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Abstract

Smartphone wound image analysis has recently emerged as a viable way to assess healing 

progress and provide actionable feedback to patients and caregivers between hospital 

appointments. Segmentation is a key image analysis step, after which attributes of the wound 

segment (e.g. wound area and tissue composition) can be analyzed. The Associated Hierarchical 

Random Field (AHRF) formulates the image segmentation problem as a graph optimization 

problem. Handcrafted features are extracted, which are then classified using machine learning 

classifiers. More recently deep learning approaches have emerged and demonstrated superior 

performance for a wide range of image analysis tasks. FCN, U-Net and DeepLabV3 are 

Convolutional Neural Networks used for semantic segmentation. While in separate experiments 

each of these methods have shown promising results, no prior work has comprehensively and 

systematically compared the approaches on the same large wound image dataset, or more 

generally compared deep learning vs non-deep learning wound image segmentation approaches. In 

this paper, we compare the segmentation performance of AHRF and CNN approaches (FCN, U-

Net, DeepLabV3) using various metrics including segmentation accuracy (dice score), inference 

time, amount of training data required and performance on diverse wound sizes and tissue types. 

Improvements possible using various image pre- and post-processing techniques are also explored. 

As access to adequate medical images/data is a common constraint, we explore the sensitivity of 

the approaches to the size of the wound dataset. We found that for small datasets (< 300 images), 

AHRF is more accurate than U-Net but not as accurate as FCN and DeepLabV3. AHRF is also 

over 1000x slower. For larger datasets (> 300 images), AHRF saturates quickly, and all CNN 

approaches (FCN, U-Net and DeepLabV3) are significantly more accurate than AHRF.
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Index Terms—

Wound image analysis; semantic segmentation; chronic wounds; U-Net; FCN; DeepLabV3; 
Associative Hierarchical Random Fields; Convolutional Neural Network; Contrast Limited 
Adaptive Histogram Equalization

I. INTRODUCTION

DIABETES Mellitus is a serious medical condition that affected 30.3 million people in 2017 

[1]. About 15% of diabetes patients have chronic wounds in the US, which has a treatment 

cost of about $25 billion annually [2]. The majority of diabetic wounds are located in the 

lower extremities, may take years to heal, can re-occur and can adversely affect the physical 

and mental health of the patient if not treated by experts regularly.

Chronic wound care requires regular checkups by wound nurses who debride the wound, 

inspect its healing progress and recommend visits to wound experts when necessary. 

Accurate and timely care decisions are crucial for proper wound healing and delays in 

visiting a wound specialist could result in limb amputation. To reduce delays in care 

decisions, wound nurses often send remote wound images to experts for decisions on the 

best treatment options. Since 2011, our group has been researching and developing the 

Smartphone Wound Analysis and Decision-Support (SmartWAnDS) system, which can 

intelligently recommend wound care decisions by analyzing images of a patient’s wound 

and information in their Electronic Health Records (EHR), providing a second opinion for 

nurses working in remote locations. We envision that SmartWAnDS will standardize the 

quality of wound care even when the care is provided by nurses without wound expertise 

and reduce the workload of wound experts. We envision that SmartWAnDS could 

recommend when patients need visits to wound experts, provide healing scores or suggest 

minor changes in treatment. The SmartWAnDS system will be available as a smartphone app 

that can analyze wound images captured using the phone’s camera, and the patient’s EHR.

The visual characteristics of a wound that are useful in evaluating its health include its size, 

infection level, granulation tissue amount, necrotic tissue amount, slough and wound depth 

[3], [4] [5]. However, prior clinical studies have found a wound size to be the most important 

measure of its health [6]. For instance, the change in the size of a chronic wound in a 4-week 

period is an accurate predictor of whether the wound will heal or not [6]. Consequently, the 

segmentation step is an important step in most wound image analysis pipelines. The goal of 

our wound segmentation task is to label each pixel of a wound image into one of three 

semantic categories - wound, skin and background (also called semantic segmentation). 

Image segmentation has traditionally been performed using methods such as the Conditional 

Random Fields (CRF) and its variants such as the Associative Hierarchical Random Fields 

(AHRF). However, following the unprecedented success of Convolutional Neural Networks 

(CNNs) for image classification in 2012 (AlexNet) [7], CNNs have been found to 

outperform traditional methods for several computer vision tasks such as image 

classification [7], segmentation [8] and object detection [9].
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Fully Connected Networks (FCN) [10], U-Net [11] and DeepLabV3 [8] are deep learning-

based segmentation networks that have outperformed traditional image segmentation 

methods when given enough data. Wound image analysis has also recently started using 

deep learning for wound image classification and segmentation as seen in DeepWound [12] 

and DFUNet [13]. However, to the best of our knowledge, no systematic comparison 

between a deep learning approach and traditional (non-deep learning-based, graphical or 

CRF-based) techniques for wound image segmentation has been performed.

In this paper, we present a systematic and comprehensive comparison between Associative 

Hierarchical Random Fields (AHRF) and three deep learning based models (Fully 

Convolutional Networks (FCN), U-Net and DeepLabV3) for the task of wound image 

segmentation. We compare these approaches using a diverse set of performance metrics 

including segmentation accuracy (dice coefficient), sensitivity to the amount of training data 

utilized and model inference time. As real-world images and data of actual patients are often 

difficult to obtain in many medical applications, it is important to compare the performance 

of these methods with respect to the size of the training datasets. Deep learning methods are 

well known to be data intensive. We found that when the number of training images is small 

(< 300), AHRF (traditional) has a higher accuracy (dice coefficient) than U-Net but is still 

not as accurate as FCN and DeepLabV3 which were pre-trained on a subset of the COCO 

[14] dataset. As the number of training images increases, AHRF begins to saturate and the 

accuracy gap between AHRF and U-Net shrinks with U-Net eventually becoming more 

accurate than AHRF. FCN and DeepLabV3 consistently outperformed both U-Net and 

AHRF for all training set sizes. As we envision that our SmartWAnDS wound assessment 

system will eventually be deployed on a smartphone, we also examined the computational 

requirements of each method, inference time, and the need to communicate with a remote 

server.

The rest of this paper is organized as follows. Section II provides a brief background on the 

techniques used in this paper followed by the related work in image segmentation in Section 

III. The methodology used in this paper and a description of the wound image dataset 

utilized for training is located in Section IV. Sections V and VI present our results and a 

discussion of our major experiments and analyses of our findings. Finally, in Section VII, we 

conclude and suggest some directions for future work.

II. BACKGROUND

We compared semantic segmentation of wound images using Associative Hierarchical 

Random Fields (AHRFs) and Convolutional Neural Networks (CNNs) for assigning a label 

of skin, wound or background to each pixel of an input image. Some background on both 

approaches are now presented.

A. Associative Hierarchical Random Fields (AHRFs)

Conditional Random Fields (CRFs) model data probalistically and have been found to be 

effective for various machine learning prediction tasks. AHRFs [15], a variant of CRFs 

leverage contextual data by considering other pixels in the neighbourhood of the target pixel 

to be classified, which works better than considering each pixel’s label in isolation. AHRFs 
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model the conditional probability that a given pixel should be assigned a certain label, by 

considering the pixel itself as well as other pixels in its neighbourhood. An energy function 

consisting of unary, pairwise and higher order potentials is minimized to find the most 

optimal semantic labels for a given image. The unary potential takes features extracted from 

the target pixel as input and outputs a probability score for each target class. Pairwise 

potential ensures that nearby pixels that have similar features are assigned the same label. 

Higher order potentials are constructed such that pixels belonging to the same superpixels or 

cliques have the same label. Graph solving techniques are then used to minimise the energy 

and determine optimal labeling. Details about AHRF including the energy function 

minimized are presented in the Methodology section as Equation 1.

B. Convolutional Neural Networks (CNNs)

CNNs have been found quite effective for many computer vision tasks in recent years. They 

act as trainable image filters which can be used to convolve over images sequentially to 

measure responses or activations of the input image, creating feature maps. These feature 

maps are then stacked together, passed through non-linear functions, and further convolved 

with more filters. This convolution process has been found to be effective at extracting visual 

features or patterns in images that can be useful for tasks such as classification, 

segmentation, and super resolution. In this paper, we compare three CNN-based 

architectures for semantic segmentation: FCNs, DeeplabV3 and U-Net, which we now 

review briefly.

1) Fully Convolutional Network (FCN): As they have generally performed well for 

per-pixel tasks, Long et al first proposed using FCNs trained end-to-end for semantic 

segmentation. FCN utilizes a skip architecture that combines semantic information from a 

deep, coarse layer with appearance information from a shallow, fine layer to produce 

accurate and detailed segmentations. FCNs have only locally connected layers, such as 

convolutions, pooling and upsampling, avoiding any densely connected layer. It also uses 

skip connections from it’s pooling layers to fully recover fine-grained spatial information 

which is lost during downsampling.

2) U-Net: U-Net [11] is an encoder-decoder architecture that uses CNNs. Encoder-

decoder networks, as the name suggests have two parts - an encoder and a decoder. The 

encoder is responsible for projecting the input feature vectors into a low dimensional space 

in which similar features lie close together. The decoder network takes features from this 

low dimensional space as input and attempts to recreate the original input features. Thus, the 

output of the encoder or conversely input of the decoder is called the bottleneck region 

where a low dimensional representation is present. Encoder-decoder networks have been 

found to be effective for various tasks such as image denoising, language translation and 

image segmentation.

3) DeepLabV3: DeepLabV3 [8] utilizes atrous convolutions along with spatial pyramid 

pooling which enlarges the field of view of filters to incorporate larger context and controls 

the resolution of features extracted. Employing atrous convolutions in either cascade or in 

parallel captures multi-scale context due to the use of multiple atrous rates. DeepLabV3 uses 
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a backbone network such as a ResNet [16] as its main feature extractor except that the last 

block is modified to use atrous convolutions with different dilation rates.

III. RELATED WORK

A. Probabilistic Techniques for Wound Image Analysis

Prior to the rise in the popularity of deep learning, wound analysis mostly utilized 

probabilistic techniques such as color space manipulation [17] [18], machine learning 

classifiers using hand-crafted features [19], clustering techniques [20] and edge detection 

[21]. These probabilistic approaches generally have the advantage of not being very data 

intensive as they use hand-crafted features and shallow machine learning models. However, 

they fail to generalize well to new images captured in varied lighting conditions, skin and 

wound types. For the purpose of comparison with deep learning, in this paper, we use 

Associative Hierarchical Random Fields (AHRF) [15] as a probabilistic solution for image 

segmentation. AHRF uses region growing for connecting pixels that have similar visual 

features and also uses a combination of handcrafted and learned features for semantic 

segmentation of an image.

B. CNN-based Image Segmentation Techniques

Researchers have applied CNNs to biomedical applications such as wound segmentation 

using transfer learning [22], using lightweight mobile deep learning architectures 

(MobileNet) for wound segmentation [23], region proposal-based Faster R-CNN model for 

wound localization [24], and the inception module based CNN for classification of skin into 

healthy and abnormal [13]. These methods all try to segment wound pixels but do not 

distinguish the skin region from the background in the image. Li et al [25] proposed a 

method to segment out skin pixels using heuristics for thresholding and region growing as a 

first step, and then passed forward the cropped image with detected skin to the MobileNet 

CNN architecture for wound segmentation.

The downside to using neural networks is that they require large datasets to train from 

scratch which is not always available in applications that use medical or clinical data. This 

problem can be alleviated by using techniques such as data augmentation to increase 

variations in the existing data and transfer learning, which uses models that have been 

previously trained for similar vision tasks. The deep learning segmentation methods utilized 

in this paper were organized in two different ways. U-Net had separate classifiers for wound 

and skin while FCN and DeepLabV3 had just one classifier for both skin and wound. This 

enabled us compare whether the arrangement of classifiers affected the models performance.

IV. METHODOLOGY

A. Datasets of Wound Images

We gathered 3 different datasets as described below, which include diabetic foot ulcers, 

arterial, venous, pressure ulcers and surgical wounds. Many of the images exhibit typical 

wound attributes such as granulation, necrosis and slough. A wound annotation app (shown 

in Fig-2) was specifically created to expedite pixel-level annotations of wound and skin 
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segments within the given images. The wound annotation app implemented the deep 

extreme cut algorithm [26], providing consistent wound annotation. Specifically, we did not 

rely on human labelers, which obviated the need for evaluating interrater reliability.

• Dataset 1 consists of 114 wound images captured with controlled lighting 

conditions. A wound imaging box was created [27] that simulated a consistent, 

homogeneous lighting environment. The segmentation masks consist of pixel-

level labels where the red color corresponds to the wound segment, yellow 

corresponds to the skin segment and background is indicated by a green-colored 

mask 1.

• Dataset 2 was gathered by scraping publicly available wound images from the 

internet. It consists of 202 images collected by scraping and 114 images from 

dataset 1, which yields a total of 316 images. This dataset has images with 

varying lighting conditions but the wounds were mostly captured from a 

relatively perpendicular angle.

• Dataset 3 is the largest dataset with 1442 images in total, which was acquired 

from the vascular surgery department of the University of Massachusetts Medical 

Center. This dataset has images with large variations in lighting, viewing angles, 

wound types and skin texture.

Table-I shows the mean and standard deviation of the normalized values in the R,G,B 

channels. It can be observed that the standard deviation of the RGB values is less in dataset 

1 as the images were captured using a wound box with controlled lighting and imaging 

distance, and increases for dataset 3. Table-II shows the image statistics of only wound and 

only skin pixels, obtained by cropping the image with the ground truth mask. The standard 

deviations are quite high for both wound and skin showing significant variations in our 

datasets. Table-II also shows the average percentage of wound and skin pixels within a 

wound image and their corresponding standard deviation. It can be seen that the average 

wound percentage is less than 10 % whereas skin covers almost 50 % creating class 

imbalance.

B. Wound Image Pre-processing

In order to make our algorithms more robust to lighting variations and noisy imaging 

conditions, several pre-processing techniques were explored. Most of these techniques 

involved manipulating the images’ histograms in some form. The histogram is the 

probability distribution of pixel intensity values within an image, ranging from 0 to 255. 

After experimenting with the impact of many techniques on semantic segmentation accuracy 

such as image sharpening, histogram normalization, contrast enhancement, vignetting, 

gamma correction, reflectance, histogram matching and Contrast Limited Adaptive 

Histogram Equalisation (CLAHE), we found that CLAHE was consistently the most 

effective pre-processing technique.

Contrast Limited Adaptive Histogram Equalization (CLAHE): CLAHE [28] is an 

image pre-processing technique based on adaptive histogram equalisation [29] which 

contextually equalizes the histogram of local image regions. Thus, the pixel’s intensity is 
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transformed proportional to its rank of intensity among its neighbours defined by a kernel 

size. This technique was found to significantly enhance both the signal and noise 

components of an imag, which was not desired. CLAHE ensures that noise enhancement is 

reduced by using a contrast limiting factor called clip limit. This user defined limit is used as 

a maximum allowable local contrast enhancement factor. A grid search over the kernel size 

and clip limit was performed to obtain a kernel size of (24, 24) and clip limit of 3.0 as the 

most optimal hyperparameters for our dataset. An example of CLAHE pre-processing with 

our hyperparameters is shown in Fig-3.

C. Associative Hierarchical Random Field (AHRF)

Image segmentation using AHRF, a variant of CRF, consists of two parts: 1) calculating the 

energy value for an image given its pixel-wise labels, which considers both local features 

and similar neighboring pixels, 2) a graph solving approach, which tries to determine the 

optimal assignment of labels to an image such that its energy function is minimized. The 

mathematical formulation of AHRF is explained below. A high-level workflow of AHRF is 

also shown in Fig-4

Formulation: Let us first define the following variables -

X = {X1, X2, …Xn} are the variables to be labelled

L = set of labels from which Xi are labeled

yi = individual label given to Xi such that yi ∈ L

M = number of paired training instances of the form x i , y i
i = 1
M

V = {1, 2, …n} set of valid vertices or indices of X

N = defined by sets Ni∀i ∈ V where Ni denotes the set of all neighbors of Xi

C = set of all cliques c where a clique Xc is a set of variables X that are similar and 

codependent such as super-pixels

yc = labelling given to each clique c

Using the variables defined above, an AHRF formulation consists of an energy function E 

which is written as the sum of unary, pairwise and clique-wise potential as shown in 

equation 1 below.

E y = ∑
i ∈ V

ϕi yi, θu

Unary Potential

+ ∑
i ∈ V , j ∈ Ni

ϕij
p yi, yj, θp

Pairwise potential

+ ∑
c ∈ C

ϕc
ℎ yc

Higher order Potential
(1)
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In the above formulation, θu and θp are a set of parameters that are learned from the training 

paired samples x i , y i
i = 1
M

 with the objective of maximizing the conditional distribution P 

(y|X). The higher order potential is described in equation 2 below.

ϕc
ℎ(yc) = mini ∈ L(γcmax, γcl + ∑

i ∈ c
wikc

lΔ(yi ≠ l)) (2)

where wi is the weight of the variable xi and each variable of a clique is penalized with a 

cost wikc
l if it has not taken the value of the dominant label of that clique. The value of 

penalty is truncated at γcmax. This formulation also supports higher order super-pixel based 

potentials across multiple scales of the image since it allows for cliques to take a free label 

in the case of multiple dominant labels and also considers relationships between cliques to 

increase contextual awareness. We have used mean shift segmentation to generate 

superpixels. Several different features have been used to calculate the AHRF potentials 

including textonBoost features on RGB and LAB colorspace, local binary patterns, 

Histogram of Oriented Gradients (HOG), SIFT features and color distribution features. 

Given the potential terms and parameters, the optimal labeling can be found by minimizing 

the overall energy using graph-cut based move making algorithms such as alpha expansion 

or alpha-beta-swap algorithm.

D. Semantic Segmentation Architectures using CNNs

1) Fully Convolutional Networks (FCNS): FCNs differ from the classic CNNs used 

for image classification tasks. The CNN pipeline for image classification usually has a 

structure with several convolution layers followed by fully connected layers and outputs one 

predicted label per image. On the other hand, Long et al describe a Fully Connected 

Network (FCN) as one that uses only convolutions, pooling and activation functions and 

computes a nonlinear filter [10]. It achieved state-of-the-art segmentation on PASCAL VOC 

2012 [30], NYUDv2 and SIFT Flow in 2015.

Classification networks can be converted into FCNs by eliminating the final classifier layers 

and appending a 1x1 convolution layer with a channel dimension equal to the number of 

classes to be predicted. This also allows the network to accept arbitrary sized images as 

input. This modification performs well on segmentation tasks but the output is coarse, which 

is remedied by adding skips that combine outputs from the lower layers with finer strides to 

generate the final prediction. This refines the output as local information from the lower 

layers makes the model pay attention to the global structure. Upsampling is required to fuse 

these outputs, which is done by deconvolution layers.

Network Structure:  We utilized ResNet101 [16] as the backbone of this network. The 

model consists of four layers followed by a classifier that segments the pixels into their 

respective classes. The four layers contain 3, 4, 23 and 3 bottleneck units respectively where 

each bottleneck consists of four convolution layers that are followed by a batch 

normalization step. The ReLU activation function is used after each bottleneck.
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The third convolution layer in the bottleneck is a 3x3 convolutional operation while the rest 

are 1x1 convolutions. After the second layer, the bottleneck layers have an added dilation 

factor in the 3x3 convolutions for improving performance. The classifier consists of a 3x3 

convolution followed by batch normalization and ReLU with dropout steps, ending with a 

1x1 convolution with a channel dimension equal to the number of output classes.

2) U-Net: U-Net is a Convolutional Neural Network (CNN) encoder-decoder 

segmentation architecture proposed by Ronneberger et al [11]. It won the ISBI cell tracking 

challenge in 2015 and has since been found to perform well on diverse applications of 

segmentation to medical images. U-Net moves and analyzes a sliding window over a large 

image, which enables the network to learn contextual information about the image. In our 

wound segmentation task, this is useful as the network needs to learn the context of skin and 

discover wound segments inside it. Based on fully convolutional neural networks, U-Net 

takes advantage of high resolution features from the convolution layers to learn the optimal 

up-sampling of the image.

Network Structure:  The contracting path consists of 5 down convolution blocks. Each 

block consists of 3x3 convolution operation with ReLU activation and a 2x2 maxpooling. 

The U-Net architecture was slightly modified by adding batch-normalization layer after the 

convolution layer in order to normalize the activations. A dropout layer was also added at 

the end of each block to prevent over-fitting.

In the expanding path, the transpose convolution operation is utilized for upsampling. The 

convolution operation is the sum of the dot product of all the values in the kernel and the 

patch of the image. Transpose convolution does exactly the opposite by taking in single 

values from the feature map and multiplying them by all values of the learned kernel. This 

helps in fine-grained up-sampling of the feature map. To facilitate the up-sampling 

operation, features from the convolution layers are concatenated to the feature map obtained 

from the last layer. As the contracting and expanding paths are symmetric, a U-shape is 

formed (as seen in Fig-6), from which the architecture gets its name.

3) DeepLabV3: DeepLabV3 is a convolutional neural network, which uses atrous 

convolutions in either a cascaded or parallel fashion along with atrous spatial pyramid 

pooling, enabling the network to capture multi-scale context by using different atrous rates. 

The performance of DeepLabV3 matched that of other state-of-art models on the PASCAL 

VOC 2012 segmentation benchmark in 2017. In an ordinary convolutional neural network, 

pooling and striding cause a reduction in the resolution of the feature maps. Usually, 

deconvolutional layers are used to upsample and recover spatial resolution. Instead, 

DeepLabV3 uses atrous convolutions [31] that are essentially convolutions with holes, to 

effectively enlarge the field of view of filters to improve context assimilation without 

increasing the number of operations and filter parameters.

Atrous Spatial Pyramid Pooling (ASPP) is the main reason for DeepLabV3’s impressive 

performance. It consists of four parallel atrous convolutions with different rates that are then 

applied to the feature map. The atrous convolutions in the pyramid are all followed by batch 

normalization. Global context is also incorporated into the model by applying global average 
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pooling on the final feature map of the network followed by 1x1 convolution and batch 

normalization steps. This output is then upsampled bi-linearly to the desired spatial 

dimension.

Network Structure:  This network also uses ResNet101 as its backbone. The first few 

layers of this model have a structure similar to the FCN with four layers that have 3, 4, 23 

and 3 bottleneck units respectively. The classifier that follows starts off with a 1x1 

convolution with batch normalization and a ReLU activation function and this output is fed 

into the ASPP. The convolution operations in the pyramid are 3x3 with different dilation 

rates. This is followed by adaptive average pooling for global context and four convolution 

operations with batch normalization and ReLU activation steps. All convolutions are 1x1 

except for the penultimate convolution which is a 3x3 operation.

Loss function:  All the networks described above were trained using Binary Cross Entropy 

(BCE) as the Loss function.

BCE = ∑
i ∈ N

−gi * logpi (3)

where pi is the softmax output given by the network, N is image size, g is the ground truth 

labels g ∈ {0, 1}, p is the predicted label after applying the softmax operation to the output 

generated by the output layer of the network.

Dice Coefficient Score:  is a common metric for determining the performance of image 

segmentation methods [32]. It quantifies the overlap of a segmented image with ground truth 

segmentation labels. In this paper, we use the Dice Coefficient as our evaluation metric to 

compare segmentation results as it incorporates both precision and accuracy. The Dice 

Coefficient is defined as follows -

dicecoeff = 2 * pbin ∩ g
pbin + g (4)

where pbin is the binary value of the predicted mask after performing a binary threshold on 

pi at 0.5. pbin ∈ {0, 1}.

The final loss function is a weighed sum of BCE and dicecoeff where k is a manually tuned 

parameter. The BCE loss helps in increasing the confidence of the network to detect true 

positives whereas the dice loss penalizes the network for wrong positions of the predicted 

wound. As both are log losses, they are additive.

Loss = BCE − k * logdicecoeff (5)

Post-processing:  The segmentation maps predicted by the networks are sometimes 

discontinuous and often require post-processing. Hence, the outputs are usually post-

processed using a Conditional Random Field (CRF) with Gaussian edge potentials for 
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improving segmentation accuracy [33]. A CRF is characterized by a Gibbs distribution and 

the Gibbs energy of the graph G = (V, E) is defined in 1 without the higher order term.

For our implementation, the unary potential is defined as the negative log of the softmax 

output of the network. Thus when the output of the network for a given pixel is close to 1, 

the unary potential for the corresponding graph node is 0, whereas if the output is close to 0, 

the unary potential goes to infinity. As the unary and pairwise potentials are calculated 

independently, the labels predicted by the unary potential alone are significantly affected by 

noise. A pair-wise potential is devised to incorporate the association between neighboring 

pixels. The pairwise kernel is defined as in equation 6.

ϕi, j
p xi, xj = μp xi, xj ∑

m = 1

K
wmkm fi, fj (6)

where µ is the Potts model and K(fi, fj) are Gaussian

km fi, fj = w1exp − pi − pj
2

2θα
2 − Ii − Ij

2

2θβ
2

appearence kernel

+ w2exp − pi − pj
2

2θγ
2

smoothness kernel

(7)

The appearance kernel associates pixels with similar color and penalizes pixels with large 

differences in color. It considers both pixel intensities in individual image channels I and 

their positions p. In our case, the image vector I has [R, G, B] pixel values from the input 

image, and is parameterized by θα and θβ. The smoothness kernel penalizes only based on 

the nearness of the pixels and is parameterized by θγ.

E. Training the AHRF Model

AHRF uses gradient boosting techniques to optimize the unary potential and graph-cut 

algorithm to optimize the CRF graph. The Contrast Limited Adaptive Histogram 

Equalization (CLAHE) [29] pre-processing technique was found to increase the dice score 

of wound segmentation. Optimal parameters of the CLAHE technique were found using grid 

search on Dataset 1. The parameters for CLAHE implementation of openCV used in our 

results are kernel size of 24, 24 and clip limit of 3.0. AHRF was trained on a multi-threaded 

high performance cluster with 20 CPUs and 100 GB memory. The framework parallelizes 

feature extraction and utilized up to 40 threads.

F. Training the Semantic Segmentation Networks

All the networks utilize high resolution features from the convolution layers in learning the 

optimal up-sampling of the image. In our experiments, all images were resized to a standard 

dimension of 512 x 384 before being input to to the network. As all the images in the dataset 

were of varying dimensions and aspect ratios, we averaged the dimensions of all images and 

approximated them to the closest even value required to maintain an aspect ratio of 4:3.

As the number of image samples in our datasets were inadequate for neural networks, a 

probabilistic data augmentation pipeline was implemented to generate synthetic 
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augmentations using the albumentations library [34]. The augmentations used were 

geometric in nature including vertical flip, horizontal flip, random rotate, scale and 

translation. To compensate for various lighting conditions augmentations such as CLAHE, 

random contrast and blurring were also added to the pipeline. At run time, every 

augmentation was chosen with a probability p. Only one augmentation from the set CLAHE, 

random contrast, median blur and random brightness was chosen with a probability p = 0.5 

and the rest of the augmentations were chosen with p = 0.5 each. This ensured that CLAHE 

and blurring, or contrast and blurring were not performed on the same image. Refer: Fig-8.

The FCN and DeepLabV3 models we utilized were pre-trained on a subset of the COCO 

train2017 dataset, while U-Net was initialized with weights from the Carvana Image 

Classification Challenge. The networks were then fine-tuned using images from wound 

datasets using Stochastic Gradient Descent (SGD). FCN and DeepLabV3 were trained for 

only 50 epochs as their superior initial weights made them converge quickly. U-Net was 

trained for more epochs [500–600 epochs] with early stopping. Six-fold validation was used 

to evaluate the generalization of the networks. The models were implemented in PyTorch 

[35] and its built-in optimizers were used for the training process.

FCN and DeepLabV3 were trained on a High Performance Cluster (HPC) with a Tesla K40 

and 2 Intel Xeons and took one day to train all folds. On the other hand, U-Net was trained 

on an i7 CPU with 32GB memory and a GTX1080Ti GPU and took 5 days to train. Two 

separate networks were trained for U-Net - one for classifying between wound vs non-

wound pixels, and the other for classifying skin vs non-skin pixels. The masks of these two 

networks are combined at the end to generate a final segmentation mask. All inferences were 

run on the GTX1080Ti. As the Gaussian edge-based CRF model used for post-processing 

could not be optimized during back propagation of the network, the θα, θβ, θγ parameters 

were optimized separately using grid search.

G. Evaluation

All semantic segmentation methods were evaluated using k-fold cross validation over the 

entire dataset with k = 6. Performance of the model on test set is measured by using the Dice 

Coefficient Score.

V. RESULTS AND DISCUSSIONS

1) Comparing Segmentation Inference Time:

AHRF is a graph optimization method and takes about 3–5 minutes to infer segmentation 

masks for a single image of size 512x384 on all three datasets (see column 4 of Tables - III 

to V). Although the graph optimization step is faster, the feature extraction and evaluation 

steps makes inference in AHRF significantly slow. Consequently, it would be challenging to 

implement AHRF on mobile devices. CNNs on the other hand utilize a series of matrix 

multiplications and additions amenable for implementation on GPUs, which most 

smartphones are equipped with. FCN, U-Net and DeepLabV3 had an average inference time 

of approximately 41, 50 and 56 milliseconds on all three datasets.
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2) Comparing Segmentation Accuracy:

Dataset 1: As observed in Table-III, AHRF is significantly more accurate than U-Net by a 

difference of 0.159 dice score on the wound segments in dataset 1. Both Pre-processing 

(CLAHE) and Post-processing (CRF) improve the performance of the segmentation of U-

Net. However, even with these pre- and post-processing techniques, U-Net is not as accurate 

as AHRF. On the other hand, FCN and DeepLabV3 both outperform AHRF even with less 

data, which can be attributed to the models being trained on a subset of COCO train2017 

and then fine-tuned to our dataset. FCN outperforms DeepLabV3 by 0.0197 in dice score 

which is because FCN is a lighter model and hence, fits the data distribution slightly better 

than DeepLabV3. FCN and DeepLabV3 outperforms AHRF by dice scores of 0.0322 and 

0.0125 respectively.

Dataset 2: As the dataset size increases, the networks generalize to the distinct features and 

textures that define a wound. As seen in Table-IV, U-Net has a slightly higher dice score 

than AHRF (more accurate). Pre-processing U-Net using CLAHE improved its accuracy but 

the improvement observed is less than that obtained for Dataset 1 but it underperforms FCN 

and DeepLabV3 again, with a difference of 0.124 and 0.122 in dice score respectively. 

Ultimately, as the size of the training data increases, U-Net’s dependence on pre- and post- 

processing decreases as it learns better features. The performance of FCN and DeepLabV3 

is not affected by pre- and post- processing due to their pre-trained weights and model 

architectures (DeepLabV3). FCN and DeepLabV3 outperformed AHRF by dice scores of 

0.135 and 0.133 respectively.

Dataset 3: The third dataset containing 1442 images is roughly four times the size of 

dataset 2. Even though it has more variance (see Table -I, Table-II), the CNNs generalize to 

all types of wounds and generate segmentation masks close to the ground truth, whereas the 

performance of AHRF decreases slightly. As observed in Fig-13 - sample 1, AHRF tends to 

get confused for the same image as the variations in the dataset increases, making it less 

robust. The CNNs also generate better segmentation masks for smaller wounds as seen in 

Fig-9-sample 4. U-Net has a significantly higher dice score than AHRF with a margin of 

0.106 dice co-efficient and does not require any pre/post-processing. AHRF is observed to 

over-segment and often performs poorly on edges and wounds with difficult textures. FCN 

and DeepLabV3 still outperform U-Net by a dice score of 0.117 and 0.121 respectively, 

which highlights the impact of using pre-trained models. DeepLabV3, a deeper model, 

outperforms FCN as dataset 3 has significantly more data for it to work with.

a) Common validation dataset: :  In order to get a final conclusion on the accuracy of all 

the segmentation methods, we compared their segmentation accuracy on a common 

validation set after being trained on datasets 1, 2 and 3 respectively (see Table-VI) It can be 

concluded from this table that the accuracy of deep learning models increases with increase 

in the data samples while the performance remains same or sometimes worsens for AHRF, a 

graph based segmentation architecture.
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3) Model Robustness to wound colors in background:

In many wound imaging situations, colors found in many wounds such as red and yellow 

may appear in the background by accident. Thus, it is important to compare how robust (i.e. 

does not detect those background colors as part of the wound) the segmentation methods are 

when such colors appear in the background. Since the networks are pre-trained and are being 

fine-tuned on the wound segmentation task, the network tries to learn the most prominent 

features of the wound at first. It can be clearly observed in Fig-13 - sample 3, dataset 1, that 

U-Net initially (on smaller datasets) tends to classify any red color in the wound image as 

belonging to the wound segment. This can be justified from Table-II which shows that the 

mean value of the Red channel of the wound segment of dataset 1 is higher than the Blue 

and Green channels. However, as U-Net is trained on more data, it starts to learn and rely on 

texture information as well. This can be seen in Fig-13 sample 3, where U-Net does not 

confuse the red cloth in the top left corner with the wound when trained on dataset 3. FCN 

and DeepLabV3 do not face this issue as they utilize pre-trained weights, alleviating their 

dependence on just color. AHRF on the other hand uses hand-crafted features, is more robust 

to wound colors in the background. It requires fewer images to achieve its performance 

limits and thus does not confuse the red cloth with the wound irrespective of which dataset it 

has been trained on. This shows that handcrafted features help AHRF understand textures 

better than U-Net when trained on smaller datasets but due to information contained in their 

initial weights, FCN and DeepLabV3 already take textures into consideration.

4) Effect of class imbalance:

We compared the accuracy of the CNNs and AHRF for wound images with varying sizes of 

wound and skin segments. It can be observed in Sample 4 of Fig-9 how detection of skin 

pixels (larger segments) is better than that of the wound segment (smaller) for the networks 

because of the huge class imbalance in data. This trend is not observed for AHRF because 

AHRF is trained jointly for all three classes. Hence, the wound classifier can utilize the 

information learned for skin. For example, areas not classified as skin but surrounded by 

skin automatically get a higher probability of belonging to the wound class.

5) Sensitivity to the Relative Proportion of the Wound Segment:

The sensitivity of segmentation to changes in the proportion of image covered by the wound 

is studied for all three datasets. Figures 10, 11, and 12 show the accuracy of AHRF and the 

CNNs as the wound size varies in the form of box plots. We show box plots that includes 

information on both the mean Dice score as well as its variation across various folds. The 

width of the box plot shows how stable the reported mean Dice score is across various folds. 

Dice score variance is shown for percentage of wound pixels in the images. The wound 

percentage is defined as the ratio of number of wound pixels to the total number of pixels. 

Due to the connective property of AHRF which results from its clique potential, it fails to 

work well on images that have small wounds because neighboring skin pixels cause a small 

wound to also be classified as skin. The deep learning networks do not face this problem and 

work well on wounds of a small size.

The box-plot in Fig-10 shows that AHRF performs better than U-Net even with large 

variations in the wound size for dataset 1 while FCN and DeepLabV3 match its 
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performance. The CNNs fail to detect wounds smaller than 10% of the wound image 

whereas AHRF generates some slight segmentations. The box-plot in Fig-11 and Fig-12 

shows increased accuracy with as wound size increases for datasets 2 and 3. The height of 

the boxes shows variance in the performance of all architectures. It can be observed that 

images with more than 5% of wound pixels have better results for all the architectures. This 

result can be used to create a guideline for taking usable wound images or cropping the 

images in a pre-processing phase by keeping the wound percentage more than 5%. For 

instance, the photographer can be asked to retake (or zoom in) images in which the wound 

percentage is less than 5%.

6) Segmentation Accuracy for wounds with different wound attributes and skin types:

As seen in Fig-9, both AHRF and the CNNS have shown good generalizability to various 

wound tissue types, skin colors and lighting conditions. Granulation, slough and necrotic are 

different types of wound tissue which occur in wounds, which differ in their color and 

texture. However, both AHRF and the networks have shown good segmentation results on 

wounds containing a combination of these tissues. The networks generalize well to darker 

skin tones and bad lighting conditions as well.

VI. DISCUSSIONS AND CONCLUSION

In this work, a comprehensive systematic analysis of semantic segmentation of smartphone 

camera captured wound images using AHRF, FCN, U-Net and DeepLabV3 has been 

performed. All segmentation methods achieve good results which generalize well in wound 

images with various skin and wound tissue types, and background clutter. However, due to 

differences in the two approaches (AHRF vs deep learning), some trade-offs have to be 

considered before deciding on a model for practical purposes.

AHRF had increased segmentation accuracy when input images were pre-processed using 
CLAHE.

CLAHE pre-processing with U-Net showed improvements only for smaller datasets. CRF 

post-processing also improved the accuracy of U-Net on smaller datasets. Pre- and post-

processing did not change the performance of FCN and DeepLabV3.

AHRF is more accurate and generalizes better than U-Net for small datasets (< 300 images) 
but is outperformed by fine-tuned FCN and DeepLabV3 models pre-trained on PASACL 
VOC:

AHRF has more reliable predictions because it depends on texture features and not just 

color. Its hand-crafted visual features also enable it to learn wound features with fewer 

images. U-Net on the other hand, performed moderately well for segmenting skin but not 

wound pixels on Dataset 1 (smallest dataset). FCN and DeepLabV3 performed well in 

segmenting both skin and wound pixels across all 3 datasets.

CNNs are more accurate for larger datasets (> 300 images).

As the size of dataset increases, the segmentation accuracy of the deep learning networks 

increase while that of AHRF saturates after a point and sometimes even worsens with the 
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addition of more training data. As FCN, U-Net and DeepLabV3 have many more trainable 

hyperparameters than AHRF, they are able to absorb and utilize more data and generalize 

better. They also show better performance on smaller wound sizes as compared to AHRF. 

This is because AHRF has a region growing property due to its pairwise and clique 

potentials which causes smaller wounds to sometimes become part of the surrounding skin 

clique which are wrongly segmented as skin.

CNNs have a considerably faster inference time than AHRF:

mainly because AHRF uses many hand-crafted features and clustering techniques, which 

take time to be computed. In our experiments, AHRF took about 4–5 minutes for 

segmenting one image while FCN, U-Net and DeepLabV3 could segment the same image in 

about 40, 50, 60 milliseconds respectively. This makes the networks a more viable option for 

implementation on mobile devices, where resources are constrained, especially if real-time 

segmentation is required. The long inference time of AHRF makes it difficult to use even in 

a client-server scenario, as a network connection would probably timeout before 

segmentation is complete.

Initial weights of deep learning approaches make a considerable difference:

U-Net generally outperforms FCNs, but FCN outperforms U-Net in our experiments by a 

margin 0.075 for dataset 3 as seen in Table-VI. FCN and DeeplabV3 were initialized with 

pre-trained weights from COCO train2017 while U-Net was initialized with weights from 

the Carvana Image Classification Challenge. Using these weights for U-Net was better than 

using random initialization but are still no match for COCO train2017 weights. DeepLabV3 

outperformed FCN by a margin of 0.017 for dataset 3 in Table-VI.

VII. FUTURE WORK

One possible future direction for this research could be experimenting more with lighting 

variations and performing an error analysis of the various factors which affect the 

segmentation performance of AHRF and the deep learning models. Models can be made 

more robust by using Generative Adversarial Networks (GANs)[36] for synthesizing more 

training data. More effective ways of image pre-processing such as auto-augmentation [37] 

can also be used which trains a neural network to decide on the best possible pre-processing 

step for a given input image. Finally, parallelizing AHRF to make it faster, especially the 

feature extraction might be a fruitful direction for further research.
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Fig. 1: 
Wound image (left), pixel-wise segmentation mask for wound, skin and background (right)

WAGH et al. Page 22

IEEE Access. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Annotation app with wound image view (left), preview of the mask after annotating the 

wound image (right)
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Fig. 3: 
An example image (left) with the Contrast Limited Adaptive Histogram Equalization Image 

(right)
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Fig. 4: 
AHRF implementation and workflow
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Fig. 5: 
Architecture of FCN.
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Fig. 6: 
Architecture of U-Net.
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Fig. 7: 
Architecture of DeepLabV3.
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Fig. 8: 
Sample image augmentations done online during training
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Fig. 9: 
Performance of AHRF, U-Net, FCN and DeepLabV3 trained on Dataset 3 for segmenting a 

variety of images with different colors, textures and lighting conditions of skin, wound and 

background
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Fig. 10: 
Box plots of wound percentage of wound pixels vs dice coefficient for dataset 1
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Fig. 11: 
Box plots of wound percentage of wound pixels vs dice coefficient for dataset 2
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Fig. 12: 
Box plots of wound percentage of wound pixels vs dice coefficient for dataset 3
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Fig. 13: 
Comparison of AHRF, U-Net, FCN, DeepLabV3 and their accuracy trends on all 3 datasets. 

Sample 1 shows how the accuracy of AHRF improves from Dataset 1 to Dataset 2 but then 

decreases when more, noisier data is added in Dataset 3. The deep learning networks on the 

other hand shows consistent improvement as more data is added. The samples demonstrate 

how skin pixels are segmented more accurately than the wound segment because of the huge 

class imbalance in data.
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TABLE I:

Statistics of Dataset

Dataset R Avg (Std) G Avg (Std) B Avg (Std)

Dataset 1 .535 (.144) .533 (.142) .529 (.141)

Dataset 2 .459 (.153) .462 (.154) .463 (.155)

Dataset 3 .472 (.172) .472 (.172) .473 (.173)

Mean and Standard Deviation of normalized images in R,G,B channel
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TABLE II:

Statistics of Dataset

Dataset R Avg (Std) G Avg (Std) B Avg (Std) % Avg (Std)

D1-Wound .475 (.080) .273 (.099) .232 (.089) 7.69 ( 7.64)

D2-Wound .518 (.104) .315 (.120) .286 (.112) 11.03 (10.15)

D3-Wound .515 (.106) .310 (.118) .260 (.109) 6.63 (7.95)

D1-Skin .489 (.137) .367 (.125) .308 (.121) 56.43 (13.13)

D2-Skin .565 (.143) .414 (.135) .392 (.133) 52.55 (15.22)

D3-Skin .577 (.133) .429 (.128) .363 (.126) 47.74 (17.69)

Mean and Standard Deviation of normalized images in R,G,B channels cropped with wound and skin masks
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TABLE III:

Results for Dataset 1 (95 Train, 19 Validation)

Model MAE (mm) Hausdorff (mm) Dice Wound Dice Skin Inference time

CLAHE + AHRF 0.0904 11.553 0.750 0.9060 3–5 min

U-Net 0.1880 13.983 0.490 0.7950 40 msec

U-Net + CRF 0.1552 13.165 0.520 0.8900 2 sec

CLAHE + U-Net 0.1523 13.085 0.532 0.8901 50 msec

CLAHE + U-Net + CRF 0.1231 12.365 0.591 0.8903 2 sec

FCN 0.0681 10.791 0.7822 0.9410 41 msec

CLAHE + FCN 0.0777 11.136 0.7667 0.9378 51 msec

DeepLabV3 0.0783 11.164 0.7625 0.9352 56 msec

CLAHE + DeepLabV3 0.0811 11.220 0.7595 0.9320 66 msec
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TABLE IV:

Results for Dataset 2 (263 Train, 53 Validation)

Model MAE (mm) Hausdorff (mm) Dice Wound Dice Skin Inference time

CLAHE + AHRF 0.1072 11.969 0.706 0.8865 3–5 min

U-Net 0.1152 12.169 0.665 0.897 40 msec

U-Net + CRF 0.1147 12.156 0.667 0.897 2 sec

CLAHE + U-Net 0.1028 11.861 0.717 0.892 50 msec

CLAHE + U-Net + CRF 0.1023 11.848 0.716 0.895 2 sec

FCN 0.0645 10.907 0.8418 0.9342 41 msec

CLAHE + FCN 0.0744 11.356 0.8220 0.9262 51 msec

DeepLabV3 0.0662 10.949 0.8392 0.9330 56 msec

CLAHE + DeepLabV3 0.0720 11.318 0.8268 0.9278 66 msec
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TABLE V:

Results for Dataset 3 (1201 Train, 241 Validation)

Model MAE (mm) Hausdorff (mm) Dice Wound Dice Skin Inference time

CLAHE + AHRF 0.1235 12.377 0.6287 0.9016 3–5 min

U-Net 0.0832 11.372 0.733 0.9506 40 msec

U-Net + CRF 0.0830 11.369 0.734 0.9506 2 sec

CLAHE + U-Net 0.0875 11.479 0.7200 0.9474 50 msec

CLAHE + U-Net + CRF 0.0878 11.486 0.719 0.9473 2 sec

FCN 0.0464 10.092 0.8518 0.9532 41 msec

CLAHE + FCN 0.0559 10.878 0.8357 0.9518 51 msec

DeepLabV3 0.0379 9.764 0.8554 0.9617 56 msec

CLAHE + DeepLabV3 0.0534 10.631 0.8390 0.9578 66 msec
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TABLE VI:

Common Validation Set - WOUND

Model Dataset 1 Dataset 2 Dataset 3

AHRF 0.673 0.687 0.675

U-Net 0.416 0.717 0.784

FCN 0.7822 0.8453 0.859

DeepLabV3 0.7625 0.8537 0.876

Average dice coefficients for common images in all 3 datasets.
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