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Abstract

Deep learning models are often trained on datasets that contain sensitive information such as 

individuals’ shopping transactions, personal contacts, and medical records. An increasingly 

important line of work therefore has sought to train neural networks subject to privacy constraints 

that are specified by differential privacy or its divergence-based relaxations. These privacy 

definitions, however, have weaknesses in handling certain important primitives (composition and 

subsampling), thereby giving loose or complicated privacy analyses of training neural networks. In 

this paper, we consider a recently proposed privacy definition termed f-differential privacy [18] for 

a refined privacy analysis of training neural networks. Leveraging the appealing properties of f-
differential privacy in handling composition and subsampling, this paper derives analytically 

tractable expressions for the privacy guarantees of both stochastic gradient descent and Adam used 

in training deep neural networks, without the need of developing sophisticated techniques as [3] 

did. Our results demonstrate that the f-differential privacy framework allows for a new privacy 

analysis that improves on the prior analysis [3], which in turn suggests tuning certain parameters 

of neural networks for a better prediction accuracy without violating the privacy budget. These 

theoretically derived improvements are confirmed by our experiments in a range of tasks in image 

classification, text classification, and recommender systems. Python code to calculate the privacy 

cost for these experiments is publicly available in the TensorFlow Privacy library.

1 Introduction

In many applications of machine learning, the datasets contain sensitive information about 

individuals such as location, personal contacts, media consumption, and medical records. 

Exploiting the output of the machine learning algorithm, an adversary may be able to 

identify some individuals in the dataset, thus presenting serious privacy concerns. This 

reality gave rise to a broad and pressing call for developing privacy-preserving data analysis 

methodologies. Accordingly, there have been numerous investigations in the scholarly 

literature of many fields—statistics, cryptography, machine learning, and law—for the 

protection of privacy in data analysis.

Along this line, research efforts have repeatedly suggested the necessity of a rigorous and 

versatile definition of privacy. Among other things, researchers have questioned whether the 
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use of a privacy definition gives interpretable privacy guarantees, and if so, whether this 

privacy definition allows for high accuracy of the private model among alternative 

definitions. In particular, anonymization as a syntactic and ad-hoc privacy concept has been 

shown to generally fail to guarantee privacy. Examples include the identification of a 

homophobic individual in the anonymized Netflix Challenge dataset [45] and the 

identification of the health records of the then Massachusetts governor in public anonymized 

medical datasets [56].

In this context, (ε, δ)-differential privacy (DP) arose as a mathematically rigorous definition 

of privacy [23]. Today, this definition has developed into a firm foundation of private data 

analysis, with its applications deployed by Google [26], Apple [5], Microsoft [16], and the 

US Census Bureau [4]. Despite its impressive popularity in both the scholarly literature and 

the industry, (ε, δ)-DP is not versatile enough to handle composition, which is perhaps the 

most fundamental primitive in statistical privacy. For example, the training process of deep 

neural networks is in effect the composition of many primitive building blocks known as 

stochastic gradient descent (SGD). Under a modest privacy budget in the (ε, δ)-DP sense, 

however, it was not clear how to maintain a high prediction accuracy of deep learning. This 

requires a tight privacy analysis of composition in the (ε, δ)-DP framework. Indeed, the 

analysis of the privacy costs in deep learning was refined only recently using a sophisticated 

technique called the moments accountant [3].

Ideally, we hope to have a privacy definition that allows for refined privacy analyses of 

various algorithms in a principled manner, without resorting to sophisticated techniques. 

Having a refined privacy analysis not only enhances the trustworthiness of the models but 

can also be leveraged to improve the prediction accuracy by trading off privacy for utility. 

One possible candidate is f-differential privacy, a relaxation of (ε, δ)-DP that was recently 

proposed by Dong, Roth, and Su [18]. This new privacy definition faithfully retains the 

hypothesis testing interpretation of differential privacy and can losslessly reason about 

common primitives associated with differential privacy, including composition, privacy 

amplification by subsampling, and group privacy. In addition, f-DP includes a canonical 

single-parameter family that is referred to as Gaussian differential privacy (GDP). Notably, 

GDP is the focal privacy definition due to a central limit theorem that states that the privacy 

guarantees of the composition of private algorithms are approximately equivalent to telling 

apart two shifted normal distributions.

The main results of this paper show that f-DP offers a rigorous and versatile framework for 

developing private deep learning methodologies1. Our guarantee provides protection against 

an attacker with knowledge of the network architecture as well as the model parameters, 

which is in the same spirit as [53, 3]. In short, this paper delivers the following messages 

concerning f-DP:

Closed-form privacy bounds.—In the f-DP framework, the overall privacy loss incurred 

in training neural networks admits an amenable closed-form expression. In contrast, the 

1It is noteworthy that training deep learning models has served as an important benchmark in testing a privacy definition since the 
tightness of its privacy analysis crucially depends on whether the definition can tightly account for composition and subsampling.
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privacy analysis via the moments accountant must be done by numerical computation [3], 

and the implicit nature of this earlier approach can hinder our understanding of how the 

tuning parameters affect the privacy bound. This is discussed in Section 3.1.

Stronger privacy guarantees.—The f-DP approach gives stronger privacy guarantees 

than the earlier approach [3], even in terms of (ε, δ)-DP. This improvement is due to the use 

of the central limit theorem for f-DP, which accurately captures the privacy loss incurred at 

each iteration in training the deep learning models. This is presented in Section 3.2 and 

illustrated with numerical experiments in Section 4.1.

Improved prediction accuracy.—Leveraging the stronger privacy guarantees provided 

by f-DP, we can trade a certain amount of privacy for an improvement in prediction 

performance. This can be realized, for example, by appropriately reducing the amount of 

noise added during the training process of neural networks so as to match the target privacy 

level in terms of (ε, δ)-DP. See Section 3.2 and Section 4.2 for the development of this 

utility improvement.

The remainder of the paper is structured as follows. In Section 1.1 we provide a brief review 

of related literature. Section 2 introduces f-DP and its basic properties at a minimal level. 

Next, in Section 3 we analyze the privacy cost of training deep neural networks in terms of f-
DP and compare it to the privacy analysis using the moments accountant. In Section 4, we 

present numerical experiments to showcase the superiority of the f-DP approach to private 

deep learning in terms of test accuracy and privacy guarantees. The paper concludes with a 

discussion in Section 5.

1.1 Related Work

There are continued efforts to understand how privacy degrades under composition. 

Developments along this line include the basic composition theorem and the advanced 

composition theorem [22, 24]. In a pioneering work, [32] obtained an optimal composition 

theorem for (ε, δ)-DP, which in fact served as one of the motivations for the f-DP work [18]. 

However, it is #P hard to compute the privacy bounds from their composition theorem [44]. 

More recently, [17] derived sharp composition bounds on the overall privacy loss for 

exponential mechanisms.

From a different angle, a substantial recent effort has been devoted to relaxing differential 

privacy using divergences of probability distributions to overcome the weakness of (ε, δ)-DP 

in handling composition [21, 11, 43, 12]. Unfortunately, these relaxations either lack a 

privacy amplification by subsampling argument or present a quite complex argument that is 

difficult to use [8, 57]. As subsampling is inherently used in training neural networks, 

therefore, it is difficult to directly apply these relaxations to the privacy analysis of deep 

learning.

To circumvent these technical difficulties associated with (ε, δ)-DP and its divergence-based 

relaxations, Abadi et al. [3] invented a technique termed the moments accountant to track 

detailed information of the privacy loss in the training process of deep neural networks. 

Using the moments accountant, their analysis significantly improves on earlier privacy 
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analysis of SGD [14, 55, 10, 53, 61] and allows for meaningful privacy guarantees for deep 

learning trained on realistically sized datasets. This technique has been extended to a variety 

of situations by follow-up work [41, 48]. In contrast, our approach to private deep learning 

in the f-DP framework leverages some powerful tools of this new privacy definition, 

nevertheless providing a sharper privacy analysis, as seen both theoretically and empirically 

in Sections 3 and 4.

For completeness, we remark that different approaches have been put forward to incorporate 

privacy considerations into deep learning, without leveraging the iterative and subsampling 

natures of training deep learning models. This line of work includes training a private model 

by an ensemble of “teacher” models [47, 46], the development of noised federated averaging 

algorithms [42], and analyzing privacy costs through the lens of the optimization landscape 

of neural networks [59].

2 Preliminaries

2.1 f-Differential Privacy

In the differential privacy framework, we envision an adversary that is well-informed about 

the dataset except for a single individual, and the adversary seeks to determine whether this 

individual is in the dataset on the basis of the output of an algorithm. Roughly speaking, the 

algorithm is considered private if the adversary finds it hard to determine the presence or 

absence of any individual.

Informally, a dataset can be thought of as a matrix, whose rows each contain one 

individual’s data. Two datasets are said to be neighbors if one can be derived by discarding 

an individual from the other. As such, the sizes of neighboring datasets differ by one2. Let S 
and S′ be neighboring datasets, and ε ⩾ 0, 0 ⩽ δ ⩽ 1 be two numbers, and denote by M a 

(randomized) algorithm that takes as input a dataset.

Definition 2.1 ([23, 22]).—A (randomized) algorithm M gives (ε, δ)-differential privacy if 

for any pair of neighboring datasets S, S′ and any event E,

ℙ M(S) ∈ E ⩽ eεℙ M S′ ∈ E + δ .

To achieve privacy, the algorithm M is necessarily randomized, whereas the two datasets in 

Definition 2.1 are deterministic. This privacy definition ensures that, based on the output of 

the algorithm, the adversary has a limited (depending on how small ε, δ are) ability to 

identify the presence or absence of any individual, regardless of whether any individual opts 

in to or opts out of the dataset.

In essence, the adversary seeks to tell apart the two probability distributions M(S) and M(S′) 

using a single draw. In light of this observation, it is natural to interpret what the adversary 

does as testing two simple hypotheses:

2Alternatively, the neighboring relationship can be defined for datasets of the same size and differing by one individual.
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H0:  the true dataset is S  versus  H1:  the true dataset is S′ .

The connection between differential privacy and hypothesis testing was, to our knowledge, 

first noted in [58], and was later developed in [32, 39, 9]. Intuitively, privacy is well 

guaranteed if the hypothesis testing problem is hard. Following this intuition, the definition 

of (ε, δ)-DP essentially uses the worst-case likelihood ratio of the distributions M(S) and 

M(S′) to measure the hardness of testing the two simple hypotheses.

Is there a more informative measure of the hardness? In [18], the authors propose to use the 

trade-off between type I error (the probability of erroneously rejecting H0 when H0 is true) 

and type II error (the probability of erroneously accepting H0 when H1 is true) in place of a 

few privacy parameters in (ε, δ)-DP or divergence-based DP definitions. To formally define 

this new privacy definition, let P and Q denote the distributions of M(S) and M(S′), 

respectively, and let ϕ be any (possibly randomized) rejection rule for testing H0 : P against 

H1 : Q. With these in place, [18] defines the trade-off function of P and Q as

T P , Q : [0, 1] [0, 1]
α inf

ϕ
1 − EQ[ϕ]:EP [ϕ] ⩽ α .

Above, EP[ϕ] and 1 − EQ[ϕ] are type I and type II errors of the rejection rule ϕ, respectively. 

Writing f = T(P, Q), the definition says that f(α) is the minimum type II error among all tests 

at significance level α. Note that the minimum can be achieved by taking the likelihood ratio 

test, according to the Neymann–Pearson lemma. As is self-evident, the larger the trade-off 

function is, the more difficult the hypothesis testing problem is (hence more privacy). This 

motivates the following privacy definition.

Definition 2.2 ([18]).—A (randomized) algorithm M is f-differentially private if

T M(S), M S′ ⩾ f

for all neighboring datasets S and S′.

In this definition, both T and f are functions that take α ∈ [0, 1] as input and the inequality 

holds pointwise for all 0 ⩽ α ⩽ 1, and we abuse notation by identifying M(S) and M(S′) 

with their associated distributions. This privacy definition is easily interpretable due to its 

inherent connection with the hypothesis testing problem. By adapting a result due to 

Wasserman and Zhou [58], (ε, δ)-DP is a special instance of f-DP in the sense that an 

algorithm is (ε, δ)-DP if and only if it is fε,δ-DP with

fε, δ(α) = max 0, 1 − δ − eεα, e−ε(1 − δ − α) . (1)

The more intimate relationship between the two privacy definitions is that they are dual to 

each other: briefly speaking, f-DP ensures (ε, δ(ε))-DP with δ(ε) = 1 + f*(−eε) for every ε ⩾ 
03.
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Next, we define a single-parameter family of privacy definitions within the f-DP class for a 

reason that will be apparent later. Let Gμ ≔ T (N(0, 1), N(μ, 1)) for μ ⩾ 0. Note that this 

tradeoff function admits a closed-form expression Gμ(α) = Φ(Φ−1(1−α)−μ), where Φ is the 

cumulative distribution function of the standard normal distribution.

Definition 2.3 ([18]).—A (randomized) algorithm M is μ-Gaussian differentially private 

(GDP) if

T M(S), M S′ ⩾ Gμ

for all neighboring datasets S and S′.

In words, μ-GDP says that determining whether any individual is in the dataset is at least as 

difficult as telling apart the two normal distributions N(0, 1) and N(μ, 1) based on one draw. 

The Gaussian mechanism serves as a template to achieve GDP. Consider the problem of 

privately releasing a univariate statistic θ(S). The Gaussian mechanism adds N 0, σ2  noise 

to the statistic θ, which gives μ-GDP if σ = sens(θ)/μ. Here the sensitivity of θ is defined as 

sens(θ) = supS,S′ |θ(S)− θ(S′)|, where the supremum is over all neighboring datasets.

2.2 Properties of f-Differential Privacy

Composition.—Deep learning models are trained using the composition of many SGD 

updates. Broadly speaking, composition is concerned with a sequence of analyses on the 

same dataset where each analysis is informed by the explorations of prior analyses. A central 

question that every privacy definition is faced with is to pinpoint how the overall privacy 

guarantee degrades under composition. Formally, letting M1 be the first algorithm and M2 be 

the second, we define their composition algorithm M as M(S) = (M1(S), M2(S, M1(S))). 

Roughly speaking, the composition is to “release all information that is learned by the 

algorithms.” Notably, the second algorithm M2 can take as input the output of M1 in addition 

to the dataset S. In general, the composition of more than two algorithms follows 

recursively.

To introduce the composition theorem for f-DP, [18] defines a binary operation ⊗ on trade-

off functions. Given trade-off functions f = T(P, Q) and g = T(P′, Q′), let f ⊗ g = T(P × P′, 

Q × Q′). This definition depends on the distributions P, Q, P′, Q′ only through f and g. 

Moreover, ⊗ is commutative and associative. Now the composition theorem can be readily 

stated as follows. Let Mt be ft-DP conditionally on any output of the prior algorithms for t = 

1, …, T. Then their T-fold composition algorithm is f1 ⊗ ⋯ ⊗ fT-DP. This result shows that 

the composition of algorithms in the f-DP framework is reduced to performing the ⊗ 
operation on the associated trade-off functions. As an important fact, the privacy bound f1 ⊗ 
⋯ ⊗ fT in general cannot be improved. Put more precisely, one can find an ft-DP mechanism 

Mt for t = 1, …, T such that their composition is precisely f1 ⊗ ⋯ ⊗ fT-DP (see the 

discussion following Theorem 4 in [18]).

3Here, f* is the convex conjugate, which is defined as f*(x) = supα αx − f(α).
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More profoundly, a central limit theorem phenomenon arises in the composition of many 

“very private” f-DP algorithms in the following sense: the trade-off functions of small 

privacy leakage accumulate to Gμ for some μ under composition. Informally, assuming each 

ft is very close to Id(α) = 1 − α, which corresponds to perfect privacy, then we have

f1 ⊗ f2 ⊗ ⋯ ⊗ fT  is approximately Gμ (2)

if the number of iterations T is sufficiently large4. This central limit theorem approximation 

is especially suitable for the privacy analysis of deep learning, where the training process 

typically takes at least tens of thousands of iterations. The privacy parameter μ depends on 

some functionals such as the Kullback–Leibler divergence of the trade-off functions. The 

central limit theorem yields a very accurate approximation in the settings considered in 

Section 4 (see numerical confirmation in Appendix A). For a rigorous account of this central 

limit theorem for differential privacy, see Theorem 6 in [18]. We remark that a conceptually 

related article [54] developed a central limit theorem for privacy loss random variables.

At a high level, this convergence-to-GDP result brings GDP to the focal point of the family 

of f-DP guarantees, implying that GDP is to f-DP as normal random variables to general 

random variables. Furthermore, this result serves as an effective approximation tool for 

approximating the privacy guarantees of composition algorithms. In contrast, privacy loss 

cannot be losslessly tracked under composition in the (ε, δ)-DP framework.

Subsampling.—In training neural networks, the gradient at each iteration is computed 

from a mini-batch that is subsampled from the training examples. Intuitively, an algorithm 

applied to a subsample gives stronger privacy guarantees than applied to the full sample. 

Looking closely, this privacy amplification is due to the fact that an individual enjoys perfect 

privacy if not selected in the subsample. A concrete and pressing question is, therefore, to 

precisely characterize how much privacy is amplified by subsampling in the f-DP 

framework.

Consider the following sampling scheme: for each individual in the dataset S, include his or 

her datum in the subsample independently with probability p, which is sometimes referred to 

as the Poisson subsampling [57]. The resulting subsample is denoted by Samplep(S). For the 

purpose of clearing up any confusion, we remark that the subsample Samplep(S) has a 

random size and as an intermediate step is not released. Given any algorithm M, denote by 

M ◦ Samplep the subsampled algorithm.

The subsampling theorem for f-DP states as follows. Let M be f-DP, write fp for pf+(1−p)Id, 

and denote by fp
−1 the inverse5 of fp. It is proved in Appendix A that the subsampled 

algorithm M ◦ Samplep satisfies

T M ∘ Samplep(S), M ∘ Samplep S′ ⩾ fp (3)

4If fi = Gμi for i = 1, …, T, then the T-fold composition is exactly Gμ with μ = ∑i = 1
T μi2.

5For any trade-off function f = T(P, Q), its inverse f−1 = T(Q, P).

Bu et al. Page 7

Harv Data Sci Rev. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



if S can be obtained by removing one individual from S′. Likewise,

T M ∘ Samplep S′ , M ∘ Samplep(S) ⩾ fp−1 .

As such, the two displays above say that the trade-off function of M ◦ Samplep on any 

neighboring datasets is lower bounded by min fp, fp
−1 , which however is in general non-

convex and thus is not a trade-off function. This suggests that we can boost the privacy 

bound by replacing min fp, fp
−1  with its double conjugate min fp, fp

−1 * * , which is the 

greatest convex lower bound of min fp, fp
−1  and is indeed a trade-off function. Taken 

together, all the pieces show that the subsampled algorithm M ◦ Samplep is 

min fp, fp
−1 * * − DP.

Notably, the privacy bound min fp, fp
−1 * *  is larger than f and cannot be improved in 

general. In light of the above, the f-DP framework is flexible enough to nicely handle the 

analysis of privacy amplification by subsampling. In the case where the original algorithm M 
is (ε, δ)-DP, this privacy bound strictly improves on the subsampling theorem for (ε, δ)-DP 

[38].

3 Algorithms and Their Privacy Analyses

3.1 NoisySGD and NoisyAdam

SGD and Adam [33] are among the most popular optimizers in deep learning. Here we 

introduce a new privacy analysis of a private variant of SGD in the f-DP framework and then 

extend the study to a private version of Adam.

Letting S = {x1, …, xn} denote the dataset, we consider minimizing the empirical risk

L(θ) = 1
n ∑

i = 1

n
l θ, xi ,

where θ denotes the weights of the neural networks and ℓ(θ, xi) is a loss function. At 

iteration t, a mini-batch It is selected from {1, 2, …, n} with subsampling probability p, 

thereby having an approximate size of pn. Taking learning rate ηt and initial weights θ0, the 

vanilla SGD updates the weights according to

θt + 1 = θt − ηt ⋅ 1
|It| ∑

i ∈ It
∇θl θt, xi .

To preserve privacy, [14, 55, 10, 3] introduce two modifications to the vanilla SGD. First, a 

clip step is applied to the gradient so that the gradient is in effect bounded. This step is 

necessary to have a finite sensitivity. The second modification is to add Gaussian noise to the 

clipped gradient, which is equivalent to applying the Gaussian mechanism to the updated 

iterates. Formally, the private SGD algorithm is described in Algorithm 1. Herein I is the 
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identity matrix and ∥ · ∥2 denotes the ℓ2 norm. Formally, we present this in Algorithm 1, 

which we henceforth refer to as NoisySGD. As a contribution of the present paper, 

NoisySGD uses the Poisson subsampling, as opposed to the uniform sampling used in [18]. 

For completeness, we remark that there is another possible subsampling method: shuffling 

(randomly permuting and dividing data into folds at each epoch). We emphasize that 

different subsampling mechanisms produce different privacy guarantees.

The analysis of the overall privacy guarantee of NoisySGD makes heavy use of the 

compositional and subsampling properties of f-DP. We first focus on the privacy analysis of 

the step that computes θt+1 from θt. Let M denote the gradient update and write Samplep(S) 

for the mini-batch It (we drop the subscript t for simplicity). This allows us to use M ◦ 
Samplep(S) to represent what NoisySGD does at each iteration. Next, note that adding or 

removing one individual would change the value of ∑i ∈ Itvt
(i) by at most R in the ℓ2 norm 

due to the clipping operation, that is, ∑i ∈ Itvt
(i) has sensitivity R. Consequently, the 

Gaussian mechanism with noise standard deviation σR ensures that M is 1
σ − GDP. With a 

few additional arguments, in Appendix B we show that NoisySGD is min{f, f−1}**-DP with 

f = (pG1/σ + (1 − p)Id)⊗T. As a remark, it has been empirically observed in [3, 6] that the 

performance of the private neural networks is not sensitive to the choice of the clipping norm 

bound R (see more discussion in [48, 60]).

To facilitate the use of this privacy bound, we now derive an analytically tractable 

approximation of min{f, f−1}** using the privacy central limit theorem in a certain 

asymptotic regime, which further demonstrates the mathematical coherence and versatility 

of the f-DP framework. The central limit theorem shows that, in the asymptotic regime 

where p T ν for a constant ν > 0 as T → ∞,

f = pG1/σ + (1 − p)Id ⊗ T Gμ,

where μ = ν e1/σ2 − 1. Thus, the overall privacy loss in the form of the double conjugate 

satisfies

min f, f−1 * * ≈ min Gμ, Gμ
−1 * * = Gμ* * = Gμ . (4)

As such, the central limit theorem demonstrates that NoisySGD is approximately 

p T e1/σ2 − 1 − GDP. Denoting by B = pn the mini-batch size, the privacy parameter 
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p T e1/σ2 − 1  equals B
n T e1/σ2 − 1 . Intuitively, this reveals that NoisySGD gives good 

privacy guarantees if B T /n is small and σ is not too small.

As an aside, we remark that this new privacy analysis is different from the one performed in 

Section 5 of [18]. Therein, the authors consider Algorithm 1 with uniform subsampling and 

obtain a privacy bound that is different from the one in the present paper.

Next, we present a private version of Adam [33] in Algorithm 2, which we refer to as 

NoisyAdam and can be found in [2]. This algorithm has the same privacy bound as 

NoisySGD in the f-DP framework. In short, this is because the momentum mt and ut are 

deterministic functions of the noisy gradients and no additional privacy cost is incurred due 

to the post-processing property of differential privacy. In passing, we remark that the same 

argument applies to AdaGrad [20] and therefore it is also asymptotically GDP in the same 

asymptotic regime.

3.2 Comparisons with the Moments Accountant

It is instructive to compare the moments accountant with our privacy analysis performed in 

Section 3.1 using the f-DP framework. Developed in [3], the moments accountant gives a 

tight one-to-one mapping between ε and δ for specifying the overall privacy loss in terms of 

(ε, δ)-DP under composition, which is beyond the reach of the advanced composition 

theorem [24]. In slightly more detail, the moments accountant uses the moment generating 

function of the privacy loss random variable to track the privacy loss under composition. As 

abuse of notation, this paper uses functions δMA = δMA(ε) and εMA = εMA(δ) to denote the 

mapping induced by the moments accountant in both directions6. For self-containedness, the 

appendix includes a formal description of the two functions.

Although NoisySGD and NoisyAdam are our primary focus, our following discussion 

applies to general iterative algorithms where composition must be addressed in the privacy 

analysis. Let algorithm Mt be ft-DP for t = 1, …, T and write M for their composition. On 

the one hand, the moments accountant technique ensures that M is (ε, δMA(ε))-DP for any ε 
or, put equivalently, is (εMA, δ)-DP7. On the other hand, the composition algorithm is f1 ⊗ 

6We omit the dependence of the functions on the specification of the composition algorithm such as p, σ, T as in NoisySGD and 
NoisyAdam.
7The moments accountant can be applied in the f-DP framework. In fact, the moments accountant is defined via a certain moment 
generating function, which is equivalent to the Rényi divergence. The Rényi divergence can be uniquely deduced from a trade-off 
function. See Section 2.3 in [18].
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⋯ ⊗ fT-DP from the f-DP viewpoint and, following from the central limit theorem (2), this 

composition can be shown to be approximately GDP in a certain asymptotic regime. For 

example, both NoisySGD and NoisyAdam presented in Algorithm 1 and Algorithm 2, 

respectively, asymptotically satisfy μCLT-GDP with privacy parameter

μCLT = p T e1/σ2 − 1 . (5)

In light of the above, it is tempting to ask which of the two approaches yields a sharper 

privacy analysis. In terms of f-DP guarantees, it must be the latter, which we refer to as the 

CLT approach, because the composition theorem of f-DP is tight and, more importantly, the 

privacy central limit theorem is asymptotic exact. To formally state the result, note that the 

moments accountant asserts that the private optimizer is (ε, δMA(ε))-DP for all ε ⩾ 0, which 

is equivalent to supε ⩾ 0 fε, δMA(ε) − DP by recognizing (1) (see also Proposition 2.11 in 

[18]). Roughly speaking, the following theorem says that supε ⩾ 0 fε, δMA(ε) − DP

asymptotically) promises no more privacy guarantees than the bound of μCLT-GDP given by 

the CLT approach. This simple result is summarized by the following theorem and see 

Appendix B for a formal proof of this result.

Theorem 1 (Comparison in f-DP).—Assume that p T  converges to a positive constant 

as T → ∞. Then, both NoisySGD and NoisyAdam satisfy

lim sup 
T ∞

sup 
ε ⩾ 0

fε, δMA(ε)(α) − GμCLT(α) ⩽ 0

for every 0 ⩽ α ⩽ 1.

Remark 1.—For ease of reading, we point out that, in the (ε, δ)-DP framework, the smaller 

ε, δ are, the more privacy is guaranteed. In contrast, in the f-DP framework, the smaller f is, 

the less privacy is guaranteed.

From the (ε, δ)-DP viewpoint, however, the question is presently unclear. Explicitly, the 

duality between f-DP and (ε, δ)-DP shows that μ-GDP implies (ε, δ(ε; μ))-DP for all ε ⩾ 0, 

where8

δ(ε; μ) = 1 + Gμ* −eε = Φ − ε
μ + μ

2 − eεΦ − ε
μ − μ

2 . (6)

The question is, therefore, reduced to the comparison between δMA(ε) and δCLT(ε) ≔ δ(ε; 

μCLT) or, equivalently, between εMA(δ) and εCLT(δ) ≔ ε(δ; μCLT)9.

8See Section 2.4 of [18] for this result. See also [25, 7].
9Here, ε(δ; μ) is the inverse function of δ(ε; μ).
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Theorem 2 (Comparison in (ε, δ)-DP).—Under the assumptions of Theorem 1, the f-
DP framework gives an asymptotically sharper privacy analysis of both NoisySGD and 

NoisyAdam than the moments accountant in terms of (ε, δ)-DP. That is,

lim sup 
T ∞

δCLT(ε) − δMA(ε) < 0

for all 7 ε ⩾ 0.

In words, the CLT approach in the f-DP framework allows for an asymptotically smaller δ 
than the moments accountant at the same ε. It is worthwhile mentioning that the inequality 

in this theorem holds for any finite T if δ is derived by directly applying the duality to the 

(exact) privacy bound f1 ⊗ ⋯ ⊗ fT. Equivalently, the theorem says that lim supT→∞ 
(εCLT(δ) − εMA(δ)) < 0 for any δ10. As such, by setting the same δ in both approaches, say 

δ = 10−5, the f-DP based CLT approach shall give a smaller value of ε.

From a practical viewpoint, this refined privacy analysis allows us to trade privacy 

guarantees for improvement in utility. More precisely, recognizing the aforementioned 

conclusion that δ(ε; μCLT) ≡ δCLT(ε) < δMA(ε) (for sufficiently large T) and that δ(ε; μ) 

increases as μ increases, one can find μCLT > μCLT such that

δ ε; μCLT = δMA(ε) . (7)

Put differently, we can carefully adjust some parameters in Algorithm 1 and Algorithm 2 in 

order to let the algorithms be μCLT − GDP. For example, we can reduce the scale of the 

added noise from σ to a certain σ < σ, which can be solved from (7) and

μCLT = p T e1/σ2 − 1 . (8)

Note that this is adapted from (5).

Figure 1 shows the flowchart of the privacy analyses using the two approaches and their 

relationship. In addition, numerical comparisons are presented in Figure 2, consistently 

demonstrating the superiority of the CLT approach.

4 Results

In this section, we use NoisySGD and NoisyAdam to train private deep learning models on 

datasets for tasks ranging from image classification (MNIST), text classification (IMDb 

movie review), recommender systems (MovieLens movie rating), to regular binary 

classification (Adult income). Note that these datasets all contain sensitive information about 

individuals, and this fact necessitates privacy consideration in the training process. Code to 

reproduce the results using the TensorFlow Privacy library is available at https://github.com/

tensorflow/privacy/tree/master/research/GDP_2019.

10Write δCLT
⋆ = δCLT(0) and set εCLT(δ) = 0 for δ ⩾ δCLT

⋆ . Apply the same adjustment for εMA.
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4.1 The f-DP Perspective

This section demonstrates the utility and practicality of the private deep learning 

methodologies with associated privacy guarantees in terms of f-DP. In Section 4.2, we 

extend the empirical study to the (ε, δ)-DP framework. Throughout the experiments, the 

parameter δ we use always satisfies δ < 1/n, where n is the number of training examples.

MNIST.—The MNIST dataset [35] contains 60,000 training images and 10,000 test images. 

Each image is in 28 × 28 gray-scale representing a handwritten digit ranging from 0 to 9. We 

train neural networks with the same architecture (two convolutional layers followed by one 

dense layer) as in [2, 3] on this dataset. Throughout the experiment, we set the subsampling 

probability to p = 256/60000 and use a constant learning rate η.

Table 1 displays the test accuracy of the neural networks trained by NoisySGD as well as the 

associated privacy analyses. The privacy parameters ε in the last two columns are both with 

respect to δ = 10−5. Over all six sets of experiments with different tuning parameters, the 

CLT approach gives a significantly smaller value of ε than the moments accountant, which is 

consistent with our discussion in Section 3.2. The point we wish to emphasize, however, is 

that f-DP offers a much more comprehensive interpretation of the privacy guarantees than (ε, 

δ)-DP. For instance, the model from the third row preserves a decent amount of privacy 

since it is not always easy to tell apart N(0, 1) and N(1.13, 1). In stark contrast, the (ε, δ)-DP 

viewpoint is too conservative, suggesting that for the same model not much privacy is left, 

due to a very large “likelihood ratio” eε in Definition 2.1: it equals e7.10 = 1212.0 or e5.07 = 

159.1 depending on which approach is chosen. This shortcoming of (ε, δ)-DP cannot be 

overcome by taking a larger δ, which, although gives rise to a smaller ε, would undermine 

the privacy guarantee from a different perspective.

For all experiments described in Table 1, Figure 3 illustrates the privacy bounds given by the 

CLT approach and the moments accountant both in terms of trade-off functions. The six 

plots in the first and third rows are with respect to δ = 10−5, from which the f-DP framework 

is seen to provide an analyst with substantial improvements in the privacy bounds. Note that 

the first row in Figure 3 corresponds to the first three rows in Table 1, and the third row in 

Figure 3 corresponds to the last three rows in Table 1. For the model corresponding to 96.6% 

test accuracy, concretely, the minimum sum of type I and type II errors in the sense of 

hypothesis testing is (at least) 77.6% by the CLT approach, whereas it is merely (at least) 

9.4% by the moments accountant. For completeness, we show the optimal trade-off 

functions over all pairs of ε, δ given by the moments accountant in the middle row. The gaps 

between the two approaches exist, as predicted by Theorem 1, and remain significant.

Next, we extend our experiments to other datasets to further test f-DP for training private 

neural networks. The experiments compare private models under the privacy budget μ ≤ 2 to 

their non-private counterparts and some popular baseline methods. For simplicity, we focus 

on shallow neural networks and leave the investigation of complex architectures for future 

research.

Adult income.—Originally from the UCI repository [19], the Adult income dataset has 

been preprocessed into the LIBSVM format [13]. This dataset contains 32,561 examples, 
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each of which has 123 features and a label indicating whether the individual’s annual 

income is more than $50,000 or not. We randomly choose 10% of the examples as the test 

set (3,256 examples) and use the remaining 29,305 examples as the training set.

Our model is a single-layer multi-perceptron with 16 neurons and the ReLU activation. We 

set σ = 0.55, p = 256/29305, η = 0.15, R = 1, and use NoisySGD as our optimizer. The 

results displayed in Table 2 show that our private model achieves comparable performance 

to the baselines in the MLC++ library [34] in terms of test accuracy.

IMDb.—We use the IMDb movie review dataset [40] for binary sentiment classification 

(positive or negative reviews). The dataset contains 25,000 training and 25,000 test 

examples. In our experiments, we prepocess the dataset by only including the top 10,000 

frequently used words and discard the rest. Next, we set every example to have 256 words by 

truncating the length or filling with zeros if necessary.

In our neural networks, the input is first embedded into 16 units and then is passed through a 

global average pooling. The intermediate output is fed to a fully-connected layer with 16 

neurons, followed by a ReLU layer. We set σ = 0.56, p = 512/25000, η = 0.02, R = 1, and 

use NoisyAdam as our optimizer, which is observed to converge much faster than 

NoisySGD in this training task. We use the (non-private) two-layer LSTM RNN model in 

the Tensorflow tutorials [1] as a baseline model. Table 3 reports the experimental results. 

Notably, the private neural networks perform comparably to the baseline model, at the cost 

of only one percent drop in test accuracy compared to the non-private counterpart.

MovieLens.—The MovieLens movie rating dataset [28] is a benchmark dataset for 

recommendation tasks. Our experiments consider the MovieLens 1M dataset, which 

contains 1,000,209 movie ratings from 1 star to 5 stars. In total, there are 6,040 users who 

rated 3,706 different movies. For this multi-class classification problem, the root mean 

squared error (RMSE) is chosen as the performance measure. It is worthwhile to mention 

that, as each user only watched a small fraction of all the movies, most (user, movie) pairs 

correspond to missing ratings. We randomly sample 20% of the examples as the test set and 

take the remainder as the training set.

Our model is a simplified version of the neural collaborative filtering in [29]. The network 

architecture consists of two branches. The left branch applies generalized matrix 

factorization to embed the users and movies using five latent factors. The output of the user 

embedding is multiplied by the item embedding. In the right branch, we use 10 latent factors 

for embedding. The embedding from both branches are then concatenated, which is fed to a 

fully-connected output layer. We set σ = 0.6, p = 1/80, η = 0.01, and R = 5 in NoisyAdam.

Table 4 presents the numerical results of our neural networks as well as baseline models in 

the Suprise library [31] in their default settings. The difference in RMSE between the non-

private networks and the private one is relatively large for the MovieLens 1M dataset. 

Nevertheless, the private model still outperforms many popular non-private models, 

including the user-based collaborative filtering and nonnegative matrix factorization.
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4.2 The (ε, δ)-DP Perspective

While we hope that the f-DP perspective has been conclusively demonstrated to be 

advantageous, this section shows that the CLT approach continues to bring considerable 

benefits even in terms of (ε, δ)-DP. Specifically, by making use of the comparisons between 

the CLT approach and the moments accountant in Section 3.2, we can add less noise to the 

gradients in NoisySGD and NoisyAdam while achieving the same (ε, δ)-DP guarantees 

provided by the moments accountant. With less added noise, conceivably, an optimizer 

would have a higher prediction accuracy.

Figure 4 illustrates the experimental results on MNIST. In the top two plots, we set the noise 

scales to σ = 1.3, σ = 1.06, which are both shown to give (1.34, 10−5)-DP at epoch 20 using 

the moments accountant and the CLT approach, respectively. The test accuracy associated 

with the CLT approach is almost always higher than that associated with the moments 

accountant. In addition, another benefit of taking the CLT approach is that it gives rise to 

stronger privacy protection before reaching epoch 20, as shown by the right plot. For the 

bottom plots, although the improvement in test accuracy at the end of training is less 

significant, the CLT approach leads to much faster convergence at early epochs. To be 

concrete, the numbers of epochs needed to achieve 95%, 96%, and 97% test accuracy are 18, 

26, and 45, respectively, for the neural networks with less noise, whereas the numbers of 

epochs are 23, 33, and 64, respectively, using noise level that is computed by the moments 

accountant. In a similar vein, the moments accountant gives a test accuracy of 92% for the 

first time when ε = 4 and the CLT approach achieves 96% under the same privacy budget.

5 Discussion

In this paper, we have showcased the use of f-DP, a very recently proposed privacy 

definition, for training private deep learning models using SGD or Adam. Owing to its 

strength in handling composition and subsampling and the powerful privacy central limit 

theorem, the f-DP framework allows for a closed-form privacy bound that is sharper than the 

one given by the moments accountant in the (ε, δ)-DP framework. By numerical 

experiments, we show that the trained neural networks can be quite private from the f-DP 

viewpoint (for instance, 1.13-GDP11) but are not in the (ε, δ)-DP sense due to over 

conservative privacy bounds (for instance, (7.10, 10−5)-DP) computed in the (ε, δ)-DP 

framework. This in turn suggests that one can add less noise during the training process 

while having the same privacy guarantees as using the moments accountant, thereby 

improving model utility.

We conclude this paper by offering several directions for future research. As the first 

direction, we may consider using time-dependent noise scales and learning rates in 

NoisySGD and NoisyAdam for a better tradeoff between privacy loss and utility in the f-DP 

framework. Note that [37] has made considerable progress using concentrated differential 

privacy along this line. More generally, a straightforward but interesting problem is to extend 

this work to complex neural network architectures with a variety of optimization strategies. 

11This means that undermining the privacy guarantee is harder than or of the same hardness as testing H0 : μ = 0 against H1 : μ = 1.13 
based on the observation μ + N(0, 1).
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For example, can we develop some guidelines for choosing an optimizer among NoisySGD, 

NoisyAdam, and others for a given classification problem under some privacy constraint? 

Empirically, deep learning models are very sensitive to hyperparameters such as mini-batch 

size in terms of test accuracy. Therefore, from a practical standpoint, it would be of great 

importance to incorporate hyperparameter tuning into the f-DP framework [27]. Inspired by 

[36], another interesting direction is to explore the possible relationship between f-DP 

guarantees and adversarial robustness of neural networks. Given f-DP’s good interpretability 

and powerful toolbox, it is worthwhile investigating whether, from a broad perspective, its 

superiority over earlier differential privacy relaxations would hold in general private 

statistical and machine learning tasks. We look forward to more research efforts to further 

the theory and extend the use of f-DP.

Acknowledgments

We are grateful to David Durfee, Ryan Rogers, Aaron Roth, and Qinqing Zheng for stimulating discussions in the 
early stages of this work. We would also like to thank two anonymous referees for their constructive comments that 
improved the presentation of the paper. This work was supported in part by NSF through CAREER DMS-1847415, 
CCF-1763314, and CCF-1934876, the Wharton Dean’s Research Fund, and NIH through R01GM124111 and 
RF1AG063481.

A: Omitted Details in Section 2

We present Equation (3) as the following proposition, which is given in Section 2 but not in 

the foundational work [18].

Proposition A.1.

If M is f-DP, and S′ = S ∪ {x0}, then

T M ∘ Samplep(S), M ∘ Samplep S′ ⩾ pf + (1 − p)Id .

Proof.

We first write the two distributions M ◦ Samplep(S) and M ◦ Samplep(S′) as mixtures.

Without loss of generality, we can assume S = {x1, …, xn} and S′ = {x0, x1, …, xn}. An 

outcome of the process Samplep when applied to S is a bit string b = b1, …, bn ∈ 0, 1 n. Bit 

bi dependes on whether xi is selected into the subsample. We use Sb ⊆ S to denote the 

subsample determined by b . When each bi is sampled from a Bernoulli(p) distribution 

independently, Sb  can be identified with Samplep(S). Let θb  be the probability that b

appears. More specifically, if k out of n entries of b  is one, then θb = pk(1 − p)n − k. With 

this notation, M ◦Samplep(S) can be written as the following mixture:

M ∘ Samplep(S) = ∑
b ∈ 0, 1 n

θb ⋅ M Sb .
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Similarly, M ◦ Samplep(S) can also be written as a mixture, with an additional bit indicating 

the presence of x0. Alternatively, we can divide the components into two groups: one with x0 

present, and the other with x0 absent. Namely,

M ∘ Samplep S′ = ∑
b ∈ 0, 1 n

p ⋅ θb ⋅ M Sb ∪ x0 + ∑
b ∈ 0, 1 n

(1 − p) ⋅ θb ⋅ M Sb .

Note that Sb ∪ x0  and Sb  are neighbors, i.e. M ◦ Samplep(S′) is the mixture of 

neighboring distributions. The following lemma is the perfect tool to deal with it.

Lemma A.2.

Let I be an index set. For all i ∈ I, Pi and Qi are distributions that reside on a common 

sample space. (θi)i∈I is a collection of non-negative numbers that sums to 1. If f is a trade-off 

function and T(Pi, Qi) ⩾ f for all i, then

T ∑θiPi, (1 − p)∑θiPi + p∑θiQi ⩾ pf + (1 − p)Id .

To apply the lemma, let the index be b ∈ 0, 1 n, Pi be M Sb  and Qi be M Sb ∪ x0 . 

Condition T(Pi, Qi) ⩾ f is the consequence of M being f-DP. The conclusion simply 

translates to

T M ∘ Samplep(S), M ∘ Samplep S′ ⩾ pf + (1 − p)Id,

which is what we want. The proof is complete. □

Proof of Lemma A.2.

Let P = ∑θiPi and Q = (1 − p)∑θiPi + p∑θiQi. Suppose ϕ satisfies EPϕ = α. That is,

∑θiEPiϕ = α .

It is easy to see that

EQϕ = (1 − p)α + p∑θiEQiϕ .

We know that T(Pi, Qi) ⩾ f. Hence EQiϕ ⩽ 1 − f EPiϕ . So

∑θiEQiϕ ⩽ 1 − ∑θif EPiϕ .

Since f is convex, Jensen’s inequality implies

∑θif EPiϕ ⩾ f(∑θiEPiϕ) = f(α) .
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Next we use a figure to justify the claim we made in Section 2.2 that “CLT approximation 

works well for SGD”. Recall that we argued in Section 3 that Algorithms 1 and 2 are min{f, 
f−1}**-DP where

f = pG1/σ + (1 − p)Id ⊗ T .

This function converges to Gμ with μ = ν e1/σ2 − 1 as T → ∞ provided p T ν. In the 

following figure, we numerically compute f (blue dashed) and compare it with the predicted 

limit Gμ (red solid). More specifically, the configuration is designed to illustrate the fast 

convergence in the setting of the second line of Table 1, i.e. noise scale σ = 1.1, final GDP 

parameter μ = 0.57 and test accuracy 96.6%. Originally the algorithm runs 60 epochs, i.e. ≈ 
14k iterations. To best illustrate that convergence appears in early stage, the numerical 

evaluation uses a much smaller Tnumeric = 234, i.e. only one epoch. In order to make the 

final limit consistent, we also enlarge the sample probability to pnumeric so that 

pnumeric ⋅ Tnumeric  remain the same.

We have to remark that when σ is small, μ = ν e1/σ2 − 1 gets large and yields challenges in 

the numerical computation of (pG1/σ + (1 − p)Id)⊗T. We leave rigorous and complete study 

to future work.

B: Omitted Details in Section 3

B.1 Privacy Property of Algorithms 1 and 2

Theorem 3.

Algorithms 1 and 2 are both min{f, f−1}**-DP with f = (pG1/σ + (1 − p)Id)⊗T.

Proof.

The proof is mostly done in the main text, except the composition step. Let V be the vector 

space that all θt live in and M = M ∘ Samplep:Xn × V V  be the gradient update. We have 

already proved (using Proposition A.1) that for both Algorithms 1 and 2, if S′ = S∪{x0}, 

then M satisfies

T M(S), M S′ ⩾ fp ≔ pG1/σ + (1 − p)Id .

Note that we cannot say M is fp-DP because T(M(S′), M(S)) is not necessarily lower 

bounded by fp. So we need a more specific composition theorem than stated in [18].

Theorem 4 (Refined Composition).

Suppose M1 : X → Y, M2 : X × Y → Z satisfy the following conditions for any S, S′ such 

that S′ = S ∪ {x0}:

1. T(M1(S), M(S′)) ⩾ f;

2. T(M2(S, y), M2(S′, y)) ⩾ g for any y ∈ Y.

Bu et al. Page 18

Harv Data Sci Rev. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then the composition M2 ◦ M1 : X → Y × Z satisfies

T M2 ∘ M1(S), M2 ∘ M1 S′ ⩾ f ⊗ g

for any S, S′ such that S′ = S ∪ {x0}.

The theorem can be identically proved as Theorem 3.2 in [18].

Taking Algorithm 1 as an example, since

NoisySGD : Xn V × V × ⋯ × V
S θ1, θ2, …, θT

is simply the composition of T copies of M, the above composition theorem implies that

T NoisySGD(S), NoisySGD S′ ⩾ pG1/σ + (1 − p)Id ⊗ T = f .

Moreover, T(NoisySGD(S), NoisySGD(S′)) ⩾ f−1. The two inequality let us conclude that 

any trade-off function of neighboring distributions must be lower bounded by at least one of 

f and f−1, hence min{f, f−1}, hence min{f, f−1}**. In other words, NoisySGD is min{f, f
−1}**-DP.

For NoisyAdam, we argued that its privacy property is the same as NoisySGD in each 

iteration, so the above argument also applies, and we have the same conclusion. □

B.2 Justifying CLT for Algorithms 1 and 2

The main purpose of this section is to show the following theorem

Theorem 5.

Suppose p depends on T and p T ν. Then we have the following uniform convergence as 

T → ∞

pG1/σ + (1 − p)Id ⊗ T = Gμ,

where μ = ν ⋅ T e1/σ2 − 1 .

This theorem is the corollary of the following more general CLT on composition of 

subsample mechanisms and Lemma B.1 below.

Theorem 6.

Suppose f is a trade-off function such that (1) f(0) = 1, (2) f(x) > 0, for all x < 1 and (3) 

∫0
1 f′(x) + 1 4 dx < + ∞. Let fp = pf+(1−p)Id as usual. Furthermore, assume p T ν as T → 

∞ for some constant ν > 0. Then we have the uniform convergence
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fp⊗ T Gν χ2(f)

as T → ∞, where χ2(f) = ∫0
1 f′(x) 2 dx − 1.

Lemma B.1.

We have

χ2 G1/σ = e1/σ2 − 1.

In order to prove Theorem 6, we need an even more general CLT. The first privacy CLT was 

introduced in [18]. However, that version is valid only when each component trade-off 

function is symmetric, which is not true for pG1/σ + (1 − p)Id. In order to state the general 

CLT that applies to asymmetric trade-off functions, we need to introduce the following 

functionals:

kl(f) ≔ − ∫0
1

log|f′(x)|dx

kl(f) ≔ ∫0
1

|f′(x)| log|f′(x)|dx

κ2(f) ≔ ∫0
1

log2|f′(x)|dx

κ2(f) ≔ ∫0
1

|f′(x)| log2|f′(x)|dx

κ3(f) ≔ ∫0
1

|log|f′(x)||3   dx

κ3(f) ≔ ∫0
1

|f′(x)| ⋅ |log|f′(x)||3   dx .

Theorem 7.

Let fni:1 ⩽ i ⩽ n n = 1
∞  be a triangular array of (possibly asymmetric) trade-off functions and 

assume the following limits for some constants K ⩾ 0 and s > 0 as n → ∞:
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1. ∑i = 1
n kl fni + kl fni K;

2. max1⩽i⩽n kl(fni) → 0, max1 ⩽ i ⩽ nkl fni 0;

3. ∑i = 1
n κ2 fni s2, ∑i = 1

n κ2 fni s2;

4. ∑i = 1
n κ3 fni 0, ∑i = 1

n κ3 fni 0.

Then, we have

lim
n ∞

fn1 ⊗ fn2 ⊗ ⋯ ⊗ fnn(α) = GK /s(α)

uniformly for all α ∈ [0, 1].

Proof of this theorem exactly mimics that of Theorem 3.5 in [18], which we omit here for its 

length and tediousness.

Next, we apply the asymmetric CLT to (pf + (1 − p))⊗T and prove Theorem 6. We start by 

collecting the necessary expressions into the following lemma. All of them are 

straightforward.

Lemma B.2.

Let g(x) = −f′(x) − 1 = |f′(x)| − 1. Then

kl fp = − ∫0
1

log(1 + pg(x)) dx

kl fp = ∫0
1

(1 + pg(x)) log(1 + pg(x)) dx

κ2 fp = ∫0
1

[log(1 + pg(x))]2 dx

κ2 fp = ∫0
1

(1 + pg(x))[log(1 + pg(x))]2 dx

κ3 fp = ∫0
1

[log(1 + pg(x))]3 dx
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κ3 fp = ∫0
1

(1 + pg(x))[log(1 + pg(x))]3 dx .

Proof of Theorem 6.

It suffices to compute the limits in the asymmetric Central Limit Theorem 7, namely

T ⋅ kl fp + kl fp , T ⋅ κ2 fp , T ⋅ κ2 fp , T ⋅ κ3 fp  and T ⋅ κ3 fp .

Since T ~ p−2, we can consider p−2 kl fp + kl fp  and so on.

As in Lemma B.2, let g(x) = −f′(x)−1 = |f′(x)|−1. The assumption expressed in terms of g is 

simply

∫0
1

g(x)4 dx < + ∞ .

In particular, it implies |g(x)|k is integrable in [0, 1] for k = 2, 3, 4. In addition, by Lemma 

B.2,

χ2(f) = ∫0
1

f′(x) 2 dx − 1 = ∫0
1

f′(x) + 1 2 dx = ∫0
1

g(x)2 dx .

For the functional kl, by Lemma B.2,

lim
p 0+

1
p2 kl fp + kl fp = lim

p 0+∫0

1
g(x) ⋅ 1

p log(1 + pg(x))dx

= ∫
0

1
g(x) ⋅ lim

p 0+
1
p log(1 + pg(x))dx

= ∫
0

1
g(x)2   dx = χ2(f)

(9)

Changing the order of the limit and the integral in (9) is approved by the dominated 

convergence theorem. To see this, notice that log(1 + x) ⩽ x. The integrand in (9) satisfies

0 ⩽ g(x) ⋅ 1
p log(1 + pg(x)) ⩽ g(x)2 .

We already argued that g(x)2 is integrable, so it works as a dominating function and the limit 

is justified. When p T ν, we have

T ⋅ kl fp ν2 ⋅ χ2(f) .

So the constant K in Theorem 7 is ν2 · χ2(f).
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For the functional κ2 we have

1
p2κ2 fp = ∫0

1 1
p log(1 + pg(x))

2
 dx .

By a similar dominating function argument,

lim
p 0+

1
p2κ2 fp = lim

p 0+
1
p2κ2 fp = ∫0

1
g(x)2 dx = χ2(f) .

Adding in the limit p T ν, we know s2 in Theorem 7 is ν2 · χ2(f).

The same argument involving |g(x)|3 and g(x)4 applies to the functional κ3 and κ3
respectively and yields

lim
p 0+

1
p3κ3 fp = lim

p 0+
1
p3κ3 fp = ∫0

1
g(x)3 dx .

Note the different power in p in the denominator. It means κ3(fp) = o(p2) and hence T·κ3(fp) 

→ 0 when p T ν.

Hence all the limits in Theorem 7 check and we have a Gμ limit where

μ = K /s = s = ν2 ⋅ χ2(f) = ν ⋅ χ2(f) .

This completes the proof. □

We finish the section by proving the formula in Lemma B.1.

Proof of Lemma B.1.

The best calculation is done via better understanding. We point out that the functional χ2 is 

doing nothing more than computing the famous χ2-divergence. Recall that Neyman χ2-

divergence (reverse Pearson) of P, Q is defined as

χ2(P‖Q) ≔ EP
dQ
 dP − 1

2

Lemma B.3.

If f = T(P, Q) and f(0) = 1, f(x) > 0, for all x < 1, then χ2(f) = χ2(P∥Q).

This lemma is a straightforward corollary of Proposition B.4 in [18], which gives 

expressions for all F-divergence12. In particular, if f = T(P, Q) and f(0) = 1, f(x) > 0, ∀x < 1, 

then F-divergence of P, Q can be computed from their trade-off function as follows:
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DF (P‖Q) = ∫0
1

F |f′(x)|−1 ⋅ |f′(x)|dx .

Neyman χ2-divergence corresponds to F (t) = 1
t − 1, so

χ2(P‖Q) = ∫0
1 1

|f′(x)|−1 − 1 ⋅ |f′(x)| dx

= ∫0
1

f′(x) 2 dx − ∫0
1

|f′(x)| dx

= ∫0
1

f′(x) 2 dx − 1.

With this formula, computing χ2(G1/σ) is straightforward:

χ2 G1/σ = χ2 N 1
σ , 1 ‖N(0, 1) = e1/σ2 − 1.

B.3 Proof of Theorems 1 and 2

Recall that Theorems 1 and 2 compare our CLT approach to moments accountant (MA) 

from two different perspectives: f-DP perspective in Theorem 1 and (ε, δ)-DP perspective in 

Theorem 2. We first show that Theorem 1 can be derived from Theorem 2. Then we prove a 

refined version of Theorem 2. To be more precise about the statement, let us first expand the 

notations used in the main text.

Let δMA(ε; σ, p, T) be the δ value computed by moment accountant method (described in 

detail below) for NoisySGD algorithm with subsampling probability p, iteration T and noise 

scale σ. Similarly, δCLT(ε; σ, ν) denotes the δ value computed for the same algorithm using 

central limit theorem assuming p T ν.

Let fT (α) = supε ⩾ 0 fε, δMA(ε)(α). It is supported by fεT , δMA εT  at α. Theorem 2 says this 

supporting function is smaller than that of GμCLT at α by a strict gap. Taking the limit, lim 

supT→∞ fT (α) has at least that much gap from GμCLT α , which proves Theorem 1.

Theorem 2 is a straightforward corollary of the following proposition. Note that the 

inequality is reversed compared to the statement of Theorem 2 so that the gap is positive, 

which also turns lim sup into lim inf.

Proposition B.4.

lim inf  
T ∞

δMA ε; σ, ν
T , T − δCLT(ε; σ, ν) ⩾ eε ⋅ Φ − ε

μ − μ
2

12We use capital F to avoid confusion with the notation of trade-off function.
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where μ = ν ⋅ e1/σ2 − 1.

Let us first describe how the two methods compute δ from ε.

δnMA(ε; σ, p, T ) ≔ inf
λ ∈ orders

exp  T ⋅ αGM(λ; σ, p) − λε

δMA(ε; σ, p, T ) ≔ inf
λ > 0

exp  T ⋅ αGM(λ; σ, p) − λε

where αGM(λ; σ, p) is a scaled version of the Rényi divergence of Gaussian mixtures. More 

specifically, let P = N(0, 1) and Q = N 1
σ , 1 . We further denote the Gaussian mixture pQ + 

(1 − p)P by GMp,σ. The

αGM(λ; σ, p) = max λDλ + 1 GMp, σ‖P , λDλ + 1 P‖GMp, σ .

In [3], it has been shown that Algorithm 1 (hence also the Adam variant, Algorithm 2) with 

subsampling probability p, iteration T and noise scale σ is (ε, δ)-DP for each ε ⩾ 0 if δ = 

δMA(ε; σ, p, T). To evaluate the infimum, the domain is discretized13. This results in the 

numerical moment accountant method that is actually implemented. Since δnMA(ε; σ, p, T) 

⩾ δMA(ε; σ, p, T), Algorithm 1 is also (ε, δ)-DP with δ = δnMA(ε; σ, p, T).

On the other hand, δCLT(ε; σ, ν) is obtained by first observing Algorithm 1 is asymptotically 

μCLT-GDP with μCLT = ν ⋅ e1/σ2 − 1 and then convert GDP to (ε, δ)-DP via Equation (6), 

i.e. Algorithm 1 asymptotically satisfies (ε, δ)-DP where

δ = δCLT(ε; σ, ν) = 1 + GμCLT* −eε .

We have just explained how MA and CLT works. Next we prove Proposition B.4

Proof of Proposition B.4.

Let fT = (pGμ+(1−p)Id)⊗T. We need a lemma (whose proof is provided later) that relates the 

Rényi divergence to the trade-off function fT.

Lemma B.5.

T ⋅ αGM(λ; σ, p) ⩾ log∫0
1

|fT′ (x)|λ + 1 dx .

Let xT ∈ (0, 1) be the point such that fT′ xT = − eε (or xT ∈ ∂fT* −eε  if readers worry about 

diffesrentiability). We have

13Code in tensorflow/privacy discretizes at [1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5, 5, 6, 7, …, 63, 64, 128, 256, 512].
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1 + fT* −eε = sup
0 ⩽ x ⩽ 1

1 − fT (x) − eεx = 1 − fT xT − eεxT

It is clear that |fT′ (x)| ⩾ eε for 0 ⩽ x ⩽ xT.

On the other hand, using Lemma B.5, we get

δMA(ε; σ, p, T ) = inf
λ > 0

exp  T ⋅ αGM(λ; σ, p) − λε

⩾ inf
λ > 0

e−λε∫0
1

|fT′ (x)|λ + 1 dx

> inf
λ > 0∫0

xT
|fT′ (x)|λ + 1e−λε dx

= inf
λ > 0∫0

xT
|fT′ (x)| ⋅ |fT′ (x)|λe−λε dx

⩾ inf
λ > 0∫0

xT
|fT′ (x)| ⋅ eε λe−λε dx

= fT (0) − fT xT
= 1 − fT xT
= 1 − fT xT − eεxT + eεxT
= 1 + fT* −eε + eεxT .

In summary, we have

δMA(ε; σ, p, T ) > 1 + fT* −eε + eεxT . (10)

Setting p = ν
T , we would like to take limit on both sides of (10). First notice that fT 

converge pointwise to GμCLT, which we have already proven in Appendix B.2. The limit of 

xT is taken care of in the following lemma:

Lemma B.6.

lim
T ∞

xT = x* ≔ Φ − ε
μCLT

−
μCLT

2 .

Combining these results, we can take limits on both sides of (10):

lim inf 
T ∞

δMA(ε; σ, p, T ) ⩾ lim
T ∞

1 + fT* −eε + eεxT

= 1 + GμCLT* −eε + eεx*

= δCLT(ε; σ, ν) + eε ⋅ Φ − ε
μCLT

−
μCLT

2 .

This finishes the proof. □
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Proof of Lemma B.5.

The Rényi divergence can also be computed from the trade-off function, just like the χ2-

divergence. In fact, under the same assumptions as in Lemma B.1, we have

Dα(Q‖P ) = 1
α − 1log∫0

1
|f′(x)|α − 1 dx .

Alternatively,

λDλ + 1(Q‖P ) = log∫
0

1
|f′(x)|λ dx . (11)

This identity will be the bridge between αGM and fT.

On one hand, αGM(λ; σ, p) is the maximum of two Rényi divergences, so

αGM(λ; σ, p) ⩾ λDλ + 1(pQ + (1 − p)P P )

Consequently,

T ⋅ αGM(λ; σ, p) ⩾ TλDλ + 1(pQ + (1 − p)P‖P )
= λDλ + 1 (pQ + (1 − p)P )T‖PT .

The last step is the tensorization identity of Rényi divergence.

On the other hand, notice that pGμ + (1 − p)Id = T(P, GMp,σ) where we continue the use of 

notations P = N(0, 1), Q = N 1
σ , 1  and GMp,σ = pQ + (1 − p)P. We have

fT = pGμ + (1 − p)Id ⊗ T = T (P , (pQ + (1 − p)P )) ⊗ T = T PT , (pQ + (1 − p)P )T

Using (11), we have

T ⋅ αGM(λ; σ, p) ⩾ λDλ + 1 (pQ + (1 − p)P )T‖PT

= log∫0
1

|fT′ (x)|λ dx .

Proof of Lemma B.6.

By definition, fT′ xT = − eε. The convexity of fT implies ∇fT* −eε = xT .

Since fT converges uniformly to GμCLT in [0, 1], we have uniform convergence fT* GμCLT* . 

By convexity of these functions, the convergence also implies the convergence of derivatives 

(See Theorem 25.7 of [51]), namely,
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∇fT* ∇GμCLT* .

Therefore,

xT = ∇fT* −eε ∇GμCLT* −eε .

Let x* = ∇GμCLT* −eε  be the limit. Using the convexity again, we have

−eε = GμCLT′ x* .

We can solve for x* using the expression of Gμ (6). After some algebra, we have

x* = Φ − ε
μCLT

−
μCLT

2 .

The proof is complete. □
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Figure 1: 
An illustration of the CLT approach in the f-DP framework and the moments accountant in 

the (ε, δ)-DP framework. NoisyOptimizer(σ, …) using the moments accountant gives the 

same privacy guarantees in terms of (ε, δ)-DP as NoisyOptimizer(σ, …) using the CLT 

approach (the ellipses denote omitted parameters). Note that the duality formula (6) is used 

in solving μCLT from (7).
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Figure 2: 
Tradeoffs between ε and δ for both CLT and MA, which henceforth denotes the moments 

accountant. The settings follows the MNIST experiment in Section 4 with σ = 0.7, p = 

256/60000. The bottom two plots assume δ = 10−5. Note ε and δ in the CLT are related via 

(6) with μ = μCLT. The bottom right plot is consistent with the conclusion σ > σ shown in the 

cloud icon of Figure 1.
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Figure 3: 
Comparisons between the two ways of privacy analysis on MNIST in terms of the tradeoff 

between type I and type II errors, in the same setting as Table 1. The plots are different from 

Figure 7 in [18]. The (ε, δ)-DP guarantees are plotted according to (1). The blue regions in 

the plots from the second row correspond to all pairs of (ε, δ) computed by MA. The blue 

regions are not noticeable in the third row.
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Figure 4: 
Experimental results from one run of NoisySGD on MNIST with different noise scales but 

the same (ε, δ)-DP guarantees. The top plots use p = 256/60000, η = 0.15, R = 1.5, and σ = 

1.3, σ = 1.06. The CLT approach with σ = 1.06 and the moments accountant with σ = 1.3 give 

(1.34, 10−5)-DP at the 20th epoch (μCLT = 0.35). The bottom plots use the same parameters 

except for σ = 0.7, σ = 0.638, and η = 0.15. Both approaches give (8.68, 10−5)-DP at epoch 

70 (μCLT = 1.78). The right plots show the privacy loss during the training process in terms 

of the ε spending with respect to δ = 10−5.
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Figure 5: 
(pG1/σ + (1 − p)Id)⊗T (blue dashed) is numerically computed and compared with the GDP 

limit (red solid) predicted by CLT. The two are almost identical at merely epoch one.
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Table 1:

Experimental results for NoisySGD and their privacy analyses on MNIST. The accuracy is averaged over 10 

independent runs. The hyperparameters in the first three rows are the same as in [2]. The μ in the 6th row is 

calculated using (5), which carries over to the 7th row via (6) with δ = 10−5. The number of epochs is equal to 

T × mini-batch size/n = pT.

η R σ Epochs Test accuracy (%) CLT μ CLT ε MA ε

0.25 1.5 1.3 15 95.0 0.23 0.83 1.19

0.15 1.0 1.1 60 96.6 0.57 2.32 3.01

0.25 1.5 0.7 45 97.0 1.13 5.07 7.10

0.25 1.5 0.6 62 97.6 2.00 9.98 13.27

0.25 1.5 0.55 68 97.8 2.76 14.98 18.72

0.25 1.5 0.5 100 98.0 4.78 31.12 32.40
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Table 2:

Results for NoisySGD on the Adult income dataset. The ε parameters are with respect to δ = 10−5.

Models Epochs Test accuracy (%) CLT μ CLT ε MA ε

private networks 18 84.0 2.03 10.20 14.70

non-private networks 20 84.5 — — —

kNN [15] — 79.7 — — —

naive Bayes — 83.9 — — —

voted ID3 [49] — 84.4 — — —

C4.5 [50] — 84.5 — — —
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Table 3:

Results for NoisyAdam on the IMDB dataset, with δ = 10−5 used in the privacy analyses.

Models Epochs Test accuracy (%) CLT μ CLT ε MA ε

private networks 9 83.8 2.07 10.43 15.24

non-private networks 20 84.7 — — —

LSTM-RNN [30] 10 85.4 — — —
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Table 4:

Results for NoisyAdam on the MovieLens 1M dataset, with δ = 10−6 used in the privacy analyses. CF stands 

for collaborative filtering.

Models Epochs RMSE CLT μ CLT ε MA ε

private networks 20 0.915 1.94 10.61 15.39

non-private networks 20 0.893 — — —

SVD — 0.873 — — —

NMF — 0.916 — — —

user-based CF [52] — 0.923 — — —

global average — 1.117 — — —
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