Table 1.
Classifier | Parameters |
---|---|
kNN | Number of neighbors: 3; Metric: Euclidean; Weight: Distance. |
Decision tree | Limit the tree depth: 100; Do not split subsets smaller than: 2; Min. number of instances in leaves 3. |
SVM | C: 15; Kernel: Radial Basis Function (RBF); g: auto. |
Random forests | Number of trees: 15; Do not split subsets smaller than: 5. |
ANN | Neurons in hidden layers: 300; activation: Rectified Linear Unit (Relu); solver: Adam; regularization: 0.02. |
Naive Bayes | Non-applicable |
AdaBoost | Number of estimators: 80; learning rate: 0,7; classification algorithm: SAMME.R; Regression loss function: Square. |
kNN: k-nearest neighbors; SVM: support vector machine; ANN: artificial neural networks.