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Abstract

Purpose: To develop a simultaneous T1, T2, and apparent diffusion coefficient mapping method 

that provides co-registered, distortion-free images and enables multi-parametric quantification of 

3D brain coverage in a clinically feasible scan time with the MR Multitasking framework.

Methods: T1-T2-diffusion weighting was generated by a series of T2-preparations and diffusion-

preparations. The underlying multidimensional image containing 3 spatial dimensions, 1 T1 

weighting dimension, 1 T2-preparation duration dimension, 1 b-value dimension, and 1 diffusion 

direction dimension was modeled as a 5-way low-rank tensor. A separate real-time low-rank 

model incorporating time-resolved phase correction was also used to compensate for both inter- 

and intra-shot phase inconsistency induced by physiological motion. The proposed method was 

validated on both phantom and 16 healthy subjects. The quantification of T1/T2/ADC was 

evaluated for each case. Three post-surgery brain tumor patients were scanned for demonstration 

of clinical feasibility.

Results: Multitasking T1/T2/ADC maps were perfectly co-registered and free from image 

distortion. Phantom studies showed substantial quantitative agreement (R2 = 0.999) with reference 

protocols for T1/T2/ADC. In vivo studies showed nonsignificant T1 (P=0.248), T2 (P=0.097), 

ADC (P=0.328) differences between frontal, parietal, and occipital regions. Despite Multitasking 

showed significant differences of T1 (P=0.03), T2 (P<0.001), and ADC (P=0.001) biases against 

the references, the mean bias estimates were small (ΔT1% < 5%, ΔT2% < 7%, ΔADC% < 5%), 

with all intraclass correlation coefficients >0.82 indicating “excellent” agreement. Patient studies 

showed that Multitasking T1/T2/ADC maps were consistent with the clinical qualitative images.
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Conclusion: The Multitasking approach simultaneously quantifies T1/T2/ADC with substantial 

agreement with the references and is promising for clinical applications.

Keywords

simultaneous T1/T2/ADC quantification; MR Multitasking; low-rank tensor imaging; time-
resolved phase correction; co-registered and distortion-free mapping

Introduction

Quantitative multi-parametric mapping of relaxation and diffusion has the potential for 

comprehensive tissue characterization, which is clinically promising for the identification, 

diagnosis, and follow-up assessment of brain, breast, cardiac, prostate diseases, and more. 

For example, mapping the relaxation parameters T1 and T2 is promising for monitoring 

tumors in glioblastoma patients and brain tumor characterization1-4. T1/T2 mapping has also 

been used to diagnose cardiac diseases, including myocardial fibrosis, myocarditis, and 

chronic myocardial infarction5-9. The quantification of diffusion parameters, e.g., ADC, not 

only differentiates normal brain tissue and brain tumors10, but also contributes to brain 

tumor characterization11 and may also be useful in grading astrocytic tumors12,13. 

Furthermore, ADC is promising for monitoring treatment response of breast cancer14-16 and 

has been well established as a key role in the detection and assessment of prostate cancer17.

Although there are significant clinical benefits of quantifying multiple relaxation and 

diffusion parameters, T1/T2/ADC mapping are typically performed in separate scans which 

are not only time-consuming, but also subject to intra-scan mis-registrations due to subject 

motion. Additionally, the clinical DWI scans used to map ADC mostly adopt single-shot 

multi-slice EPI acquisition, leading to image distortion and additional challenges in image 

registration. Simultaneous T1/T2/ADC mapping approaches that produce distortion-free, co-

registered maps would be vastly desirable in the clinic.

Joint T1/T2 mapping has recently been achieved using MR Fingerprinting18, which has been 

validated in many clinical applications including brain tumor and prostate cancer1,19. Our 

group has recently developed a quantitative imaging framework, MR Multitasking, which 

allows motion-resolved or motion-robust quantitative imaging, including joint T1/T2 

mapping, but has yet to be used to quantify ADC20,21. Joint T1/T2/ADC mapping methods 

have also been proposed, such as the dual-echo-steady-state (DESS) protocol22. However, 

DESS can be significantly sensitive to physiological motion because it relies on the 

gradients that are placed within each TR to generate diffusion contrast. MR-Fingerprinting-

based23 and stimulated-echo-based (STEM)24 approaches are also proposed. However, these 

methods do not provide a comprehensive quantification of ADC because they only measure 

diffusion along a single direction. Hutter et al. proposed an integrated approach (ZEBRA)25 

to quantify T1/T2*/ADC simultaneously which demonstrated the efficiency and sampling 

flexibility but employed single-shot EPI readout that may suffer from B0-inhomogeneity 

which compromises high resolution image quality and leads to image distortion.

In this work we extend the MR Multitasking framework to achieve a 3D simultaneous brain 

T1/T2/ADC mapping in <10min which is a feasible duration for clinical practice. This 
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augmentation of the MR Multitasking framework conceptualizes the overlapping image 

dynamics to be quantified as different temporal dimensions20 and uses a low-rank tensor 

(LRT) model26 to accelerate imaging by exploiting the high spatiotemporal correlation of 

images corresponding to different T1 weightings, T2-preparation (T2prep) durations, b-

values and diffusion directions. A time-resolved phase correction technique, which is 

allowed by the high temporal resolution of the Multitasking framework, is applied along 

with a separate “real-time” low-rank matrix imaging model to compensate for both inter- 

and intra-shot phase inconsistencies resulting from physiological motion and/or eddy 

currents, by modeling the phase inconsistencies in a time-resolved phase map27-29. We 

demonstrate that the proposed method enables fully quantitative T1/T2/ADC mapping of the 

brain with clinically acceptable image resolution (1.5x1.5x5mm3) and scan time (<10min).

Methods

Sequence Design

In this work, we generate multiple T1-T2-diffusion weighting by concatenating a series of 

T2preps with different durations τ and a series of diffusion-preparations with a fixed 

duration but different b-values b and diffusion directions d (Figure 1A). The duration of one 

of the T2preps matches the duration of the diffusion-preparations, so that this T2prep also 

serves as a b=0 diffusion-preparation. For all the diffusion-preparations, two unipolar 

diffusion-weighted gradients are placed on each side of the 180° adiabatic refocusing pulse. 

A 3D segmented FLASH readout is used to sample the k-space data.

The magnetization preparation module uses a 90° tip-up pulse to store the prepared signal in 

the longitudinal magnetization. The accumulated phase generated by the preparation will 

also be tipped onto z-axis, adding a cosine term to the magnitude. In practice, even two 

identical preparations may generate different phase patterns because of physiological motion 

and bulk motion, which is especially common for diffusion-preparations30. Consequently, 

such inconsistent phase patterns would convert to magnitude inconsistency that can never be 

recovered30,31. We employ a crusher gradient scheme that has been proposed to address this 

issue30-34. An 8π crusher gradient is placed immediately before the 90° tip-up pulse to 

completely dephase the transverse magnetization, creating a uniform phase dispersion. The 

same crusher gradient with opposite polarity is placed immediately after each FLASH pulse 

to rephase the transverse magnetization that was stored in the z-axis and encoded with the 

phase of the preparation, and to remove the longitudinal magnetization that arises from free 

relaxation, thus forming the echo that retains the phase of the preparation and maintains the 

magnitude consistency31. However, the penalty of using the crusher gradient scheme is a 

loss of SNR because the spoiler gradient removes half of the overall signal (those remaining 

in the transverse plane), and the longitudinal magnetization that contributes to the echo 

formulation (those encoded with the phase of the preparation) follows a monotonic T1 

decay34. To counteract this loss in SNR, we add a gap in acquisition immediately prior to 

each preparation, to allow sufficient signal recovery of long-T1 tissues towards thermal 

equilibrium. The resulting signal equations after T2preps and diffusion-preparations are:
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Sn = 1
2 ⋅ A ⋅ e− TR

T1 ⋅ e− TR
T1 cos(α)

n − 1
⋅ e− τ

T2 ⋅ sin(α), (1)

and

Sn = 1
2 ⋅ A ⋅ e− TR

T1 ⋅ e− TR
T1 cos(α)

n − 1
⋅ e− τ

T2 ⋅ e−bD ⋅ sin(α), (2)

respectively, where A absorbs overall coil sensitivity, proton density and T2* weighting, n is 

the readout index (resetting with each preparation pulse) indicating different T1 weightings, 

α is the FLASH flip angle, D represents the diffusion coefficient associated with d. 

Derivation of the signal equation is in the Supporting Information Section A. By employing 

the crusher gradient scheme, the magnitude consistency is guaranteed. Some shot-to-shot 

phase inconsistency still remains, which we address in our proposed imaging model.

Imaging Model

We propose to use the Multitasking framework to represent the underlying image as a 7D 

function x(r, n, τ, b, d), with three spatial dimensions (i.e., voxel location r = [x, y, z]) and 

four dimensions indexing the four timing/parameter variables n, τ, b, and d respectively. We 

can further represent x as a 5-way tensor X with the first dimension concatenating all voxel 

locations r, and the other four dimensions indexing the four timing/parameter variables 

(Figure 2). This tensor is low-rank due to high spatiotemporal correlation throughout x, 

resulting in the partially-separable26,35,36 image function:

x(r, n, τ, b, d) = ∑j = 1
J uj(r)φj(n, τ, b, d) (3)

φj(n, τ, b, d) = ∑k = 1
K ∑l = 1

L ∑m = 1
M ∑n = 1

N cjklmnvk(n)wl(τ)gm(b)ℎn(d) (4)

where {uj( ⋅ )}j = 1
J , {vk( ⋅ )}k = 1

K , {wl( ⋅ )}l = 1
L , {gm( ⋅ )}m = 1

M , and {ℎn( ⋅ )}n = 1
N  represent 

spatial, T1, T2, b-value and diffusion direction basis functions; J, K, L, M, N represents the 

number of basis functions for each dimension; cjklmn are the elements of the core tensor 

C ∈ ℂJ × K × L × M × N governing the interaction between different basis functions; and the 

functions {φj(n, τ, b, d)}j = 1
J  span the multi-dynamic subspace (as they describe the multiple 

dynamic processes of T1 relaxation, T2 relaxation, and diffusion). This LRT structure can be 

explicitly expressed through matrix factorization as:

X(1) = UΦ, (5)

Φ = C(1)(H ⊗ G ⊗ W ⊗ V)T , (6)

where X(1) and C(1) are the mode-1 matricizations of X and C, respectively; where the 

columns of U, V, W, G, H are basis functions spanning the spatial, T1, T2, b-value and 
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diffusion direction subspaces, respectively; and where the J rows of Φ span the multi-

dynamic subspace. Modeling the image as an LRT significantly reduces the degrees of 

freedom, offering considerable potential for accelerated acquisition.

In practice, (k, t)-space data are collected with a single “real-time” dimension t from an 

underlying image xrt(r, t) = p(r, t)x(r, n(t), τ(t), b(t), d(t)), which experiences phase 

inconsistencies over time, as modeled by a unit-magnitude phase map p(r, t). Note that the 

functions n(t), τ(t), b(t), and d(t) describe the timing/parameter schedule throughout the 

experiment. Low-rank structure of xrt in the so-called “real-time” domain can also be 

expressed, as:

Xrt = UrtΦrt, (7)

where Xrt is the image matrix corresponding to xrt(r, t); where the J′ rows of Φrt span the 

real-time subspace (as they describe the continuous dynamic processes of the measured 

signals); and where the J′ columns of Urt span the spatial subspace containing the real-time 

image. We note that because Xrt includes the contribution of phase inconsistencies over 

time, whereas X and X(1) do not, Eqs. (5) and (7) represent two different image models, both 

of which will be useful during different stages of image reconstruction.

Phase inconsistencies reduce image correlation and increase image rank27, so the real-time 

subspace is generally higher-dimensional than the multi-dynamic subspace, i.e., J′ > J. Here, 

the time-resolved, unit-magnitude phase map p(r, t) is represented in matrix form as 

P ∈ {ℂNv × Nt: ∣ Pjk ∣ = 1, ∀j, k}, where Nv and Nt denote the number of voxels and number 

of time stamps respectively, similarly to what we previously proposed for cardiac diffusion 

tensor imaging27. The approximation connecting the real-time subspace model and the 

multi-dynamic subspace model is therefore:

UrtΦrt ≈ P ∘ X(1)R = P ∘ U(ΦR) , (8)

where ∘ denotes Hadamard (elementwise) multiplication. The multi-dynamic to real-time 

reordering matrix is R ∈ ℝ(NnNτNbNd) × Nt where Nn, Nτ, Nb, Nd denotes the total number 

of T1-weightings, T2prep durations, b-values and diffusion directions, respectively. Rjk is 

equal to 1 if the (n, τ, b, d) sequence parameter combination corresponding to the j-th 

column of X(1) was collected by the k-th readout and equal to 0 otherwise.

K-Space Sampling

We acquire two sets of data for LRT image reconstruction, namely, subspace training data 

(dtr) used to estimate Φ, and imaging data (dimg) used to determine U (Figure 1B). The 

imaging data are collected using a 3D Cartesian trajectory with Gaussian random variable 

density along the phase encoding direction (ky) and partition encoding direction (kz) to 

increase sampling incoherence. The subspace training data are frequently collected at the k-

space center line (i.e., ky = kz = 0) every 8 readouts to capture the overlapping image 

dynamics containing T1 weightings, T2prep durations, b-values and diffusion directions.
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Image Reconstruction

In this work we augment the reconstruction strategy described in the original MR 

Multitasking framework20 with an additional time-resolved phase correction component. We 

propose to serially estimate P, Φ and U following four steps:

1) Estimate a heuristic P: The time-resolved phase map P is estimated from I0, a preliminary 

least-squares reconstruction enforcing the real-time subspace model (i.e., Eq. (7)):

P = ∠I0 with I0 = Urt, 0Φrt, 0 and Urt, 0 = arg minUrt, 0‖dimg − Ω(FSUrt, 0Φrt, 0)‖2, (9)

where the real-time temporal basis functions Φrt,0 are estimated from the singular value 

decomposition (SVD) of the subspace training data drt, Ω denotes the undersampling 

operator, F performs Fourier encoding, and S represents the coil sensitivity matrix.

2) Pre-determine heuristic T1 decay basis functions {vk( ⋅ )}k = 1
K : Because the T1 relaxation 

is physically governed by the Bloch equations, a set of feasible signal curves following a T1 

decay pattern can be pre-determined ahead of time to generate a T1 relaxation training 

dictionary37-39 using a range of T1 values and flip angles. Specifically, we use 101 T1 values 

logarithmically spaced from 100ms to 3000ms, and 15 FLASH flip angles equally spaced 

from 0.5° to 7.5° representing 90% underestimation to 50% overestimation of the prescribed 

flip angle covering a possible range of B1 inhomogeneities. A total of 1515 T1 decay signal 

curves are generated to construct a training dictionary, the SVD of which produces the T1 

decay basis functions in V.

3) Estimate a heuristic multi-dynamic Φ: In the original MR Multitasking framework, the 

subspace training data dtr are binned (i.e., mapped from the real-time domain to the multi-

dynamic domain) to form a training tensor Dtr20. However, in this work, naively mapping dtr 

from the real-time (k, t)-space to the multi-dynamic (k, n, τ, b, d)-space without accounting 

for the inconsistent phase patterns would result in signal cancellation in Dtr. As an 

alternative, we use features extracted from the real-time magnitude images ∣I0∣ as the new 

subspace training data, i.e., we define a matrix of training data T ∈ ℂJ′ × Nt from the J′ > J 

most significant right singular vectors of ∣I0∣. The training tensor Dtr can be solved via a 

Bloch-constrained small-scale LRT completion problem:

Dtr = arg minDtr, (2) ∈ range(V)‖T − Dtr, (1)R‖F
2

+ λ ‖Dtr, (1)‖∗ + ∑n = 3
5 ‖Dtr, (n)‖∗ + R(Dtr),

(10)

where ∥·∥F denotes the Frobenius norm, ∥·∥* denotes the nuclear norm, λ is the 

regularization parameter weighting the nuclear norm penalties, Dtr,(n) denotes the mode-n 
matricization of Dtr, and R(·) is a regularization function which in this work, penalizes total 

variation (TV) along the diffusion direction dimension. Once Dtr is completed, Φ = C(1)(H 

⊗ G ⊗ W ⊗ V)T can be quickly extracted from Dtr via the high-order SVD (HOSVD)40.
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4) Obtain the spatial coefficient maps U. With the heuristic P and Φ, the remaining unknown 

U could in principle be directly recovered by incorporating the phase correction into the 

multi-dynamic imaging model (i.e., Eq. (5)):

U = arg minU‖dimg − Ω(FS[P ∘ (U[ΦR]))‖2 + Rs(U), (11)

where Rs(·) is an optional additional spatial constraint, e.g., which also leverages 

compressed sensing. However, solving this iterative optimization problem directly as posed 

above would involve storing and manipulating many real-time Nv × Nt matrices—not just P 
but also auxiliary variables used during optimization—and can therefore require large 

amounts of memory.

In practice, rather than solving Eq. (11), we instead solve an alternative optimization 

problem that additionally relies on the memory-efficient image model in Eq. (7). We first 

enforce the real-time subspace model to obtain a phase-varying Φrt (which incorporates 

some phase variation from P) and Urt, then we obtain U by mapping the result back to the 

multi-dynamic subspace model according to Eq. (8). This is achieved via three sub-steps:

4.1) Map Φ back to the phase-varying real-time subspace by incorporating phase 

information from P into a heuristic Φrt. Note that as is, Φ lies in the phase-corrected multi-

dynamic domain, which is free from phase inconsistencies. We first map Φ onto the phase-

corrected real-time subspace as ΦR, then we project the phase-free ∣I0∣ onto this subspace. 

This provides the best approximation of the initial magnitude image in the phase-corrected 

real-time subspace:

Irt = ∣ I0 ∣ (ΦR)+(ΦR) (12)

where + denotes the pseudoinverse. We then apply the time-resolved phase map P to include 

the phase-varying information, and finally calculate the SVD of the resulting phase-varying 

real-time image, i.e.,

Φrt SVD(P ∘ Irt), (13)

This new basis Φrt reflects the phase inconsistencies in the real-time subspace as well as the 

multi-dynamic modeling performed in step (3).

4.2) Recover Urt using the real-time subspace model (i.e., Eq. (7)). With heuristic Φrt, the 

coordinates in the phase-varying real-time subspace, Urt, can be recovered as:

Urt = arg minUrt‖dimg − Ω((FSUrt)Φrt)‖2 + Rs(Urt), (14)

which without the explicit phase map can be entirely solved in the J′-dimensional real-time 

subspace rather than the much more memory-intensive (r, t)-space, due to the block 

diagonal structure of A( ⋅ ) = Ω∗Ω ( ⋅ )Φtr Φrt
H 41,42. Here Rs(·) is chosen as a spatial TV 

penalty.

Ma et al. Page 7

Magn Reson Med. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.3) Obtain U. We map the spatial coefficients from the J′-dimensional phase-varying real-

time subspace to the J-dimensional phase-corrected multi-dynamic subspace, i.e., Urt → U. 

This mapping is based on Eq. (8), and is performed as:

U ≈ [P∗ ∘ UrtΦrt ](ΦR)+ . (15)

Note that Eq. (15) relies on both image models described in Eq. (5) and Eq. (8), whereas Eq. 

(11) only uses the multi-dynamic image model described in Eq. (5). Eq. (15) therefore does 

not directly approximate Eq. (11), but rather finds alternative coordinates in the phase-

corrected multi-dynamic subspace by a mapping from coordinates in the phase-varying real-

time subspace.

The operations in Eqs. (12) and (15) map between two distinct image models: the multi-

dynamic subspace model and the phase-varying real-time subspace model. A solution 

satisfying both models typically only exists when J′ is selected high enough to fully 

represent the phase variation in p(r, t); however, for lower values of J′ as used in practice, a 

solution exactly satisfying both models may not exist, and the mappings in Eqs. (12) and 

(15) modify the solution. A detailed mapping analysis can be seen in the Supporting 

Information Section B.

Phantom Study

To evaluate the T1/T2/ADC mapping accuracy of the proposed method, an ISMRM/NIST 

T1/T2 phantom (Model 130, High Precision Devices) and a diffusion phantom (Model 128, 

High Precision Devices) were scanned on a 3T scanner (MAGNETOM Vida, Siemens 

Healthineers) using a 64-channel head coil. Because the T1/T2 phantom lacked ADC 

variety, we performed ADC mapping on the diffusion phantom as well. Reference 

T1/T2/ADC maps were obtained via an inversion recovery turbo spin echo (IR-TSE) 

sequence, a multi-echo spin echo (ME-SE) sequence and a single-shot EPI (SS-EPI) 

sequence, respectively. The Multitasking sequence was implemented with 7 T2preps and 6 

diffusion-preparations. Each preparation is repeated 10 times before the next preparation is 

implemented. The detailed imaging protocol is in Supporting Information Table S1.

In vivo Study

The in vivo study was approved by the institutional review board (IRB) of our institute. All 

volunteers/patients gave written informed consent before the study. Sixteen healthy 

volunteers were recruited and were scanned also on Vida scanner. Localizers were 

implemented to locate the volume of interest which covered from the top of the brain to the 

pons. Reference T1/T2/ADC maps were obtained via IR-TSE, ME-SE, and SS-EPI 

respectively. The total scan time of references was 19min. The Multitasking sequence was 

implemented with 4 T2preps and 6 diffusion-preparations. Each preparation is repeated 20 

times before the next preparation is implemented, resulting in a total scan time of 9.3min. 

The approximately maximum diffusion encoding gradient amplitude (55mT/m) was turned 

on to shorten the diffusion-preparation duration (31.4ms) for SNR purposes. The slice 
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positions of all scans matched exactly. The detailed imaging protocol is in Supporting 

Information Table S1.

In addition, 3 post-surgery patients who were previously diagnosed with a brain tumor and 

were likely to possess residual/recurrent tumor were scanned on a 3T scanner 

(MAGNETOM Skyra, Siemens Healthineers) using a 20-channel head coil. The 

Multitasking scan was incorporated in a clinical brain MRI scan aimed for follow-up 

assessment before the administration of contrast agents. The clinical protocols included pre-

contrast T1-MPRAGE, pre-contrast T2-FLAIR, DWI (RESOLVE), post-contrast T2-TSE, 

and post-contrast T1-MPRAGE. A relaxed diffusion gradient amplitude (35mT/m) was used 

to protect the gradient system, resulting in a 39.6ms diffusion-preparation duration.

Exploration of Motion Effects

Head movement is commonly seen during clinical scans because of patient discomfort, 

which will lead to mis-registration or image artifacts if not properly addressed. Furthermore, 

the bulk motion will not only affect the magnetization preparation, but also damage the 

refocusing crusher gradients, resulting in uncorrelated signal or significant signal loss.

We explored the motion effects on our method in four healthy volunteers. For each 

volunteer, a motion-free scan was performed followed by a motion-corrupted scan. A sticker 

was placed on the inside of the coil right on top of the subject’s nose to fix the initial 

position. The motion-free scan contained one Multitasking protocol (9.3min), during which 

the subject was clearly instructed not to move their head. The motion-corrupted scan 

contained two consecutive Multitasking protocols (18.6min) to span the scan duration so that 

the subject was likely to move multiple times. The subject was instructed beforehand that 

he/she could move at will during the motion-corrupted scan, meaning that he/she could 

perform any type of motion (e.g., itching face, adjusting head position, deep breath, etc.) at 

any time, instead of being instructed to perform only certain types of motion at certain times 

explored in Fingerprinting studies43,44. This aimed to mimic realistic motion scenario in an 

actual clinical scan. There are many options for motion handling in the Multitasking 

framework, including motion-removed imaging, motion-resolved imaging, and motion-

compensated imaging. In this study, we performed motion removal to simplify data 

processing, so the subjects were asked to return to the initial position after each movement.

The motion-free data were reconstructed as a reference. For each of the two motion-

corrupted datasets, we identified the amount of corrupted data based on the real-time image 

series I0 via manual inspection. Specifically, within each motion-corrupted dataset, all the 

shots that were observed with the occurrence of motion artifacts were considered motion-

corrupted. The percentage of the corrupted data was thus:

pi = Nm, i
200 , i = 1, 2, (16)

where Nm,i is the number of motion-corrupted shots in the i-th motion-corrupted dataset. We 

only reconstruct the ı -th dataset, where ı = arg max
i

pi (i.e., the worse of the two motion-
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corrupted datasets). Motion removal was performed by removing all Nm, ı  shots in the ı -th 

dataset from dtr and dimg along with the corresponding sampling locations from Ω and R.

Image Analysis

All the reconstructions were performed on a Linux workstation with a 2.70GHz dual 12-core 

Intel Xeon processor equipped with 256GB RAM and running MATLAB 2017a. 

Reconstruction parameters (rank of respective dimensions, λ, etc.) are in Supporting 

Information Table S2. In this work, the λ used to weight the nuclear norm penalties was 

chosen based on the discrepancy principle45 for one dataset and then used for all datasets. 

The ranks of the spatial and T1-weighting dimensions were determined from the −40dB 

threshold on the normalized singular value curves of the training dictionary and the full 

training data respectively. The ranks of the T2prep duration, b-value, and diffusion direction 

dimensions were not truncated, as the nuclear norm low-rank constraint implemented for the 

training tensor completion already performed a soft constraint on the tensor ranks for those 

dimensions.

For each healthy subject, 3 slices located in the upper, mid, and lower regions of the 

acquired 3D volume were chosen for voxel-by-voxel multi-parametric fitting of A, α, T1, 

T2, and the diffusion coefficients of 3 directions D1, D2 and D3 based on Eq. (1)-(2). ADC is 

then derived by:

ADC = (D1 + D2 + D3) ∕ 3 . (17)

For qualitative analysis, the following comparisons were made:

1. The proposed method versus no phase correction (i.e., assuming P = I and using 

dtr directly for tensor subspace estimation) to evaluate the effectiveness of the 

proposed phase correction strategy.

2. The proposed method versus reference protocols to evaluate quantification.

3. Motion-free maps, motion-corrupted maps and motion-removed maps to evaluate 

the motion effect and the behavior of motion removal.

For quantitative analysis, 12 ROIs were drawn on the frontal, parietal, and occipital regions 

of the gray matter (GM) and white matter (WM) of both left and right hemispheres of the 

mid slice46. ROIs of the reference protocols and the Multitasking protocol were drawn at the 

same locations.

For each patient, the surgery/tumor region was manually identified on the standard clinical 

protocols. Three slices surrounding the surgery/tumor region were chosen for the multi-

parametric fitting and were compared with the standard clinical protocols on approximately 

matched slice positions.

Statistical Analysis

T1/T2/ADC values of the GM and WM of frontal, parietal, and occipital regions were 

calculated as the mean values of the corresponding ROIs of the left and right lobes. A three-
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way repeated measures ANOVA was performed using IBM SPSS Statistics. Specifically, the 

two tissue types, the three regions and the two methods are all set as within subject 

variables. The significance level was set as P<0.05. Intra-class correlation coefficient (ICC) 

was calculated using IBM SPSS Statistics with a two-way mixed model and a confidence 

level of 95% to demonstrate the consistency between Multitasking and the references. 

Bland-Altman analysis was performed between Multitasking and the references to 

demonstrate the bias.

Results

Phantom Study

The proposed Multitasking approach provides good phantom image quality (Figure 3). 

Multitasking quantitative maps are free from the image distortion present in the SS-EPI 

ADC reference. The measured T1/T2/ADC are in substantial quantitative agreement with 

references, with R2 = 0.999 and ICC>0.998 for T1/T2/ADC. Detailed phantom 

measurements are shown in Supporting Information Tables S3-S5, where Multitasking 

results in higher standard deviation for some (but not all) vials. On average, simultaneous 

acquisition of T1/T2/ADC using Multitasking provides 2.41x, 1.59x, and 0.72x the multi-

parametric SNR efficiency compared to separate acquisition using the respective reference 

methods (Supporting Information Figure S2). We note that the reference methods were 

chosen for their accepted accuracy, but may not have the optimal SNR efficiency47.

In vivo Study

The phase measured at the first time point after each preparation (i.e., n = 1) can be extracted 

from the full time-resolved phase map as a good representation for the phase resulting from 

the preparation. The phase resulting from the 1st, 10th, and 20th preparation of each type of 

T2 and diffusion-preparation demonstrates very little shot-to-shot phase inconsistency 

between T2preps and substantial shot-to-shot phase inconsistency between diffusion-

preparations (Supporting Information Figure S3). The reconstructed T1 and T2 maps using 

Multitasking with and without phase correction agree with the references. Multitasking 

ADC maps only agree with the reference when phase correction is used; the ADC maps 

without phase correction show elevated ADC values across all slices (Supporting 

Information Figure S4).

Multitasking produces perfectly co-registered and distortion-free T1/T2/ADC maps that 

qualitatively agree with the references (Figure 4) and produces similar distributions of 

T1/T2/ADC measurements of GM and WM (Table 1). Some T1 values appear higher 

compared to IR-TSE, particularly very long T1 species around the brain sulci and fissures. 

For T2 maps, GM, WM, and cerebrospinal fluid (CSF) are distinguishable but appear 

slightly lower than ME-SE. ADC values of CSF and around the brain sulci and fissures are 

also slightly lower than SS-EPI. Despite these differences, all the measurements are within 

the literature range (GM T1: 968-1820ms; WM T1: 750-1110ms; GM T2: 71-132ms; WM 

T2: 56-84ms; GM ADC: 0.78-1.09x10−3mm2/s; WM ADC: 0.60-1.05x10−3mm2/s)46,48-50.
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Supporting Information Table S6 shows the complete three-way ANOVA table, indicating 

nonsignificant differences between regions for T1 (p=0.248), T2 (P=0.097), and ADC 

(P=0.328), significant differences between tissues for all parameters (P<0.001), and 

significant differences of T1 (P=0.03), T2 (P<0.001), and ADC (P=0.001) biases between 

Multitasking and the respective references. Despite the statistical significance of these 

biases, the Bland-Altman plots show that the mean bias estimates are small (ΔT1% < 5%, 

ΔT2% < 7%, ΔADC% < 5%) (Figure 5), and all ICC measurements are >0.82, well within 

the established “excellent” range (ICC>0.75)51 (Table 2).

Identifying motion from I0 is straightforward, as motion-corrupted images are subject to 

significant signal loss and image artifacts. After motion removal, artifacts and signal voids 

are removed (Supporting Information Figure S5). T1/T2/ADC mapping from two subjects 

are shown. For the first subject, 20% of the measured data are corrupted by motion. 

Specifically, 39% T2preps are corrupted, and 8% diffusion-preparations are corrupted. With 

motion-corrupted data left in for reconstruction, the T1 map exhibits blurring artifacts, the 

T2 map and the ADC map show elevated T2 and ADC values, resulting in RMSEs of 

140.40ms, 14.85ms, and 0.17x10−3mm2/s respectively. After motion removal, T1 features 

are restored and motion artifacts are removed. Abnormal T2 and ADC values on most 

regions are restored. RMSEs drop to 92.83ms, 7.60ms, and 0.13x10−3mm2/s respectively 

(Figure 6). For the second subject, 33% of data are corrupted by motion. Specifically, 21% 

T2preps are corrupted, and 40% diffusion-preparations are corrupted. T1 and T2 maps with 

motion do not exhibit substantial differences compared against the motion-free case. 

However, significantly elevated ADC values result from motion. RMSEs are 97.07ms, 

8.58ms, and 0.23x10−3mm2/s respectively under motion. After motion removal, ADC values 

in most regions are again restored and RMSEs drop to 89.51ms, 7.11ms, 0.10x10−3mm2/s 

respectively (Figure 7).

One patient example is shown in Figure 8. The patient was diagnosed with glioblastoma and 

underwent chemoradiation and surgery for tumor resection prior to this imaging session. A 

surgical cavity is present in the right anterior frontal lobe. A nodular enhancement area is 

present at the inferior lateral margin of the cavity, which was confirmed to represent 

recurrent tumor by MR spectroscopy. The recurrent tumor, the surgical cavity and the 

surrounding edema appear dark on pre-contrast T1-MPRAGE, indicating long T1, in 

agreement with the Multitasking T1 map. The tumor and surgical cavity appear dark on 

FLAIR, indicating that such regions are occupied by fluid with less tissue structures and 

more unrestricted diffusion, confirmed by the clinical ADC map using RESOLVE. The 

surrounding edema shows higher ADC. The Multitasking ADC map is consistent with the 

clinical ADC map. The tumor, the surgical cavity and the edema appear bright on T2-TSE, 

indicating long T2. Specifically, the fluid in the tumor and cavity shows even longer T2 

compared to the edema. All these T2 features are reflected on the Multitasking T2 map.

Discussion

We propose a novel approach to achieve 3D simultaneous brain T1/T2/ADC mapping by 

incorporating diffusion-preparation and phase correction into the MR Multitasking 

framework. This method enables full quantification of T1/T2/ADC in a single 9.3min scan 
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for 100mm brain coverage. Phantom experiments and healthy volunteer experiments were 

performed for validation, showing substantial consistency and “excellent” agreement of 

T1/T2/ADC measurements between the proposed method and reference protocols by ICC. 

Multitasking produced co-registered T1/T2/ADC maps free from image distortion. Motion 

robustness was demonstrated via simple motion removal. Three post-surgery patients who 

were previously diagnosed with brain tumor and were likely to possess residual/recurrent 

tumor were scanned to demonstrate clinical feasibility. The Multitasking T1/T2/ADC maps 

were consistent with the clinical protocols and were able to reflect the tissue characteristics 

and contrasts indicated by the qualitative clinical images.

Since the emergence of MR Fingerprinting, simultaneous multi-parametric quantification 

has drawn substantial interest due to its great promise for clinical applications1,19,52. The 

Multitasking framework has several advantages over previous methods in simultaneous 

T1/T2/ADC mapping. We generate T1-T2-diffusion contrast using a concatenation of 

separate T2preps and diffusion-preparations, which because only the preparation modules 

are sensitive to physiological motion (as opposed to each readout), mitigating physiological 

motion sensitivity in comparison to DESS22. In addition, compared to Fingerprinting23 and 

STEM24, we achieve a comprehensive T1/T2/ADC quantification in three noncolinear 

diffusion directions, which matches the clinical DWI protocol. The proposed method 

achieves 100mm coverage (20 slices) in 9.3min, which outperforms DESS (32slices, 32mm 

coverage in 23min), Fingerprinting (1 slice in 60s) and STEM (2slices with 5mm thickness 

in 13min20s) in terms of acquisition efficiency. ZEBRA has higher acquisition efficiency 

(28slices with 2.6mm thickness in 2min42s) but it quantifies T2* rather than T2 and is 

limited to 2D acquisition25. Furthermore, we use a 3D segmented FLASH readout which 

produces co-registered quantitative maps free from image distortion, as compared to the SS-

EPI readout employed in STEM and ZEBRA.

The proposed method yields consistent GM and WM T1/T2/ADC measurements with 

substantial agreement compared to the references, with all ICC in the range of 0.82 to 0.98, 

considered “excellent”. T1 and ADC were accurately measured with <5% bias. T2 is 

underestimated with <7% bias which is far less than the difference of T2 values between 

normal tissue and brain tumors (>50%)53 and therefore should not affect differentiation in 

clinical studies. Possible sources of differences in measurements between Multitasking and 

the references are the difference in T1 signal evolution (i.e., the T1-decay model in 

Multitasking vs the inversion-recovery model in IR-TSE), insufficient removal of phase 

inconsistencies resulting in a reduced diffusion-weighted signal (and therefore ADC 

overestimation), and the effect of B1 inhomogeneities on T2preps (incomplete refocusing or 

reduced tip-down/tip-up efficiency) that results in a reduced signal (and therefore T2 

underestimation)54.

The existence of shot-to-shot (inter-shot) phase variation55,56 in diffusion-prepared MRI is 

well-known and has previously been addressed by approaches such as navigator-based phase 

estimation55,57-59 and navigator-free phase correction28,29,60-62. The highly time-resolved 

nature of Multitasking imaging allowed by the high temporal resolution (5.78ms) also 

revealed slight intra-shot phase variation (i.e., variation in successive readouts after a single 

preparation) (Supporting Information Video S1). Here, our time-resolved phase correction 

Ma et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compensates for both the inter- and intra-shot phase inconsistencies by performing model-

based phase correction27-29 at each timepoint. We observed that the diffusion-preparations 

may produce completely different phase patterns; T2preps, however, consistently produce 

approximately the same phase pattern. As a result, the phase inconsistencies will lead to 

severe cancellation of signals mostly in diffusion-weighted signals, resulting in significantly 

increased ADC measurements if uncorrected. T1 and T2 are less affected because i) the T1 

fitting is primarily dominated by the signal evolution following the shortest T2prep, and ii) 

the signals encoded with different T2 weightings do not experience these phase 

inconsistencies.

Motion effects were explored by identifying corrupted shots on the preliminary real-time 

images and performing data removal. Advanced motion compensation approaches will be 

included in future work to make sure no re-acquisition is necessary in clinical settings. 

Compared to MR Fingerprinting studies where the quantitative mapping accuracy is affected 

by exactly when the motion occurs during the scan43,44, our Multitasking framework 

appears less sensitive to the timing of motion. The sensitivity to the timing of motion can 

potentially be further reduced by interleaving the T2preps and diffusion-preparations (i.e., 

one acquisition block contains 4 T2preps and 6 diffusion-preparations, and the whole 

acquisition block repeats). For this evaluation, manual inspection identified motion-

corrupted images, as the image artifacts and signal loss are significant. An automatic data 

removal algorithm may be included in future work, similar to a method which successfully 

identified the abnormal segments of data using the real-time temporal basis functions63. 

Here, Multitasking T1/T2/ADC mapping was robust to motion when up to 39% T2preps are 

corrupted or up to 40% diffusion-preparations are corrupted. The effectiveness of simple 

data removal indicates that even shorter scan times may be achievable by cutting down the 

number of repetitions for each preparation.

Separate ADC acquisition using SS-EPI showed higher SNR efficiency than the ADC from 

Multitasking; however, Multitasking has the additional benefit of producing distortion-free 

ADC maps which are co-registered with T1 and T2 maps, which could potentially benefit 

machine-learning-based radiomic algorithms to provide predictive biomarkers for diagnosis 

and prognosis64,65. In scenarios where ADC SNR efficiency is preferred, an alternative 

approach to achieve efficient T1/T2/ADC mapping could be simultaneous T1/T2 mapping 

with Multitasking20,66 followed by a separate fast, distorted DWI acquisition67. The best 

acquisition strategy remains an open question, and it can be for the clinicians to determine 

which strategy to adopt in a specific clinical practice.

One limitation of the proposed method is the long reconstruction time, which currently takes 

3-4 hours for image reconstruction. The reconstruction speed may improve in the future with 

successive generations of workstations, computational hardware improvements, or the use of 

GPUs. Another limitation is that the SNR of the proposed method is relatively low. The 

spoiler gradient removes half of the signal, and the FLASH readout with 5° flip angle 

(chosen to minimize B1+ corruption of T1 maps) also leads to low SNR. A potential 

alternative is to switch to bSSFP readouts but may be subject to off-resonance and eddy 

current artifacts and have more complicated signal evolution.
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Conclusion

We have proposed a novel MR Multitasking framework to achieve 3D simultaneous brain 

T1/T2/ADC mapping in <10min. The proposed method provides co-registered images 

without distortion, quantifies T1/T2/ADC measurements with substantial agreement with 

reference protocols, and demonstrates clinical feasibility. Extending this work to leverage 

the established ability of the Multitasking framework to obtain motion-resolved quantitative 

mapping is a potential avenue to achieve simultaneous T1/T2/ADC mapping of the abdomen 

and heart.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) The sequence diagram of the Multitasking framework. A series of T2preps with 

different durations are concatenated with a series of diffusion-preparations with different b-

values and directions. The duration of one of the T2prep matches the duration of the 

diffusion prep, so that this T2prep also serves as a b=0 diffusion prep. The crusher gradient 

scheme is used to avoid tipping inconsistent phase errors onto the longitudinal magnetization 

and maintain the magnitude consistency by complete dephasing before the tip-up pulse and 

subsequent rephasing immediately before each readout. A 3D segmented FLASH readout is 

used for data acquisition. A gap is placed immediately prior to each preparation to allow 

sufficient signal recovery. (B) The k-space sampling illustration. Imaging data are collected 

using 3D random Cartesian trajectory with Gaussian variable density along phase encoding 

(ky) and partition encoding (kz) direction. Subspace training data are collected every 8 

readouts for temporal subspace estimation.
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Figure 2. 
Illustration of multiple temporal dimensions of the 5-way low-rank tensor for simultaneous 

T1, T2, and ADC mapping. The 5-way image tensor contains spatial, T1-weighting, T2prep 

duration, b-value and diffusion direction dimensions. The low-rank tensor structure can be 

explicitly expressed through tensor factorization between 5 sets of basis functions assigned 

to each dimension and the 5-way core tensor governing the interaction between different 

basis functions. Here only the three most significant basis functions describing each 

dimension of the tensor are provided.
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Figure 3. 
Comparison of T1/T2/ADC mapping between Multitasking and the references. Multitasking 

provides good image quality with substantial correlation with references and is free from 

image distortion present in SS-EPI ADC references (white arrows). The solid line represents 

identity while the dotted line represents the linear fitting. ICC between Multitasking and the 

references indicates substantial consistency.
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Figure 4. 
Representative in vivo T1/T2/ADC mapping of 3 slices using Multitasking and the 

respective reference protocols for a healthy volunteer. Multitasking provides T1/T2/ADC 

maps with good qualitative agreement with the references, and without image distortion 

(white arrows) which can be observed on SS-EPI ADC maps.
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Figure 5. 
(A) Gray matter and (B) white matter Bland-Altman plots of frontal, parietal, and occipital 

T1/T2/ADC.
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Figure 6. 
Motion effect exploration for subject 1, where 39% T2preps and 8% diffusion-preparations 

(20% data in total) are corrupted and removed. Comparison between motion-free, motion-

corrupted, and motion-removed quantitative T1/T2/ADC maps, as well as the respective 

percentage difference maps against the motion-free reference are shown. The percentage 

difference map is generated by normalizing the absolute difference with the motion-free 

map. The motion results in substantial blurring artifacts in the T1 map, as well as elevated 

T2 and ADC values. After motion removal, the artifacts are removed and the biased T2 and 

ADC measurements are restored, resulting in lower root-mean-squared errors (RMSE) for 

all measurements.
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Figure 7. 
Motion effect exploration for subject 2, where 21% T2preps and 40% diffusion-preparations 

(33% data in total) are corrupted and removed. Comparison between motion-free, motion-

corrupted, and motion-removed quantitative T1/T2/ADC maps, as well as the respective 

percentage difference maps against the motion-free reference are shown. The percentage 

difference map is generated by normalizing the absolute difference with the motion-free 

map. Motion-corrupted and motion-removed T1/T2 maps do not show much differences 

with the motion-free maps. ADC values are substantially elevated due to motion. After 

motion removal, most biased ADC measurements are restored, resulting in slightly reduced 

root-mean-squared errors (RMSE) for T1 and T2, as well as substantially reduced RMSE for 

ADC.

Ma et al. Page 26

Magn Reson Med. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Clinical images and Multitasking T1/T2/ADC maps of a patient who was previously 

diagnosed with glioblastoma and underwent chemoradiation and surgery for tumor 

resection. (A) T2 FLAIR. (B) Pre-contrast T1 MPRAGE. (C) Clinical ADC map using 

RESOLVE. (D) T2 TSE. (E) Post-contrast T1 MPRAGE. (F-H) T1/T2/ADC maps obtained 

from Multitasking. White arrows point to the nodular enhancement area identified on post-

contrast T1 MPRAGE. Purple arrows point to the surrounding edema. Multitasking T1/T2 

maps reflect the tissue characteristics indicated by the clinical qualitative images. 

Multitasking ADC map is consistent with the clinical ADC map.
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Table 1.

Frontal, parietal, and occipital gray matter and white matter T1/T2/ADC measurements of 16 healthy 

volunteers using Multitasking and the references.

Gray Matter Measurements (n=16)

Frontal Parietal Occipital

Multitasking Reference Multitasking Reference Multitasking Reference

T1(ms) 1250.6±52.5 1225.9±40.9 1231.8±40.5 1223.9±39.8 1205.8±43.1 1205.4±40.4

T2(ms) 97.8±5.7 105.8±5.7 96.9±5.5 104.8±5.2 98.7±6.1 104.1±5.0

ADC(x10−3mm2/s) 0.95±0.05 0.92±0.04 0.92±0.08 0.91±0.06 0.95±0.08 0.93±0.07

White Matter Measurements (n=16)

Frontal Parietal Occipital

Multitasking Reference Multitasking Reference Multitasking Reference

T1(ms) 807.4±39.1 792.9±45.1 811.9±40.6 811.3±40.4 820.2±41.0 814.5±38.7

T2(ms) 71.3±4.8 78.5±4.6 78.2±4.2 82.1±4.9 74.4±4.5 80.3±3.4

ADC(x10−3mm2/s) 0.80±0.03 0.77±0.03 0.80±0.04 0.77±0.04 0.78±0.04 0.75±0.04

Magn Reson Med. Author manuscript; available in PMC 2021 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ma et al. Page 29

Table 2.

Intra-class correlation coefficients of frontal, parietal, occipital gray matter and white matter T1/T2/ADC 

between Multitasking and the references.

Gray Matter Intra-Class Correlation Coefficients

Frontal Parietal Occipital

T1 0.88 0.93 0.86

T2 0.98 0.97 0.88

ADC 0.89 0.93 0.95

White Matter Intra-Class Correlation Coefficients

Frontal Parietal Occipital

T1 0.92 0.95 0.93

T2 0.88 0.82 0.87

ADC 0.94 0.91 0.87
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