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Abstract

In analysis of binary outcomes, the receiver operator characteristic (ROC) curve is heavily used to 

show the performance of a model or algorithm. The ROC curve is informative about the 

performance over a series of thresholds and can be summarized by the area under the curve 

(AUC), a single number. When a predictor is categorical, the ROC curve has one less than 

number of categories as potential thresholds; when the predictor is binary there is only one 

threshold. As the AUC may be used in decision-making processes on determining the best model, 

it important to discuss how it agrees with the intuition from the ROC curve. We discuss how the 

interpolation of the curve between thresholds with binary predictors can largely change the AUC. 

Overall, we show using a linear interpolation from the ROC curve with binary predictors 

corresponds to the estimated AUC, which is most commonly done in software, which we believe 

can lead to misleading results. We compare R, Python, Stata, and SAS software implementations. 

We recommend using reporting the interpolation used and discuss the merit of using the step 

function interpolator, also referred to as the “pessimistic” approach by Fawcett (2006).
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1 Introduction

In many applications, receiver operator characteristic (ROC) curves are used to show how a 

predictor compares to the true outcome. One of the large advantages of ROC analysis is that 

it is threshold-agnostic; performance of a predictor is estimated without a specific threshold 

and also gives a criteria to choose an optimal threshold based on a certain cost function or 

objective. Typically, an ROC analysis shows how sensitivity (true positive rate) changes with 

varying specificity (true negative rate or 1 – false positive rate) for different thresholds. 

Analyses also typically weigh false positives and false negatives equally. In ROC analyses, 

the predictive capabilities of a variable is commonly summarized by the area under the curve 

(AUC), which can be found by integrating areas under the line segments. We will discuss 

how interpolation between these line segments affect the visualization of the ROC curve and 

corresponding AUC. Additionally, partial ROC (pROC) analysis keeps a maximum 
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specificity fixed and can summarize a predictor by the partial AUC (pAUC), integrating up 

to the maximum specificity, or the maximum sensitivity with the smallest false positive rate 

in that subset range.

Many predictors, especially medical tests, result in a binary decision; a value is higher than a 

pre-determined threshold or a substance is present. Similarly, some predictors are commonly 

collected as categorical or discrete such as low, normal, or high blood pressure while others 

are categorical by nature such as having a specific gene or not. These are useful indicators of 

presence a disease, which is a primary outcome of interest in medical settings, and are used 

heavily in analysis.

If one assumes the binary predictor is generated from a continuous distribution that has been 

thresholded, then the sensitivity of this thresholded predictor actually represents one point 

on the ROC curve for the underlying continuous value. Therefore the ROC curve of a binary 

predictor is not really appropriate, but should be represented by a single point on the curve. 

But alas, ROC and AUC analysis has been done on binary predictors and used to inform if 

one variable is more predictive than the other (E et al. 2018; TV et al. 2017; Glaveckaite et 

al. 2011; Blumberg et al. 2016; Budwega et al. 2016; Mwipatayi et al. 2016; Xiong et al. 

2018, @shterev2018bayesian; Kushnir et al. 2018; Snarr et al. 2017; Veltri, Kamath, and 

Shehu 2018). For example, these cases show that researchers use ROC curves and AUC to 

evaluate predictors, even when the predictors are categorical or binary. Although there is 

nothing inherently wrong with this comparison, it can lead to drastically different predictors 

being selected based on these criteria if ties are treated slightly different ways. A more 

appropriate comparison of a continuous predictor and the binary predictor may be to 

compare the sensitivity and specificity (or overall accuracy) of the continuous predictor 

given the optimal threshold versus that of the binary predictor.

As categorical/binary predictors only have a relatively small number of categories, how ties 

are handled are distinctly relevant. Thus, many observations may have the same value/risk 

score. Fawcett (2006) describes the standard way of how ties are handled in a predictor: a 

probability of 1
2  is given for the cases when the predictors are tied. When drawing the ROC 

curve, one can assume that all the ties do not correctly classify the outcome (Fawcett called 

the “pessimistic” approach) or that all the ties do correctly classify the outcome (called the 

“optimistic” approach), see Fig. 6 in (Fawcett 2006). But Fawcett notes (emphasis in 

original):

Any mixed ordering of the instances will give a different set of step segments 

within the rectangle formed by these two extremes. However, the ROC curve 

should represent the expected performance of the classifier, which, lacking any 

other information, is the average of the pessimistic and optimistic segments.

This “expected” performance directly applies to the assignment of a half probability of 

success when the data are tied, which is implied by the “trapezoidal rule” from Hanley and 

McNeil (1982). Fawcett (2006) also states in the calculation of AUC that “trapezoids are 

used rather than rectangles in order to average the effect between points”. This trapezoidal 

rule applies additional areas to the AUC based on ties of the predictor, giving a half 
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probability. This addition of half probability is linked to how ties are treated in the Wilcoxon 

rank sum test. As much of the theory of ROC curve testing, and therefore testing of 

differences in AUC, is based on the theory of the Wilcoxon rank-sum test, this treatment of 

ties is also relevant to statistical inference and not only AUC estimation.

Others have discussed insights into binary predictors in addition to Fawcett (2006), but they 

are mentioned in small sections of the paper (Saito and Rehmsmeier 2015; Pepe, Longton, 

and Janes 2009). Other information regarding ties and binary data are blog posts or working 

papers such as http://blog.revolutionanalytics.com/2016/11/calculating-auc.html or https://

www.epeter-stats.de/roc-curves-and-ties/, which was written by the author of the fbroc 
(Peter 2016) package, which we will discuss below. Most notably, Hsu and Lieli (2014) is an 

extensive discussion of ties, but the paper was not published.

Although many discuss the properties of ROC and AUC analyses, we will first show the 

math and calculations of the AUC with a binary predictor, which correspond to simple 

calculations based on sensitivity and specificity. We then explore commonly-used statistical 

software for ROC curve creation and AUC calculation in a variety of packages and 

languages. Overall, we believe that AUC calculations alone may be misleading for binary or 

categorical predictors depending on the definition of the AUC. We propose to be explicit 

when reporting the AUC in terms of the approach to ties and discuss using step function 

interpolation when comparing AUC.

2 Mathematical Proof of AUC for Single Binary Predictor

First, we will show how the AUC is defined in terms of probability. This representation is 

helpful in discussing the connection between the stated interpretation of the AUC, the formal 

definition and calculation used in software, and how the treatment of ties is crucial when the 

data are discrete. Let us assume we have a binary predictor X and a binary outcome Y, such 

that X and Y only take the values 0 and 1, the number of replicates is not relevant here. Let 

Xi and Yi be the values of subject i.

Fawcett (2006) goes on to state:

AUC of a classifier is equivalent to the probability that the classifier will rank a 

randomly chosen positive instance higher than a randomly chosen negative 

instance.

In other words, we could discern the definition AUC = P(Xi > Xj|Yi = 1, Yj = 0) for all i, j, 
assuming (Xi, Yi) ⫫ (Xj, Yj). Note, the definition here adds no probability when the 

classifier is tied, this is a strict inequality. As there are only two outcomes for X, we can 

expand this probability using the law of total probability:

P Xi > Xj |Yi = 1, Y j = 0 = P Xi = 1, Xj = 0|Yi = 1, Y j = 0
= P Xi = 1|Xj = 0, Yi = 1, Y j = 0
× P Xj = 0|Yi = 1, Y j = 0
= P Xi = 1|Yi = 1 P Xj = 0|Y j = 0
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Thus, we see that P(Xi = 1|Yi = 1) is the sensitivity and P(Xj = 0|Yj = 0) is the specificity, so 

this reduces to:

P Xi > Xj |Y i = 1, Y j = 0 = specificity × sensitivity (1)

Thus, using the definition as P(Xi > Xj|Yi = 1,Yj = 0), the AUC of a binary predictor is 

simply the sensitivity times the specificity. We will define this as the the strict definition of 

AUC, where ties are not taken into account and we are using strictly greater than in the 

probability and will call this value AUCdefinition.

Let us change the definition of AUC slightly while accounting for ties, which we call 

AUCw/ties, to:

AUCw/ties = P Xi > Xj |Yi = 1, Y j = 0 + 1
2P Xi = Xj |Yi = 1, Y j = 0

which corresponds to the common definition of AUC (Fawcett 2006; Saito and Rehmsmeier 

2015; Pepe, Longton, and Janes 2009). This AUC is the one reported by most software, as 

we will see below.

2.1 Simple Concrete Example

To give some intuition of this scenario, we will assume X and Y have the following joint 

distribution, where X is along the rows and Y is along the columns, as in Table 1.

Therefore, the AUC should be equal to 50
85 × 52

84 , which equals 0.364. This estimated AUC 

will be reported throughout the paper, so note the value.

Note, if we reverse the labels, then the sensitivity and the specificity are estimated by 1 

minus that measure, or 35
85 × 32

84 , which is equal to 0.157. Thus, as this AUC is less than the 

original labeling, we would choose that with the original labeling.

If we used the calculation for AUCw/ties we see that we estimate AUC by 

AUCdefinition + 1
2

50 + 52
169 , which is equal to 0.604. We will show that most software report 

this AUC estimate.

2.1.1 Monte Carlo Estimation of AUC—We can also show that if we use simple 

Monte Carlo sampling, we can randomly choose Xi|Yi = 0 and Xj|Yj = 1. From these 

samples, we can estimate these AUC based on the definitions above. Here, the function 

est.auc samples 106 random samples from Xi|Yi = 0 and Xj|Yj = 1, determines which is 

greater, or if they are tied, and then calculates AUCdefinition and AUCw/ties:

est.auc = function(x, y, n = 1000000) {

x1 = x[y == 1] # x | y = 1

x0 = x[y == 0] # x | y = 0
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c1 = sample(x1, size = n, replace = TRUE)

c0 = sample(x0, size = n, replace = TRUE)

auc.defn = mean(c1 > c0) # strictly greater

auc.wties = auc.defn + 1/2 * mean(c1 == c0) # half for ties

return(c(auc.definition = auc.defn,

auc.wties = auc.wties))

}

sample.estauc = est.auc(x, y)

sample.estauc

auc.definition auc.wties

0.364517 0.603929

And thus we see these simulations agree with the values estimated above, with negligible 

Monte Carlo error.

2.1.2 Geometric Argument of AUC—We will present a geometric discussion of the 

ROC as well. In Figure 1, we show the ROC curve for the simple concrete example. In panel 

A, we show the point of sensitivity/specificity connected by the step function, and the 

associated AUC is represented in the shaded blue area, representing AUCdefinition. In panel 

B, we show the additional shaded areas that are due to ties in orange and red; all shaded 

areas represent AUCw/ties. We will show how to calculate these areas from P(X1 = X0) in 

AUCw/ties such that:

P Xi = Xj|Yi = 1, Y j = 0 = P Xi = 1, Xj = 1|Yi = 1, Y j = 0 + P Xi = 0, Xj = 0|Yi = 1, Y j = 0
= P Xi = 1|Yi = 1 P Xj = 1|Y j = 0 + P Xi = 0|Yi = 1 P Xj = 0|Y j = 0
= sensitivity × 1 − specificity + 1 − sensitivity × specificity

so that combining this with (1) we have:

AUCw/ties = specificity × sensitivity + 1
2 sensitivity × 1 − specificity + 1

2 1 − sensitivity × specificity

Thus, we can see that geometrically from Figure 1:

where the order of the addition is the same respectively. Note that this equation reduces 

further such that:

AUCw/ties = 1
2 sensitivity+specificity .
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Thus, we have shown both AUCw/ties and AUCdefinition definition for binary predictors 

involve only sensitivity and specificity and can reduce to simple forms.

We will discuss implementations of estimating AUC in software in the next section. Though 

we focus on the AUC throughout this paper, many times ROC analysis is used to find 

optimal cutoffs for predictors to give high levels of sensitivity and specificity. The use of the 

linear interpolation in the ROC curve gives the false impression that varying levels of 

sensitivity and specificity can be achieved by that predictor. In fact, only the observed 

sensitivity and specificity can be observed, other than the trivial cases where sensitivity or 

specificity is 1. New samples of the same measurement may give different values, but the 

observed measurement can only achieve one point on that curve. Using a step function 

interpolation when plotting an ROC curve more clearly shows this fact.

2.2 AUC Calculation in Statistical Software

To determine how these calculations are done in practice, we will explore the estimated ROC 

curve and AUC from the implementations in the following R (R Core Team 2018) packages: 

ROCR (Sing et al. 2005), caTools (Tuszynski 2018), pROC (Robin et al. 2011), and fbroc 
(Peter 2016). We will also show these agree with the Python implementation in 

sklearn.metrics from scikit-learn (Pedregosa et al. 2011), the Stata functions roctab and 

rocreg (Bamber 1975; DeLong, DeLong, and Clarke-Pearson 1988), and the SAS software 

functions proc logistic with roc and roccontrast. We note that the majority of these functions 

all count half the probability of ties, but differences exist in the calculation of confidence 

intervals of AUC and note some inconsistent behavior.

3 AUC Calculation: Current Implementations

This section will present code and results from commonly-used implementations of AUC 

estimation from R, Python, Stata, and SAS software. We will note agreement with the 

definitions of AUC above and any discrepancies. This section is not to be exhaustive, but 

give examples how to calculate AUC in these software and show that these definitions are 

consistently used in AUC analysis, primarily AUCw/ties

3.1 R

Here we will show the AUC calculation from the common R packages for ROC analysis. We 

will show that each report the value calculated in AUCw/ties. The caTools (Tuszynski 2018) 

package calculates AUC using the colAUC function, taking in predictions as x and the 

binary ground truth labels as y:

library(caTools)

colAUC(x, y)

[,1]

0 vs. 1 0.6036415

which reports AUCw/ties.
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In ROCR package (Sing et al. 2005), one must create a prediction object with the prediction 

function, which can calculate a series of measures. AUC is calculated from a performance 

function, giving a performance object, and giving the “auc” measure. We can then extract 

the AUC as follows:

library(ROCR)

pred = prediction(x, y)

auc.est = performance(pred, “auc”)

auc.est@y.values[[1]]

[1] 0.6036415

which reports AUCw/ties. We see this agrees with the plot from ROCR in Figure 2D.

The pROC (Robin et al. 2011) package calculates AUC using the roc function:

library(pROC)

pROC.roc = pROC::roc(predictor = x, response = y)

pROC.roc[[“auc”]]

Area under the curve: 0.6036

which reports AUCw/ties and agrees with the plot from pROC in Figure 2E.

The fbroc package calculates the ROC using the boot.roc and perf functions. The package 

has 2 strategies for dealing with ties, which we will create 2 different objects fbroc.default, 

using the default strategy (strategy 2), and alternative strategy (strategy 1, fbroc.alternative):

library(fbroc)

fbroc.default = boot.roc(x, as.logical(y),

n.boot = 1000, tie.strategy = 2)

auc.def = perf(fbroc.default, “auc”)

auc.def[[“Observed.Performance”]]

[1] 0.6036415

fbroc.alternative = boot.roc(x, as.logical(y),

n.boot = 1000, tie.strategy = 1)

auc.alt = perf(fbroc.alternative, “auc”)

auc.alt[[“Observed.Performance”]]

[1] 0.6036415

which both report AUCw/ties, though the plot from fbroc in Figure 2F, which is for strategy 

2, shows a step function, corresponding to AUCdefinition.

Although the output is the same, these strategies for ties are different for the plotting for the 

ROC curve, which we see in Figure 3. The standard error calculation for both strategies use 

the second strategy (Fawcett’s “pessimistic” approach), which is described in a blog post 

(https://www.epeter-stats. de/roc-curves-and-ties/) and can be seen in the shaded areas of the 

panels. Thus, we see that using either tie strategy results in the same estimate of AUC 
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(AUCw/ties) and are consistent for tie strategy 1 (Figure 3A). Using tie strategy 2 results in a 

plot which would reflect an AUC of AUCdefinition (Figure 3B), which disagrees with the 

estimate. This result is particularly concerning because the plot should agree with the 

interpretation of AUC.

3.2 Python

In Python, we will use the implementation in sklearn.metrics from scikit-learn (Pedregosa 

et al. 2011). We will use the R package reticulate (Allaire, Ushey, and Tang 2018), which 

will provide an Python interface to R. Here we use the roc_curve and auc functions from 

scikit-learn and output the estimated AUC:

# Adapted from https://qiita.com/bmj0114/items/460424c110a8ce22d945

library(reticulate)

sk = import(“sklearn.metrics”)

py.roc.curve = sk$roc_curve(y_score = x, y_true = y)

names(py.roc.curve) = c(“fpr”, “tpr”, “thresholds”)

py.roc.auc = sk$auc(py.roc.curve$fpr, py.roc.curve$tpr)

py.roc.auc

[1] 0.6036415

which reports AUCw/ties. Although we have not exhaustively shown Python reports 

AUCw/ties, scikit-learn is one of the most popular Python modules for machine learning and 

analysis. We can use matplotlib (Hunter 2007) to plot the false positive rate and true positive 

rate from the py.roc.curve object, which we see in Figure 2B, which uses a linear 

interpolation by default and agrees with AUCw/ties.

3.3 SAS Software

In SAS software (version 9.4 for Unix) (SAS and Version 2017), let us assume we have a 

data set named roc loaded with the variables/columns of x and y as above. The following 

commands will produce the ROC curve in Figure 2C:

proc logistic data=roc;

model y(event=‘1’) = x;

roc; roccontrast;

run;

The resulting output reports AUCw/ties, along with a confidence interval. The calculations 

can be seen in the SAS User Guide (https://support.sas.com/documentation/cdl/en/statug/

63033/HTML/default/viewer.htm#statug_logistic_sect040.htm), which includes the addition 

of the probability of ties.

3.4 Stata

In Stata (StataCorp, College Station, TX, version 13) (Stata 2013), let us assume we have a 

data set with the variables/columns of x and y as above.

Muschelli Page 8

J Classif. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://qiita.com/bmj0114/items/460424c110a8ce22d945
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_logistic_sect040.htm
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_logistic_sect040.htm


The function roctab is one common way to calculate an AUC:

roctab x y

-Asymptotic Normal--

Obs ROC Area Std. Err. [95% Conf. Interval]

169 0.6037 0.0379 0.52952 0.67793

which agrees with the calculation based on AUCw/ties and agrees with the estimates from 

above. One can also calculate the AUC using the rocreg function:

rocreg y x, nodots auc

Bootstrap results Number of obs = 169

Replications = 1000

Nonparametric ROC estimation

Control standardization: empirical

ROC method : empirical

Area under the ROC curve

 Status: y

 Classifier: x

AUC Observed Coef. Bias Bootstrap Std. Err. [95% Conf. Interval]

.3641457 −.0004513 .0451334 .2756857 .4526056 (N)

.2771778 .452824 (P)

.2769474 .4507576 (BC)

which agrees with AUCdefinition and is different from the output from roctab. The variance of 

the estimate is based on a bootstrap estimate, but the point estimate will remain the same 

regardless of using the bootstrap or not. This disagreement of estimates is concerning as the 

reported estimated AUC may be different depending on the command used in the estimation.

Using rocregplot after running this estimation, we see can create an ROC curve, which is 

shown in Figure 2A. We see that the estimated ROC curve coincides with the estimated 

AUC from rocreg (AUCdefinition) and the blue rectangle in Figure 1. Thus, roctab is one of 

the most common ways in Stata to estimate AUC, but does not agree with the common way 

to plot ROC curves.

Thus, we see in Figure 2 that all ROC curves are interpolated with a linear interpolation, 

which coincides with the calculation based on AUCw/ties, except for the Stata and fbroc 
ROC curves, which interpolates using a step function and coincides with AUCdefinition. The 

confidence interval estimate of the ROC curve for fbroc, which is shaded in blue in Figure 

2F, corresponds to variability based on AUCdefinition, but the reported value corresponds to 

the ROC curve based on AUCw/ties.

Figure 3 shows that using the different tie strategies gives a linear (strategy 2, default, panel 

(B), duplicated) or step function/constant (strategy 1, panel (A)) interpolation. In each tie 

strategy, however, the AUC is estimated to be the same. Therefore, tie strategy 2 may give 

an inconsistent combination of AUC estimate and ROC representation and strategy 1 may 

give an inconsistent estimation of the variability of the ROC.
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4 Categorical Predictor Example

Though the main focus of the paper is to demonstrate how using an AUC directly on a 

binary predictor can lead to overestimation of predictive power, we believe this relates to 

categorical values as well. With binary predictors, using single summary measures such as 

specificity and sensitivity can and should be conveyed for performance measures. With 

categorical predictors, however, multiple thresholds are available and simple one-

dimensional summaries are more complicated and ROC curves may give insight. Let us 

assume we had a categorical variable, such as one measured using a 4-point Likert scale, 

which takes on the following cross-tabulation with the outcome in Table 2.

Note, the number of records is the same as in the binary predictor case. In Figure 4, we 

overlay the ROC curves from this predictor and the binary predictor (black line), showing 

they are the same, with points on the ROC curve from the categorical predictor in blue. We 

also show the ROC curve with lines using the pessimistic approach for the categorical 

predictor (blue, dashed) and the binary predictor (red, dotted).

We see that using the the linear interpolation in Figure 4, the AUC for the categorical 

predictor and the binary predictor would be nearly identical. The AUC is not exact due to the 

fact that the cells in the table must be integers. This result is counterintuitive as the 

categorical variable can take on a number of values with varying sensitivities and 

specificities, whereas the binary predictor cannot. With more samples, we could extend this 

example to a variable which had hundreds of values like a continuous predictor, but give the 

same ROC shape and identical AUC when using linear interpolation. We show an example 

in the supplemental material. Using the pessimistic approach (red dotted and blue dashed 

lines in Figure 4) for the categorical and binary predictors, we see that the AUC would be 

different in this estimation.

5 Conclusion

We have shown how the ROC curve is plotted and AUC is estimated in common statistical 

software when using a univariate binary predictor. There are inconsistencies across software 

platforms, such as R and Stata, and even within some packages, such as fbroc. We believe 

these calculations may not reflect the discreteness of the data. We agree that using a binary 

predictor in an ROC analysis may not be appropriate, but we note that researchers and users 

may still perform this analysis.

We believe the critiques depend partially of the nature of the predictor. Some predictors are 

fundamentally discrete or categorical, such as the number of different alleles at a gene or a 

questionnaire using Likert scales. Others are continuous but empirically discrete either by 

rounding or a small set of unique values. For predictors that are not fundamentally discrete, 

we believe that linear interpolation would be reasonable if unobserved values in between 

those observed are theoretically possible.

Otherwise, we believe using the step function interpolation and not counting ties would be 

more appropriate. We believe additional options for different calculations accounting for ties 

should be possible or warnings for discrete data may be presented to the user. We hope that 
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indicating how ties are handled would become more common, especially for discrete data in 

practice. Using different methods for ties poses different issues, such as AUC values that are 

below 0.5 and some tests may not have the same theoretical properties or connections to 

Wilcoxon rank-sum tests. Though these new issues arise, we believe the current 

methodology has the potential for misleading users.

All code required to generate this paper is located at https://github.com/muschellij2/binroc.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
ROC curve of the data in the simple concrete example. Here we present a standard ROC 

curve, with the false positive rate or 1 – specificity on the x-axis and true positive rate or 

sensitivity on the y-axis. The dotted line represents the identity. The shaded area in panel 

represents the AUC for the strict definition. The additional shaded areas on panel B 

represent the AUC when accounting for ties.
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Fig. 2: 
Comparison of different ROC curves for different R packages, scikit-learn from Python, 

SAS, and Stata. Each line represents the ROC curve, which corresponds to an according area 

under the curve (AUC). The blue shading represents the confidence interval for the ROC 

curve in the fbroc package. Also, each software represents the curve as the false positive rate 

versus the true positive rate, though the pROC package calls it sensitivity and specificity 

(with flipped axes). Some put the identity line where others do not. Overall the difference of 

note as to whether the ROC curve is represented by a step or a linear function. Using the first 

tie strategy for ties (non-default, not shown) in fbroc gives the same confidence interval but 

an ROC curve using linear interpolation.
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Fig. 3: 
Comparison of different strategies for ties in the fbroc package. The blue shading represents 

the confidence interval for the ROC curve. Overall the difference of note as to whether the 

ROC curve is represented by a step or a linear function. Using the first tie strategy for ties 

(non-default) in fbroc gives the same confidence interval as the second strategy but an ROC 

curve using linear interpolation, which may give an inconsistent combination of estimate and 

confidence interval as fbroc reports the AUC corresponding to the linear interpolation.
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Fig. 4: 
ROC curve of a 4-level categorical variable compared to the binary predictor. Here we 

present the ROC curve of a categorical predictor (blue points) compared to that of the binary 

predictor (black line). We see that the ROC curve is identical if the linear inerpolation is 

used (accounting for ties). The red (dotted) and blue (dashed) lines show the ROC of the 

binary and categorical predictor, respectively, using the pessimistic approach. We believe 

this demonstrates that although there is more gradation in the categorical variable, using the 

standard approach provides the same AUC, though we believe these variables have different 

levels of information as the binary predictor cannot obtain values other than the 2 categories.
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Table 1:

A simple 2×2 table of a binary predictor (rows) versus a binary outcome (columns)

0 1

0 52 35

1 32 50
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Table 2:

A example table of a categorical predictor (rows) versus a binary outcome (columns)

0 1

1 31 21

2 21 14

3 11 17

4 21 33
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