibody that 

binds blood DC antigen 2 (BDCA2), a C-type lectin and pDC specific receptor. BIIB059 is 

believed to inhibit TLR-induced type I IFN and other inflammatory mediator production. In 

CLE, BIIB059 has been shown to reduce skin inflammation(134). In a randomized, double-

blind, placebo-controlled trial of BIIB059 in SLE patients with active skin disease, BIIB059 

decreased expression of MxA and IFITM3 and also CD45+ cellular infiltrate in skin 

biopsies four weeks after treatment and additionally improved CLASI scores(134). BIIB059 

has also been described to reduce IFNα production from pDCs of CLE patients after 

stimulation with TLR agonists, providing an additive therapeutic benefit to 

hydroxychloroquine(135).

Conclusions

Overproduction of type I IFNs is a unifying theme amongst many autoimmune and 

autoinflammatory patients with skin manifestations. In SLE/CLE, this contributes to 

inflammatory cell activation and photosensitivity, a mechanism which likely extends to other 

diseases, possibly the autoinflammatory diseases as well. Further research is needed to 

understand the ways in which interferons drive disease and to identify which patients will 

benefit most from targeting of IFNs.
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Figure 1. 
Pathways of interferon dysregulation in skin lesions of patients with autoimmune and 

autoinflammatory diseases. Cutaneous lupus erythematosus (CLE) is shown as an example 

in A. B represents pathways dysfunctional in Aicardi-Goutieres Syndrome (AGS) in red, 

Chronic Atypical Neutrophilic Dermatosis With Lipodystrophy and Elevated Temperature 

(CANDLE) in grey and STING-associated vasculopathy with onset in infancy (SAVI) in 

pink. dsDNA=double stranded DNA, dsRNA=double stranded RNA, ssRNA=single 

stranded RNA, IC=immune complex.
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Table 1.

Toll-like receptors and cytosolic nucleic acid sensors in keratinocytes.

Pattern recognition 
receptor (PRR)

Ligand Location and Expression Reference

Toll-like receptors (TLRs)

TLR1 TLR2/1 heterodimer recognizes 
tri-acylated lipoproteins

Cell membrane, constitutively expressed, throughout 
the epidermis

(22, 136–138)

TLR2 pathogen-derived lipoproteins 
(tri- or diacyl lipopeptides, 
lipoteichoic acid, 
peptidoglycan), fungal 
components

Cell membrane, constitutively expressed, throughout 
the epidermis

(22, 136, 138–140)

TLR3 dsRNA, poly(I:C) Intracellular membranes (Endosome/lysosome), 
constitutively expressed, basal layer of epidermis, 
expression increased upon exposure to IFNα + 
poly(I:C)

(23, 136, 138, 141)

TLR4 Lipopolysaccharide (LPS) Cell membrane (136)

TLR5 flagellin Cell membrane, constitutively expressed, basal layer 
of epidermis

(22, 136, 138)

TLR6 TLR2/6 heterodimer recognizes 
di-acylated lipoproteins

Cell membrane (136, 137)

TLR7 ssRNA Endosome/lysosome, not expressed at baseline but 
treatment of keratinocytes with poly(I:C) can 
upregulate TLR7 expression

(142, 143)

TLR9 dsDNA, chromatin-IgG 
complexes

Endosome/lysosome (136, 137)

TLR10 unknown Constitutively expressed (136, 138)

Cytosolic nucleic acid 
sensors

Protein kinase R (PKR) dsRNA Expression increased upon exposure to IFNα + 
poly(I:C)

(23)

Retinoic acid-inducible 
gene I (RIG-I)

ssRNA, dsRNA Constitutively expressed, poly(I:C) leads to 
upregulation of type I IFNs while UVB has an 
opposing effect, expression increased upon exposure 
to IFNα + poly(I:C)

(23, 144, 145)

Melanoma differentiation 
associated gene 5 (MDA-5)

dsRNA Expression increased upon exposure to IFNα + 
poly(I:C)

(23)

Interferon-γ-inducible 
protein 16 (IFI16)

dsDNA, ssDNA Expression in upper epidermal layers in lesional 
skin of SLE patients

(146–148)

Cyclic GMP-AMP 
synthase (cGAS)

dsDNA cGAS-stimulator of interferon genes (STING) 
pathway is activated by apoptosis-derived 
membrane vesicles from SLE patient sera

(146, 149)
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