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Abstract

CIBERSORTx is a suite of machine learning tools for the assessment of cellular abundance and 

cell type-specific gene expression patterns from bulk tissue transcriptome profiles. With this 

framework, single-cell or bulk-sorted RNA sequencing data can be used to learn molecular 

signatures of distinct cell types from a small collection of biospecimens. These signatures can then 

be repeatedly applied to characterize cellular heterogeneity from bulk tissue transcriptomes 

without physical cell isolation. In this chapter, we provide a detailed primer on CIBERSORTx and 

demonstrate its capabilities for high-throughput profiling of cell types and cellular states in normal 

and neoplastic tissues.
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1 Introduction

Tissue composition is a major determinant of phenotypic variation and a key factor 

influencing disease outcomes. For example, in malignant tumors, dynamic interactions 

between heterogeneous subpopulations of cancer cells, stromal elements, and immune 

subsets differentially impact patient survival [1, 2] and can be leveraged therapeutically [3]. 

Common assays for studying cellular heterogeneity, such as flow cytometry and 

immunohistochemistry, require fluorescently labeled antibodies to mark and distinguish 

diverse cell types of interest. Despite their utility, these approaches are limited by the 

availability of highly specific antibodies and by the number of cell types that can be 
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simultaneously assessed. While single-cell RNA sequencing (scRNA-seq) has recently 

emerged as a powerful strategy for resolving cellular heterogeneity at high-resolution and 

without prior knowledge [4–7], it remains imprac-tical for large-scale analyses and cannot 

be applied clinically to formalin-fixed, paraffin embedded (FFPE) tissue biopsies.

To complement these approaches, especially in settings where tissue is limited, fixed, or 

challenging to disaggregate, computational methods for dissecting cellular composition 

directly from bulk tissue gene expression profiles (GEPs) have been previously described 

[8–20]. These techniques for “digital cytometry” mathematically deconvolve RNA 

admixtures into their component cell types, allowing significant new insights into bulk tissue 

expression profiles [21]. Our group previously developed CIBERSORT, an in silico strategy 

that employs a machine learning model to enumerate cell composition from bulk tissue 

GEPs [16]. Like other deconvolution techniques [12, 15, 17, 22], CIBERSORT relies on a 

specialized expression matrix of cell type-specific “barcode” genes, often called a “signature 

matrix,” which provides a reference atlas of known cellular signatures for the deconvolution 

procedure.

To improve the performance and versatility of digital cytometry, we recently extended 

CIBERSORT into a new computational framework called CIBERSORTx [23]. Unlike 

previous methods (Table 1), CIBERSORTx can (1) leverage scRNA-seq-derived reference 

profiles for bulk tissue dissection, (2) overcome technical variation across different 

platforms (e.g., scRNA-seq, bulk RNA-seq, microarrays) and tissue preservation techniques 

(e.g., fresh/frozen vs. FFPE), and (3) digitally “purify” cell-type-specific expression profiles 

from bulk tissues without physical cell isolation. In this chapter, we describe each of these 

new features and demonstrate how CIBERSORTx can be broadly applied to dissect cellular 

heterogeneity from complex tissues without antibodies, tissue dissociation, or viable cells.

2 Materials

CIBERSORTx is available as an online tool with a user-friendly interface that does not 

require prior bioinformatics training or programming experience (http://

cibersortx.stanford.edu). Its key functionalities are divided into three main components (Fig. 

1):

1. Creation of a custom signature matrix from scRNA-seq or bulk sorted RNA-seq 

(or microarray) data.

2. Estimation of cell type composition in bulk tissue GEPs.

3. Imputation of cell type-specific expression profiles from bulk tissue GEPs.

In the following sections, we describe each component in detail and provide guidance on 

how to design and execute a CIBERSORTx analysis. All datasets used in this chapter are 

available at http://cibersortx.stanford.edu, under “Menu” → “Download.” The website also 

offers a series of dedicated tutorials covering a wide range of potential use cases and 

applications (under “Menu” → “Tutorial”).
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3 Methods

3.1 Construction of a Custom Signature Matrix from scRNA-Seq Data

CIBERSORTx requires the use of marker gene reference profiles to enumerate cell subsets 

in bulk tissue samples. Commonly referred to as a “signature matrix,” marker gene profiles 

can be derived from a variety of sources, including scRNA-seq data and sorted cell 

populations profiled by bulk RNA-seq or microarrays [21, 23]. We previously described a 

microarray-derived signature matrix for profiling 22 functionally defined human immune 

cell types, called LM22 [16]. With scRNA-seq, it is now possible to create a signature 

matrix that captures all major cell subsets in a tissue without complex sorting experiments 

(see Note 1). This can enable large-scale investigation of novel or poorly understood 

phenotypic states in bulk tissue GEPs. In malignancies, cellular states of interest may 

include subpopulations of activated, resting, or exhausted T cells [24–26], cancer-associated 

fibroblasts [27], or cancer cells [28, 29], including tumor initiating cells or cancer stem cells 

[30]. As further described below, scRNA-seq can also provide a powerful means of 

validating reference signatures through the use of mixture samples created from single-cell 

transcriptomes.

In the next section, we describe how to create a signature matrix from scRNA-seq data. 

Other platforms are described in detail elsewhere (see tutorials 6 and 7 at http://

cibersortx.stanford.edu/tutorial.php).

3.1.1 Input File—In order to create a custom signature matrix from scRNA-seq data, 

CIBERSORTx requires a single cell reference matrix file. This file consists of a tab-

delimited scRNA-seq expression matrix saved as. txt or .tsv, where each row is a gene and 

each column is a single-cell transcriptome. The sum of the expression of all genes for a 

given cell should not be zero. Gene names must populate the first column of the file. 

CIBERSORTx will append unique numerical identifiers to redundant gene symbols, but we 

recommend that users remove any redundant gene names prior to uploading their file. In 

addition, each single cell must be assigned a cell phenotype by the user in row 1 (e.g., “CD8 

T cell,” “B cell”), and there should be at least three cells per phenotype. The same cell label 

should be used for each cell belonging to a particular phenotype, and periods should be 

avoided unless employed to separate the phenotype label from a numerical label. For 

example, users can label the cells, “CD8 T cell”, “CD8 T cell.1”, or “CD8 T cell.2”, but not 

“CD8 T.cell” or “CD8.T.cell”. Suffixes separated by a period will be removed during the 

construction of the signature matrix. Any cells without a cell label (i.e., unassigned) should 

be excluded before uploading the reference matrix file.

Importantly, clustering and de novo identification of cell types from scRNA-seq data are not 

currently supported by CIBERSORTx. As such, all cell labels must be provided by the user. 

There are several software tools available to identify cell phenotypes for generating such cell 

labels when starting from unlabeled scRNA-seq data [31–37] (also, see Note 2). For more 

information about the formatting of the scRNA-seq reference matrix file, see Notes 3–5.

In the following sections, we use a publicly available scRNA-seq dataset consisting of 7688 

human peripheral blood mononuclear cells (PBMCs) to illustrate the process of creating a 
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single-cell-derived signature matrix with CIBERSORTx. This dataset is available for 

download from 10 Genomics (https://www.10xgenomics.com/) and from the CIBERSORTx 

website (“Menu” → “Download” → “10x scRNA-Seq reference matrices (zip)” → 
“Fig2e-5PBMCs_scRNAseq_matrix.txt”). By applying Seurat [31] along with prior 

knowledge of key marker genes, we previously identified eight major cell types in this 

dataset [23]: NK cells, monocytes, B cells, NKT cells, CD4 T cells, CD8 T cells, dendritic 

cells, and megakaryocytes (Fig. 2a).

3.1.2 File Upload—Once the single-cell reference matrix file is formatted according to 

the instructions above, it may be uploaded by selecting “Menu” → “Upload files” and “+ 

Add file”. The user will then be able to select their input file, provide a title, and select the 

“File Type.” It is important to specify the correct file type to ensure that the input file 

appears in the appropriate drop-down menu when configuring the CIBERSORTx analysis. 

For the current application, select the file type, “Single Cell Reference Matrix,” under “Cell 
Fractions Module.”

3.1.3 Building the scRNA-Seq Signature Matrix—Having uploaded the single-cell 

expression matrix, we can now select “Menu” → “Run CIBERSORTx.” We choose the 

analysis module, “1. Create Signature Matrix,” the “Custom” analysis mode, and “scRNA-
seq” as our input data type (Fig. 2b).

In the “Single cell reference matrix file” drop-down menu, our newly uploaded file is 

available for selection. We provide a name for the signature matrix we are about to create 

under “Custom sig file name.” Providing a file name is required in order to identify the 

signature matrix in future analyses. See Note 6 for addition details on parameter 

configuration. Once the single-cell reference file is uploaded and the CIBERSORTx job is 

configured, click “Run” to start creating the signature matrix.

The output of the job will contain (1) the new signature matrix saved as a .txt file with the 

file name provided by the user, (2) the reference sample and phenotypic classes files created 

by CIBERSORTx as an intermediate step to build the signature matrix, and (3) a heat map of 

the signature matrix that is organized to show patterns of differentially expressed genes (Fig. 

2c). The newly created signature matrix will be automatically available from the “Signature 
matrix file” drop-down menu for future jobs.

3.1.4 Validation of the scRNA-Seq Signature Matrix—When creating a new 

signature matrix, it is critical to evaluate its reliability for resolving each cell subset in bulk 

tissue GEPs. Below we provide some suggestions on how users can validate the performance 

of a single-cell-derived signature matrix before applying it to real tissue specimens.

First, it is important to check whether known marker genes are present and highly expressed 

in the correct cell subsets. For example, MS4A1, a B cell marker gene that encodes CD20, is 

expected to be selected as a marker gene for the B-cell population in our running example. If 

the same cell subsets have been profiled elsewhere, either as bulk sorted populations or by 

scRNA-seq, one can also evaluate the generalizability of genes in the signature matrix for 

correctly classifying each cellular phenotype (e.g., see Newman et al. [16]).
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Second, if scRNA-seq data are used to build a signature matrix, it is straightforward to 

characterize its performance using synthetic tissues created from single-cell transcriptomes. 

To ensure an unbiased assessment, these source scRNA-seq transcriptomes used for the 

creation of a synthetic tissue should be held out from the creation of the signature matrix. 

Moreover, to avoid violating linearity assumptions, each single-cell transcriptome should be 

represented in nonlog linear space prior to creating synthetic mixtures. By allowing for fine-

grained control over the composition of each mixture, this strategy allows one to 

systematically evaluate both proportion estimation and cellular detection limits without the 

cost and time associated with profiling new samples with associated ground-truth 

expectations of compositional representation.

Finally, the gold standard approach for validating a signature matrix is to compare 

deconvolution performance against orthogonal methods, such as flow cytometry or 

immunohistochemistry (see Note 7). This is done by imputing the cell fractions of a bulk 

GEP dataset with CIBERSORTx and by comparing the imputed cell proportions with known 

ground truth proportions in each sample (for details of this process, see Subheading 3.2).

3.2 Impute Cell Fractions with CIBERSORTx

In this section, we demonstrate how to apply a scRNA-seq-derived signature matrix to 

resolve cellular composition in 12 whole blood RNA-seq profiles (GEO accession number: 

GSE127813). This dataset is available from the CIBERSORTx website by selecting “Menu” 

→ “Download” → “Expression Datasets (zip)” (“Fig2b-WholeBlood_RNAseq.txt”). 

Importantly, for each of these 12 samples, ground truth cell proportions determined by flow 

cytometry and complete blood counts are available (“Fig2b_ground_truth_-
whole_blood.txt” under “Expression dataset (zip)” in “Download”).

We have preprocessed the mixture dataset into transcript-per-million (TPM) space (also, see 
Note 8). Like signature matrices, all bulk mixture GEPs should be in linear space (not log2) 

without negative or missing values. In addition, for optimal performance, the signature 

matrix and mixture files should be normalized identically. The mixture file should be 

uploaded as described for the single-cell reference matrix file in Subheading 3.1.2 (i.e., by 

selecting “Upload Files” under the “Menu” tab). When uploading the file, choose “Mixture” 

under “All Modules” as the file type.

Having generated a signature matrix in Subheading 3.1.3 and uploaded our mixture file, we 

may now select “Menu” → “Run CIBERSORTx” and choose the “2. Impute Cell Fractions” 

analysis module and “Custom” analysis mode (Fig. 3a). In the “Signature matrix file” drop-

down menu, we select the file that we previously generated (Subheading 3.1.3).

When configuring the analysis, we have the option of selecting “Batch correction.” An 

important caveat with the precursor of CIBERSORTx is that it did not address platform-

specific variation (e.g., between scRNA-seq and RNA-seq). In the next section, we describe 

how CIBERSORTx addresses this important issue.

3.2.1 Cross-Platform Deconvolution—Owing to technical variation between different 

platforms and between different tissue-preservation techniques (e.g., FFPE vs. fresh-frozen 
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tissues), we have implemented a batch correction method within CIBERSORTx to allow the 

application of a signature matrix derived from one protocol to bulk mixtures GEPs derived 

from another protocol. Batch correction is available in two modes: (1) bulk, or B-mode, and 

(2) single-cell, or S-mode. A decision tree to help users identify the mode that is best suited 

for their analysis is provided in Fig. 3b. Table 2 lists examples of signature matrices and 

mixtures pairs that would require batch correction, and the type of batch correction that we 

recommend be applied. Deconvolving these datasets without batch correction may lead to 

cell types being misestimated due to uncorrected technical variation. For batch effects within 

the mixture or scRNA-seq datasets, see Notes 9 and 10.

B-Mode Batch Correction: B-mode—or bulk-mode—batch correction is appropriate for 

deconvolution when a signature matrix is derived from bulk sorted cell populations or from 

scRNA-seq data generated by plate-based scRNA-seq protocols without unique molecular 

identifiers (UMIs) (e.g., SMART-Seq2, which is more similar to bulk RNA-seq). B-mode 

requires a minimum of three mixture GEPs, but we recommend at least ten mixture samples 

for optimal performance. B-mode will adjust the mixture dataset so that it is in the same 

space as the signature matrix. The adjusted mixtures will then be used for estimating the cell 

fractions.

S-Mode Batch Correction: S-mode—or single-cell mode—batch correction is tailored for 

single cell-derived signature matrices generated from droplet-based protocols or protocols 

that utilize UMIs, such as 10× Chromium [38], InDrop [5], or Drop-Seq [6]. Unlike 

protocols that profile full transcripts (e.g., bulk RNA-seq and SMART-Seq2), these 

technologies capture gene expression data from the 3′ or 5′ end of each transcript and 

employ UMIs to remove PCR duplications and to assign transcripts to individual cells. 

When running S-mode, an additional input file is required, which is the single-cell reference 

matrix that was used to build the signature matrix. The drop-down menu for selecting this 

file automatically appears when the user selects S-mode as an option. S-mode also requires a 

minimum of three samples in the mixture dataset, but at least ten are recommended.

Unlike B-mode, which adjusts the mixture dataset, S-mode adjusts the signature matrix, 

which is then used to estimate the cell fractions. The resulting adjusted output will be 

available for download after running a CIBERSORTx job with batch correction.

3.2.2 Configuring a CIBERSORTx Fractions Job—Since the signature matrix that 

we created in Subheading 3.1.3 is derived from a UMI-based scRNA-seq dataset generated 

on the 10× Chromium platform, we select “S-mode batch correction.” We then select the 

corresponding single-cell reference profile that we used for building the signature matrix.

CIBERSORTx provides an empirical p-value to evaluate deconvolution performance. The p-

value is calculated by comparing imputed fractions in a given mixture dataset with fractions 

that would have been obtained by random chance. The higher the number of permutations, 

the more reliable the p-value estimate will be. For our analysis, we set the number of 

permutations to 100.

Having configured the CIBERSORTx Fractions jobs, press “Run.”
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Once the job is complete, results will appear in tabular format as a heatmap. A stacked bar 

plot representation showing the distribution of cell fractions for each mixture sample will 

also be produced.

3.2.3 Evaluation of Estimated Cell Fractions—Since ground truth cell proportions 

are available for the 12 blood samples analyzed in Subheading 3.2.2 through the use of auto-

mated blood counting and flow cytometric immunophenotyping, we can directly assess the 

accuracy of our deconvolution results. Doing so can provide insights into the robustness of 

the signature matrix and the impact of batch correction. Figure 3c shows the distribution of 

Pearson correlations between the fractions inferred by CIBERSORTx and ground truth 

proportions for each cell type, both before and after S-mode batch correction (also, see Note 

11). Clearly, batch correction provides a substantial improvement in the average Pearson 

correlation across all five cell types. For example, while B cells failed to be imputed without 

batch correction (Fig. 3d, left), after S-mode batch correction, B cells are successfully 

imputed (Fig. 3d, right).

3.3 Impute Cell-Type-Specific Gene Expression with CIBERSORTx

In this section, we review how to use CIBERSORTx for imputing cell type-specific 

transcriptomes from bulk tissue GEPs without the need for physical cell sorting. To impute 

cell type-specific gene expression profiles, select the analysis module, “3. Impute gene 
expression” and “Custom” analysis mode (Fig. 4a). Two distinct modes are available:

Group-mode: This approach infers a representative transcriptome profile for each cell type 

in the signature matrix from a group of bulk tissue transcriptomes (Fig. 4b). Group mode is 

useful for learning context-dependent changes in a cell’s expression profile when a 

biological class (or grouping) is already known. For example, one can apply group-mode to 

study cell-type specific transcriptional differences between responders and nonresponders to 

a therapy, or between tumor samples and the adjacent normal tissues.

High-resolution: This approach imputes cell-type specific GEPs from bulk tissues at 

sample-level resolution. As a result, the output of high-resolution mode is an expression 

matrix for each cell type with the same number of samples as the input mixtures (Fig. 4c). 

High-resolution mode is useful for exploring cell type expression variation without prior 

knowledge of biological or functional groupings. It can be used, for example, to investigate 

cell type specific gene expression in tumors in relation to patient survival or for identifying 

novel transcriptional states.

3.3.1 Group-Mode Expression Imputation—CIBERSORTx group-mode imputes 

cell type-specific gene expression profiles from a group of bulk tissue GEPs and will learn a 

single representative transcriptome profile for each cell type in the signature matrix across 

the set of mixture samples being considered. The required inputs for group-mode are a 

signature matrix and a mixture file in the same format as described in Subheadings 3.1.1 and 

3.2. Optionally, users may wish to merge the cell types in the signature matrix into broader 

phenotypic classes in order to reduce the number of distinct cell subsets to deconvolve (see 
Note 12). To do this, CIBERSORTx supports the use of a “Merged class file,” which is a 

Steen et al. Page 7

Methods Mol Biol. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simple text file consisting of one row with the new class labels separated by tabs. The 

“Merged class file” described allows users to group cell types in the signature matrix into a 

broader set of phenotypic classes. This makes it easy to reduce the number of evaluable cell 

types in cases where the number of mixture samples is limiting. The order of the labels must 

match the ordering of cell types in the signature matrix, and a label must be provided for 

every cell type in the signature matrix. If a merged class file is not provided, all cell types in 

the signature matrix will be used.

The main output of a CIBERSORTx group-mode analysis is a gene expression matrix 

(nonlog) with genes as rows and cell types as columns (Fig. 4b). Importantly, CIBERSORTx 

employs an adaptive noise filter that eliminates unreliably estimated genes for each cell type. 

Both the filtered and unfiltered results are saved to file. The unfiltered results contain all of 

the genes that were present in the input mixture file, while the filtered results contain only 

genes that could be reliably imputed for a given cell type. The more abundant a cell type, the 

more genes are imputed for that cell type [23].

Tutorial 4 on the CIBERSORTx website provides detailed instructions for setting up a 

group-mode analysis (also, see Note 13).

3.3.2 High-Resolution Expression Imputation—CIBERSORTx high-resolution 

mode derives cell type-specific gene expression profiles at the sample-level. Although the 

input requirements are the same as group-mode, the output is an expression matrix for each 

cell type rather than a single representative transcriptome profile per cell type (Fig. 4c). 

Tutorial 7 on the CIBERSORTx website provides detailed instructions for running high-

resolution mode. We summarize key steps below.

3.3.3 Input Files—To illustrate CIBERSORTx high-resolution mode, we use a gene 

expression matrix of 150 diffuse large B-cell lymphoma (DLBCL) samples [39]. The file is 

available from the CIBERSORTx website by selecting “Menu” → “Download” and “High 
Resolution GEPs -DLBCL (Supp. Fig. 11) (zip)” (“SuppFig11-DLBCL_CHOP_Lenz-
arrays-bulktumors.MAS5.txt”). Users may upload the file by selecting “Menu” → “Upload 
Files” and “Mixture” as the file type (for details on the file upload process, see Subheading 

3.1.2).

High-resolution mode is computationally intensive. Therefore, to reduce running times, we 

recommend that users provide a “gene subset file” consisting of a list of at most 1000 genes 

(see Note 14 for full-transcriptome analyses). DLBCL can be divided into two major 

molecular subtypes that are strongly associated with distinct clinical outcomes [40]: 

Activated B-cell (ABC) DLBCL and Germinal Center B-cell (GCB) DLBCL. Using the file 

type, “Gene subset – High-Resolution Mode,” we upload a list of genes that are known to be 

differentially expressed between the two classes and that are primarily associated with B 

cells. The corresponding “gene subset file” is available in “High Resolution GEPs - DLBCL 
(Supp. Fig. 11) (zip)” (“SuppFig11-DLBCL-GCBABC-genes.txt”).
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3.3.4 Configure a High-Resolution Job—Once all required input files are uploaded, 

select “Menu” → “Run CIBERSORTx,” then “3. Impute Cell Expression,” “Custom,” and 

“High-Resolution.”

In this example, we will use “LM22 (22 immune cell types)” [16], a signature matrix that is 

available by default in the signature matrix drop-down menu. Select “LM10 merged into 10 
major cell subsets,” which is available in the “Merged classes file” drop-down menu. LM10 

groups the LM22 cell types into ten broader phenotypes, thereby increasing the ratio 

between the number of samples and cell types, which will improve deconvolution 

performance (see Note 12 and Newman et al. [23]). For the mixture file, select the DLBCL 

GEP dataset uploaded in the previous section. Then select the ABC/GCB gene list uploaded 

under “Gene Subset file.” Finally, check the box, “Group genes by hierarchical clustering in 
output heat map,” and press “Run.” Note that in some instances, it may be appropriate to 

apply batch correction when performing expression imputation. For details, see Note 15.

3.3.5 Output of High-Resolution Mode

Expression matrices:  The main output of high-resolution mode is a set of expression 

matrices, one for each evaluated cell subset. Each matrix contains imputed expression 

profiles (nonlog space) with genes as rows and samples as columns. These expression 

matrices can be downloaded from the CIBERSORTx job results page and used for 

downstream analyses elsewhere.

Heat maps:  The output of high-resolution mode is also presented as a series of heat maps 

organized by cell type. Each heat map shows the imputed expression of the selected cell type 

across all of the samples (columns) and analyzed genes (rows). All samples and genes are 

presented in the same ordering as the original input mixture matrix. To highlight expression 

variation, each gene is log2 adjusted and mean-centered. Genes that have little to no 

expression variation across the cohort will be represented in black. If the option “Group 
genes by hierarchical clustering” has been selected, the genes are ordered by the results of 

the cluster analysis.

t-SNE plots:  For each cell type with at least 20 imputed genes, the CIBERSORTx website 

will perform t-distributed stochastic neighbor embedding (t-SNE) to generate a two-

dimensional projection of the imputed expression profiles. In the DLBCL example, only B-

cells have enough imputed genes from the 142 gene-list to be rendered as a t-SNE plot. If 

users have pre-defined labels for their samples, they may upload a custom label file to 

highlight the samples in the t-SNE plot according to these labels. To highlight known 

GCB/ABC classes, select the preuploaded file “supp. fig. 10 tSNE Class Labels” under 

“Select tSNE plot Class Labels.”

3.3.6 When to Run CIBERSORTx Group-Mode Versus High-Resolution Mode
—Because high-resolution mode performs deconvolution of cell-type-specific gene 

expression profiles at the sample level, it is useful for discovering novel cellular states in a 

dataset [23]. However, high-resolution mode requires a large number of samples for better 

performance (see Note 12). In settings where users have prior knowledge of sample classes 
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(responders and nonresponders to a therapy, different molecular subtypes of a given cancer, 

etc.), cell type-specific differentially expressed genes can be identified in several ways:

1. Run CIBERSORTx high-resolution mode on the entire dataset, then identify 

differentially expressed genes between known classes using standard methods 

(e.g., as described in Newman et al. [23]).

2. Run CIBERSORTx high-resolution mode on the two classes separately, then 

combine the results by intersecting genes that are imputed in both classes. Of 

note, while this approach has higher power to identify differentially expressed 

genes than the above strategy, it requires more samples to run high-resolution 

mode on each class.

3. Run group-mode on each class separately, and then apply the following R script 

to identify statistically significant differentially expressed genes.

for (i in 1:ncol(geps1)){

vBetaZ <- sapply(1:nrow(geps1), function(j) (geps1[j,i]-geps2

[j,i])/sqrt(stderr1[j,i]^2+stderr2[j,i]^2))

ZPs <- 2∗pnorm(-abs(vBetaZ))

Zqvals <- p.adjust(ZPs, method=“BH”)

}

Where:

• geps1 are the cell-type-specific GEPs outputted by CIBERSORTx group mode 

for sample class 1.

• geps2 are the cell-type-specific GEPs outputted by CIBERSORTx group mode 

for sample class 2.

• stderr1 are the standard errors for sample class 1 outputted by CIBERSORTx 

Group mode and saved to file as CIBERSORTxGEP_[…]_GEPs_StdErrs.txt.

• stderr2 are the standard errors for sample class 2 outputted by CIBERSORTx 

Group mode and saved to file as CIBERSORTxGEP_[…]_GEPs_StdErrs.txt.

• i is the cell type number for which we are calculating differentially expressed 

genes between class 1 and class 2.

• BH stands for Benjamini-Hochberg, and is the method used to adjust the p-

values for multiple hypothesis testing.

The script will output a list of genes that are significantly differentially expressed between 

the two classes after multiple hypothesis testing.

3.4 Conclusion

CIBERSORTx is a novel computational framework for high-throughput dissection of 

cellular heterogeneity in bulk tissue genomic profiles. Unlike previous methods, it handles 

cross-platform technical variation, enabling the use of scRNA-seq reference signatures for 
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deconvolution, and can derive cell-type-specific gene expression profiles at sample-level 

resolution. We anticipate that CIBERSORTx will complement existing experimental 

methods for studying complex tissues, with implications for the discovery of novel 

phenotypic states and the identification of more effective biomarkers and therapeutic targets.

4 Notes

1. While the per-sample-cost of scRNA-seq experiments remains relatively high, 

CIBERSORTx leverages scRNA-seq data from a small number of samples to 

characterize the cellular heterogeneity of bulk GEPs from a large number of 

tissue samples. Users can also download publicly available scRNA-seq datasets 

to create custom signature matrices.

2. To facilitate the identification of cell types in a single-cell RNA-seq dataset, it is 

possible to use deconvolution or other reference-based methods to label the cells 

[12, 15, 17, 22, 23, 41].

3. The scRNA-seq dataset should be in nonlog space [42] with no missing values. 

Data from scRNA-seq experiments summarizing expression levels using unique 

molecular identifiers (UMIs) are acceptable. If the maximum expression value is 

<50, CIBERSORTx will assume a prior logarithmic transformation, and anti-log 

all expression values by 2x.

4. CIBERSORTx will automatically normalize the input data such that the sum of 

all normalized reads is the same for each transcriptome. If a gene length-

normalized expression matrix is provided (e.g., RPKM), then the signature 

matrix will be adjusted to TPM (transcripts per million). If a count matrix is 

provided, the signature matrix will be normalized to CPM (counts per million).

5. While increasing the number of cells per phenotype and the number of biological 

replicates can improve the quality of the signature matrix (up to ~20 cells per 

phenotype and up to 2–3 donor samples), simulation experiments and empirical 

observations suggest that as few as three cells per phenotype and as few as one 

donor sample can still generate reliable results [23]. For this reason, and to limit 

the amount of space and time necessary to run a CIBERSORTx job, we 

recommend that users restrict the number of cells to at most 5000 when 

uploading the scRNA-seq reference profile to the CIBERSORTx website 

(currently a strict upper limit of 10,000 cells is allowed).

6. When creating a signature matrix with scRNA-seq data derived from droplet-

based methods (e.g., 10× Genomics [38], InDrop [5], or Drop-seq [6]), the user 

may wish to change the single-cell-specific parameter, “Min. Expression,” under 

“Single Cell Input Options.” This parameter refers to the minimum average log2 

expression of a gene per cell phenotype (default = 0.75), and is used to filter low-

level noise in plate-based scRNA-seq experiments (e.g., data generated by the 

SMART-Seq2 protocol) that may result from contamination, index swapping 

[43], or other sources. As this threshold can be too restrictive for data produced 

by droplet-based platforms, which capture a smaller number of genes, we 
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generally recommend reducing this parameter to 0.50 or even 0 when processing 

droplet-based scRNA-seq data. Otherwise, the sparsity of the data may yield too 

few genes for creating a reliable signature matrix.

7. When working with solid tissues and comparing the performance of 

CIBERSORTx with technologies that require tissue dissociation (e.g., flow or 

mass cytometry), it is important to generate the gene expression profiles and 

perform fluorescence activated cell sorting (FACS) or scRNA-seq profiling on 

the same cell suspensions. If expression profiles are instead generated from intact 

nondissociated tissues, CIBERSORTx results will not capture dissociation-

induced differences in cell composition (loss of myeloid cells due to adherence 

to plastics, loss of plasma cells and plasmablasts due to their fragility, etc.), 

leading to biases that artificially degrade CIBERSORTx performance in the 

comparative analysis.

8. CIBERSORTx performs a feature selection within the deconvolution step, and 

typically does not use all genes in the signature matrix for this step. It is 

therefore generally acceptable if some genes in the signature matrix are missing 

from the mixture file.

9. When we refer to batches in the context of expression deconvolution, we refer to 

two input datasets, the signature matrix and the mixture dataset. However, within 

a mixture dataset, one may also observe technical variation due to batch effects. 

Technical batches may be present between mixture datasets and within mixture 

datasets. For example, a dataset may consist of two experiments performed at 

two different time points or by two different individuals. These differences may 

lead to technical variation in the gene expression data. If there are known batch 

effects in a mixture dataset and these cannot be removed using available methods 

[44–46], we recommend running CIBERSORTx on the datasets separately.

10. Batch effects between samples profiled by scRNA-seq may also occur, and these 

may affect the performance of the resulting signature matrix. There are available 

tools to remove batch effects in scRNA-seq datasets prior to construction of the 

signature matrix [31, 47–50].

11. When comparing CD8 T cells to flow cytometry in our example, we pooled CD8 

T cells with NKTs. We did this because (a) NKTs were not separately 

enumerated by flow cytometry, and (b) NKT cells express both CD8A and 

CD3D in the scRNA-seq dataset used to build the signature matrix.

12. CIBERSORTx Gene Expression Analysis Mode works best when the number of 

samples to deconvolve is much larger than the number of cell types in the 

signature matrix. A rule of thumb is to have at least four to five times as many 

mixture samples as cell types [23]. The “Merged class file” allows users to group 

cell types in the signature matrix into a broader set of phenotypic classes. This 

makes it easy to reduce the number of evaluable cell types in cases where the 

number of mixture samples is limiting.
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13. As detailed in the online tutorial, users may also upload a file with known gene 

expression profiles as a ground truth file. If a ground truth file is uploaded and 

selected, CIBERSORTx will generate a variety of plots that can be used for 

quality control purposes. For example, this will allow users to check the 

concordance between imputed and ground truth GEPs.

14. For full transcriptome analyses, users are encouraged to download the 

CIBERSORTx executable (“Menu” → “Download”).

15. When performing gene expression purification, the signature matrix should 

represent most of the cell types in a tissue. A signature matrix that does not 

include all major cell types is generally not recommended for expression 

imputation. However, when this is the case, users may apply batch correction for 

expression purification to down-weight the genes that are expressed on cell types 

not included in the signature matrix.
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Fig. 1. 
Overview of CIBERSORTx. Starting from reference profiles generated by scRNA-seq, bulk 

sorted RNA-seq, or microarrays, CIBERSORTx generates a deconvolution signature matrix, 

consisting of cell type-specific barcode genes (step 1), which is then repeatedly used to 

enumerate cell fractions (step 2) or impute cell-type-specific gene expression profiles (step 

3) from bulk tissue GEPs. Gene expression imputation can be performed with group-mode, 

which results in a representative transcriptome profile for each cell type in the signature 

matrix, or high-resolution mode, which yields sample-level expression estimates for each 

cell type
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Fig. 2. 
Building a signature matrix with scRNA-seq data. (a) t-SNE projection of PBMCs profiled 

by scRNA-seq (10× Chromium v2 platform with 5′ chemistry). (b) Screen shot of the 

CIBERSORTx website showing the selection of scRNA-seq data as the input data type. (c) 
Heat map of the signature matrix generated by CIBERSORTx when applied to the dataset 

shown in panel (a)
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Fig. 3. 
Imputation of cell fractions and cross-platform deconvolution. (a) Screenshot of the 

CIBERSORTx website showing the selection of “2. Impute Cell Fractions” module. (b) 
Decision tree to help CIBERSORTx users identify the batch correction mode that is best 

suited for their application: (1) single-cell reference mode (“S-mode”) or (2) bulk reference 

mode (“B-mode”). *Plate-based methods refer to methods that show little or moderate 

technical variation compared to bulk RNA-seq, such as SMART-seq2. (c) Estimation of cell 

fractions in RNA-seq GEPs from 12 healthy whole blood samples using the PBMC 

signature matrix (from Fig. 2) pre- and post-S-mode batch correction. The deconvolution 

performance is shown as Pearson correlations comparing the CIBERSORTx estimated 

fractions with the flow cytometry ground truth for five cell types (B cells, NK cells, CD8 T 

cells, CD4 T cells, and monocytes). Medians are shown as horizontal lines. (d) Same as (c) 
but showing imputed proportions of B cells before (left) and after (right) S-mode batch 

correction. Right: Concordance between CIBERSORTx and flow cytometry was determined 

by Pearson correlation (r) and linear regression (dashed line)
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Fig. 4. 
Cell type-specific gene expression imputation. (a) Screenshot of the CIBERSORTx website 

showing the selection of the “3. Impute Cell Expression” module. (b, c) Schematic overview 

of group mode (b) and high-resolution mode (c) expression imputation
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Table 1

Overview of selected bioinformatics tools for studying cellular composition in tissue samples

Reference Tool/method scRNA-seq reference Batch correction Cell type-specific gene expression

Shen-Orr et al. [19] csSAM No No Yes

Zhong et al. [20] DSA No No Yes

Liebner et al. [15] MMAD No No Yes

Quon et al. [18] ISOpure No No Yes, 2 component sample-level cell type-specific gene 
expression

Li et al. [14] TIMER No Yes No

Baron et al. [22] BSEQ-sc Yes No Yes, cell type-specific differential expression

Schelker et al. [51] CIBERSORT Yes No No

Wang et al. [52] DeMixT No No Yes, 3 component sample-level cell type-specific gene 
expression

Wang et al. [53] MuSiC Yes No No

Frishberg et al. [54] CPM Yes No No

Newman et al. [23] CIBERSORTx Yes Yes Yes, n component sample-level cell type-specific gene 
expression

The list is restricted to digital cytometry tools that either leverage scRNA-seq reference profiles for deconvolution, handle technical variation 
between datasets by batch correction, or perform gene expression imputation. The tool/method column refers to the name of the tool presented in 
each publication or the underlying methodology when no other name is available

DSA digital sorting algorithm, MMAD microarray microdissection with analysis of differences, TIMER tumor immune estimation resource, 
MuSiC MUlti-Subject SIngle Cell deconvolution, CPM cellular population mapping
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Table 2

Pairs of signature matrices and mixture datasets where CIBERSORTx batch correction is strongly 

recommended

Signature matrix Mixture dataset Batch correction method

Microarray of sorted cell populations Bulk RNA-seq of fresh/frozen tissues
NanoString nCounter of FFPE tissues

B-mode

RNA-seq of sorted cell populations Bulk RNA-seq of FFPE tissues
Microarray of fresh/frozen tissues

B-mode

Plate-based scRNA-seq without UMIs (i.e., SMART-Seq2) Bulk RNA-seq of fresh/frozen tissues
Microarray of fresh/frozen tissues
Bulk RNA-seq of FFPE tissues
NanoString nCounter of FFPE tissues

B-mode

Droplet-based scRNA-seq (i.e., 10× Chromium, Drop-seq) Bulk RNA-seq of fresh/frozen tissues
Microarray of fresh/frozen tissues
Bulk RNA-seq of FFPE tissues
NanoString nCounter of FFPE tissues

S-mode
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