Skip to main content
. 2020 Nov 7;9(11):1622. doi: 10.3390/foods9111622

Table 1.

Details of the parametrization used to tune each of the final classification models.

Classifier Parameters
kNN Number of neighbors: 3; Metric: Euclidean; Weight: Distance.
Decision tree Limit the tree depth: 100; Do not split subsets smaller than: 2; Min. number of instances in leaves 3.
SVM C: 15; Kernel: Radial Basis Function (RBF); g: auto.
Random forests Number of trees: 15; Do not split subsets smaller than: 5.
ANN Neurons in hidden layers: 300; activation: Rectified Linear Unit (Relu); solver: Adam; regularization: 0.02.
Naive Bayes Non-applicable
AdaBoost Number of estimators: 80; learning rate: 0,7; classification algorithm: SAMME.R; Regression loss function: Square.

kNN: k-nearest neighbors; SVM: support vector machine; ANN: artificial neural networks.