Skip to main content
. 2020 Nov 13;8(11):e21209. doi: 10.2196/21209

Table 1.

Validation result for each household based on the trained model.

Household ID Abnormal daysa Total observed days Lossb AUCc Abnormal weekendd
HH0 66 360 0.18 0.88 43
HH1 60 360 0.22 0.76 15
HH2 35 325 0.22 0.63 7
HH3 53 365 0.13 0.78 12
HH4 63 311 0.13 0.8 37
HH5 73 352 0.17 0.52 61
HH6 62 365 0.23 0.8 16
HH7 68 362 0.21 0.72 31
HH8 73 365 0.17 0.76 32
HH9 50 365 0.2 0.83 24
HH10 61 351 0.21 0.81 26
HH11 61 364 0.18 0.8 23
HH12 99 355 0.19 0.75 68
HH13 65 363 0.21 0.77 38
HH14 70 356 0.19 0.68 21
HH15 61 363 0.19 0.66 23
HH16 74 365 0.2 0.72 39
HH17 79 359 0.22 0.65 20
HH18 60 356 0.18 0.68 15
HH19 49 355 0.18 0.74 19
HH20 71 363 0.21 0.74 45
HH21 61 363 0.2 0.77 13
HH22 86 355 0.16 0.82 50
HH23 79 361 0.21 0.72 37
HH24 46 364 0.28 0.74 18
HH25 65 356 0.15 0.74 17
HH26 92 350 0.17 0.71 55
HH27 70 360 0.18 0.68 29
HH28 61 363 0.21 0.72 29

aAnomalous activity of users in 2019: activity that deviated from regular activity patterns defined from the 2018 data.

bAverage error associated with reconstructing the validation records using the regular activity pattern.

cAUC: area under the curve. Overall compatibility of the regular activity pattern with validation records, in terms of recognizing the activation and deactivation of motion sensors at the right time slots.

dTotal number of abnormal days that are weekend days.