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Variation in microparasite 
free‑living survival and indirect 
transmission can modulate 
the intensity of emerging 
outbreaks
C. Brandon Ogbunugafor1,2,3*, Miles D. Miller‑Dickson2, Victor A. Meszaros2, 
Lourdes M. Gomez1,2, Anarina L. Murillo4,5 & Samuel V. Scarpino6,7,8

Variation in free-living microparasite survival can have a meaningful impact on the ecological 
dynamics of established and emerging infectious diseases. Nevertheless, resolving the importance of 
indirect and environmental transmission in the ecology of epidemics remains a persistent challenge. 
It requires accurately measuring the free-living survival of pathogens across reservoirs of various 
kinds and quantifying the extent to which interaction between hosts and reservoirs generates new 
infections. These questions are especially salient for emerging pathogens, where sparse and noisy 
data can obfuscate the relative contribution of different infection routes. In this study, we develop a 
mechanistic, mathematical model that permits both direct (host-to-host) and indirect (environmental) 
transmission and then fit this model to empirical data from 17 countries affected by an emerging virus 
(SARS-CoV-2). From an ecological perspective, our model highlights the potential for environmental 
transmission to drive complex, nonlinear dynamics during infectious disease outbreaks. Summarizing, 
we propose that fitting alternative models with indirect transmission to real outbreak data from 
SARS-CoV-2 can be useful, as it highlights that indirect mechanisms may play an underappreciated 
role in the dynamics of infectious diseases, with implications for public health.

The ecology of infectious disease has provided a theoretical basis for understanding how interactions between 
microbes, their hosts, and environments shape the severity of epidemics. Mathematical modeling methods offer 
a means of exploring the consequences of different routes of transmission on the shape of epidemics. This is useful 
in the case of emerging diseases, where it may be challenging to fully resolve all of the features of an epidemic, 
including the influence of different routes of transmission on key features of an epidemic. That is, even though 
there is a large general literature on environmental transmission (or “fomite” transmission)1–13, relatively few 
studies have explored how particular aspects of indirect or environmental transmission can influence disease 
dynamics. Lack of clarity regarding how variation in environmental transmission (e.g. as driven by different 
physical surfaces) manifests in epidemics is especially notable in emerging diseases, where data sets are elusive, 
sparse, or noisy.

For example, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of coro-
navirus disease 2019 (COVID-19), has caused one of the largest pandemics of the last century. The complex set 
of epidemiological characteristics defining COVID-19 outbreaks presents a number of challenges for controlling 
this disease. As a consequence, countries have achieved varying levels of success14–18 in reducing transmission 
and protecting vulnerable populations, often with dramatic variation from setting to setting in the intensity 
of epidemics. The basic reproductive number ( R0)19–21, fatality rate22,23, incubation period22,24–26, transmission 

OPEN

1Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA. 2Department of 
Ecology and Evolutionary Biology, Brown University, Providence 02912, USA. 3Center for Computational Molecular 
Biology, Brown University, Providence  02912, USA. 4Department of Pediatrics, Warren Alpert Medical School, 
Brown University, Providence  02912, USA. 5Center for Statistical Sciences, Brown University School of Public 
Health, Providence 02903, USA. 6Network Science Institute, Northeastern University, Boston 02115, USA. 7Roux 
Institute, Northeastern University, Portland  04101, USA. 8Santa Fe Institute, Santa Fe  87501, USA. *email: 
brandon.ogbunu@yale.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-77048-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20786  | https://doi.org/10.1038/s41598-020-77048-4

www.nature.com/scientificreports/

interval27, prevalence of super-spreading events28,29, and other relevant aspects of COVID-19 epidemiology 
provide a mechanistic window into how SARS-CoV-2 is transmitted in different settings. However, one feature 
of SARS-CoV-2 transmission that was validated in laboratory settings, but whose epidemiological role remains 
highly controversial, is SARS-CoV-2 free-living survival. Specifically, several laboratory and epidemiological 
findings offer conflicting evidence that indirect or environmental transmission (via free-living virus) may play 
a role in some settings30–41, and to our knowledge, none have fully investigated how this route of transmission 
may influence features of outbreaks. Several unknowns notwithstanding, the availability of SARS-CoV-2 data 
make it a valuable model for examining the particulars of indirect transmission in emerging outbreaks.

In this study, we use confirmed case data alongside laboratory and epidemiologically validated parameters 
to develop a mechanistic model that includes indirect transmission. We evaluate the potential for variability in 
indirect or environmentally-mediated transmission to explain variability in various features associated with 
the intensity of outbreaks. This framework includes parameters corresponding to the transmission of the virus 
from both presymptomatic/asymptomatic and clinical (symptomatic) carriers of virus, and the possibility that 
susceptible hosts can acquire infection through environmental reservoirs or other indirect means. We examine 
how outbreak dynamics can be influenced by differences in viral free-living survival that include empirical values 
for survival on various abiotic reservoirs (e.g. aerosols, plastic, copper, steel, cardboard)30.

Our findings highlight the need for an empirically-informed, mechanistic understanding of the ecology of 
emerging viral outbreaks, including the particulars of free-living survival on different abiotic surfaces and in 
aerosol form. These routes should be a greater focus in emerging infectious disease outbreaks, as a refined grasp 
on their specifics can uncover important details of outbreak dynamics.

Materials and methods
A waterborne, abiotic, and other indirectly transmitted (WAIT) model for the dynamics of 
emergent viral outbreaks.  Several models have been engineered to explore aspects of COVID-19 dynam-
ics. For example, models have been used to investigate the role of social distancing20,42, social mixing43, the 
importance of undocumented infections44, the role of mobility in the early spread of disease in China45, and the 
potential for contact tracing as a solution46. Only a few notable models of SARS-CoV-2 transmission incorpo-
rate features of indirect or environmental transmission40,46 and none consider the dynamical properties of viral 
free-living survival in the environment. Such a model structure would provide an avenue towards exploring how 
variation in free-living survival influences disease outbreaks. Indirect transmission includes those routes where 
pathogen is spread through means other than from person to person, and includes transmission through envi-
ronmental reservoirs. Environmental transmission models are aplenty in the literature and serve as a theoretical 
foundation for exploring similar concepts in newer, emerging viruses1–10.

Here, we parameterize and validate an SEIR-W model: Susceptible (S), Exposed (E), Infectious (I), Recovered 
(R), and WAIT (W) model. Here W represents the environmental component of the transmission cycle during 
the early stage of the SARS CoV-2 pandemic. This component introduces more opportunities for infection, and 
complex dynamics resulting from viral persistence in the environment. In this framework, both indirect and 
direct transmission occur via mass-action, “random” encounters.

This model is derived from a previously developed framework called “WAIT”—which stands for Water-
borne, Abiotic, and other Indirectly Transmitted—that incorporates an environmental reservoir where a pathogen 
remains in the environment and “waits” for hosts to interact with it11,12. The supplementary information contains 
a much more rigorous discussion of the modeling details. In the main text, we provide select details.

Building the SEIR‑W model framework for SARS‑CoV‑2.  Here W represents the environmental 
component of the early stage of the SARS CoV-2 pandemic (Fig. S1). This environmental compartment refers to 
reservoirs that people may have contact with on a daily basis, such as doorknobs, appliances, and non-circulating 
air indoors. The W compartment of our model represents the fraction of these environmental reservoirs that 
house some sufficiently transmissible amount of infectious virus. We emphasize that the W compartment is 
meant to only represent reservoirs that are common sites for interaction with people. Thus, inclusion of the W 
compartment allows us to investigate the degree to which the environment is infectious at any given point, and 
its impact on the transmission dynamics of SARS CoV-2.

Model parameters are described in detail in Table 1. The system of equations in the proposed mathematical 
model corresponding to these dynamics are defined in Eqs. (1)–(6):

(1)
dS

dt
= µ(N − S)−

(

βAIA + βSIS

N
+ βWW

)

S

(2)
dE

dt
=

(

βAIA + βSIS

N
+ βWW

)

S − (ǫ + µ)E

(3)
dIA

dt
= ǫE − (ω + µ)IA

(4)
dIS

dt
= (1− p)ωIA − (ν + µS)IS
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Infection trajectories.  In addition to including a compartment for the environment (W), our model also 
deviates from traditional SEIR form by splitting the infectious compartment into an IA-compartment (A for 
asymptomatic), and an IS-compartment (S for symptomatic). As we discuss below, including asymptomatic 
(or sub-clinical) transmission is both essential for understanding how environmental—as opposed to simply 
unobserved or hidden—transmission affects the ecological dynamics of pathogens and also for analyzing SARS-
CoV-2. The former represents an initial infectious stage (following the non-infectious, exposed stage), from 
which individuals will either move on to recovery directly (representing those individuals who experienced mild 
to no symptoms) or move on to the IS-compartment (representing those with a more severe response). Finally, 
individuals in the IS-compartment will either move on to recovery or death due to the infection. This splitting 
of the traditional infectious compartment is motivated by mounting evidence of asymptomatic transmission of 
SARS CoV-244,47–50. Thus, we consider two trajectories for the course of the disease, similar to those employed 
in prior studies42: (1) E → IA → R and (2) E → IA → IS → R (or death). More precisely, once in the E state, an indi-
vidual will transition to the infectious state IA, at a per-person rate of ε. A proportion p will move from IA to the 
recovered state R (at a rate of p ⍵). A proportion (1—p) of individuals in the IA state will develop more severe 
systems and transition to Is (at a rate of (1—p) ⍵). Individuals in the Is state recover at a per-person rate of ν or 
die at a per-person rate μS. In each state, normal mortality of the individual occurs at the per-person rate μ and 
newly susceptible (S) individuals enter the population at a rate μN. The important differences between these two 
trajectories are in how likely an individual is to move down one path or another, how infectious individuals are 
(both for people and for the environment), how long individuals spend in each trajectory, and how likely death 
is along each trajectory.

Clarification on the interactions between hosts and reservoirs.  The model couples the environ-
ment and people in two ways: (1) people can deposit the infectious virus onto environmental reservoirs (e.g. 
physical surfaces, and in the case of aerosols, the ambient air) and (2) people can become infected by interacting 
with these reservoirs. While most of our study is focused on physical surfaces, we also include data and analysis 
of SARS-CoV-2 survival in aerosols. While aerosols likely play a more significant role in person-to-person trans-
mission, they also facilitate an indirect means of transmitting. For example, because SARS-CoV-2 can remain 
suspended in the air, other individuals can become infected without ever having to be in especially close physical 
proximity to the aerosol emitter (only requires that they interact with the same stagnant air, containing infec-
tious aerosol particles)51. That is, a hypothetical infectious person A may produce aerosols, leave a setting, and 
those aerosols may infect a susceptible individual B who was never in close proximity to person A. In the trans-
mission event between person A and person B, aerosol transmission functions in a similar fashion to surface 
transmission, where aerosols may be exchanged in the same room where infected individuals were, rather than 
exchanging infectious particles on a surface.

In our model, indirect infection via aerosols is encoded into the terms associated with the W component, just 
as the different physical surfaces are. Alternatively, aerosol transmission that leads to direct infection between 
hosts is encoded in the terms associated with direct infection between susceptible individuals and those infected 
(see section entitled Infection Trajectories).

Environmental reservoirs infect people through the βW term (Eqs. 1 and 2), a proxy for a standard trans-
mission coefficient, corresponding specifically to the probability of successful infectious transmission from 
the environment reservoir to a susceptible individual (the full rate term being βWW·S). Hence, the βW factor is 
defined as the fraction of people who interact with the environment daily, per fraction of the environment, times 

(5)
dR

dt
= pωIA + νIS − µR

(6)
dW

dt
=

(

σAIA + σSIS

N

)

(1−W)− kW

Table 1.   Model population definitions and initial values denoted with subscript 0 for each state variable. 
Here we present definitions for the population groups represented by each compartment as well as their initial 
values. The initial value of the S and IS populations vary by country, as shown in Table 2. We take the initial 
value of the IA population to be the same as the initial value of symptomatic individuals as a conservative 
estimate. The initial value of the E population is computed by assuming that all initially-infected people 
(IA0 + IS0) have exposed the virus to approximately other people. R0 (≈ 2.5).

Symbols Initial values Units Definitions Sources

S0 Varies by country People Susceptible individuals Vary

E0 R0 · (IA0 + IS0) People Exposed individuals Deduced

IA0 IS0 People Asymptomatic individuals Deduced

IS0 Varies People Symptomatic individuals Deduced

Rec0 0 People Recovered individuals Deduced

W0 1% Unitless % of viruses in environment Deduced
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the probability of transmitting infection from environmental reservoir to people. The factor βWW (where W is 
the fraction of environmental reservoirs infected) represents the daily fraction of people that will interact with 
the infected portion of the environment and become infected themselves. The full term βWW·S is thus the total 
number of infections caused by the environment per day.

In an analogous manner, we model the spread of infection to the environment with the two terms σA IA·(1—W) 
/ N and σS IS·(1—W) / N representing deposition of infection to the environment by asymptomatic individu-
als, in the former, and symptomatic individuals, in the latter. In this case, σA (and analogously for σS) gives the 
fraction of surfaces/reservoirs that interact with people at least once per day, times the probability that a person 
(depending on whether they are in the IA or the IS compartment) will deposit an infectious viral load to the res-
ervoir. Thus, σA IA / N and σS IS / N (where N is the total population of people) represent the daily fraction of the 
environment that interacts with asymptomatic and symptomatic individuals, respectively. Lastly, the additional 
factor of (1—W) gives the fraction of reservoirs in the environment that have the potential for becoming infected, 
and so σA IA·(1—W) / N (and analogously for IS) gives the fraction of the environment that becomes infected by 
people each day. We use W to represent a fraction of the environment, although one could also have multiplied 
the W equation by a value representing the total number of reservoirs in the environment (expected to remain 
constant throughout the course of the epidemic, assuming no intervention strategies).

Parameter values estimation.  Table 1 displays information on the population definitions and initial val-
ues in the model. Tables 2 and 3 contain the fixed and estimated values and their sources (respectively). The 
model’s estimated parameters are based on model fits to 17 countries with the highest cumulative COVID-19 
cases (of the 181 total countries affected) as of 03/30/2020, who have endured outbreaks that had developed 
for at least 30 days following the first day with ≥ 10 cumulative infected cases within each country14 (See sup-
plementary information Tables S1–S3). In addition, we compare country fits of the SEIR-W model to fits with a 
standard SEIR model. Lastly, we compare how various iterations of these mathematical models compare to one 
another with regards to the general model dynamics. For additional details, see the supplementary information.

Basic reproductive ratios ( R
0
).  We can express the R0 (Eq. 7) in a form that makes explicit the contri-

butions from the environment and from person-to-person interactions. In this way, the full R0 is observed to 
comprise two R0 sub-components: one the number of secondary infections caused by a single infected person 
through person-to-person contact alone (Rp) and the other is the number of secondary infections caused by 
exchanging infection with the environment (Re).

Table 2.   Fixed parameter values estimated based on available published literature. These estimated values 
derived from the existing COVID-19 and SARS-CoV-2 literature.

Symbols Values Units Definitions Sources

μ 1/(80.3 * 365) 1/day Natural Death Rate (Reciprocal of the average life expectancy of 17 
countries sampled)

14,65

μS 0.00159 1/day Infected death rate 22,66

η 5.5 days Incubation Period 67

1/⍵ η−ε−1 days Expected time in the asymptomatic state Fitted and dependent on η

ν 0.031 1/day Recovery rate (Average of 3–6 weeks) 67

p 0.956 Unitless Fraction that move along the “mild” recovery track 20

k 0.649 1/day Viral decay rate in environment (using average of all material values, 
wood, steal, cardboard, plastic)

30

Table 3.   Estimated parameter values, averaged across countries. Here we provide a table of the average values 
of the fitted parameters used in this model. These averages are taken across all of the selected 17 countries. See 
supplementary information for more details on country data and parameter estimation.

Symbols Average values (SEIR-W) SD (SEIR-W) Average values (SEIR) SD (SEIR) Units Definitions

βA 0.550 0.345 0.429 0.751 1/day (Contact rate of people with people) × (transmission probability of 
people to people by an asymptomatic person)

βS 0.491 1.260 8.019 5.972 1/day (Contact rate of people with people) × (transmission probability of 
people to people by I-person)

βW 0.031 0.039 0.0 – 1/day (Contact rate of person with environment) × (transmission probability 
of environment to people)

σA 3.404 6.662 0.0 – 1/day (Contact rate of person with environment) × (probability of shedding by 
asymp.-person to environment)

σS 13.492 18.849 0.0 – 1/day (Contact rate of person with environment) × (probability of shedding by 
symp.-person to environment)

1/ε 2.478 1.325 2.381 2.249 days Average number of days before infectious
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where Rp and Re are defined in Eqs. (8a) and (8b)

Note that when Rp = 0, the R0 reduces to Re and when Re = 0, the R0 reduces to Rp. Thus, when person-to-
person transmission is set to zero, the R0 consists only of terms associated with transmission from the environ-
ment, and when transmission from the environment is set to zero, the R0 consists only of infection directly 
between people. When both routes of transmission are turned on, the two R0-components combine in the 
manner in Eq. (7).

While Re represents the component of the R0 formula associated with infection from the environment, the 
square of this quantity Re

2 represents the expected number of people who become infected in the two-step infec-
tion process: people → environment → people, representing the flow of infection from people to the environ-
ment, and then from the environment to people. Thus, while Rp gives the expected number of people infected 
by a single infected person when the environmental transmission is turned off, Re

2 gives the expected number 
of people infected by a single infected person by way of the environmental route exclusively, with no direct 
person-to-person transmission. Also note that Re

2/(Re
2 + Rp) can be used to measure the extent of transmission 

that is mediated by the environment exclusively. This proportion can be used as a proxy for how important 
environmental transmission is in a given setting. Elaboration on formulas 8a–b—and associated derivation-
discussions—appear in the supplementary information.

Results
The results section covers the following sets of tests and analyses:

1.	 The process through which parameters were estimated through fits to country-level outbreak data.
2.	 Sensitivity analysis, to discuss how variation in parameters influences key aspects of virus transmission 

dynamics.
3.	 An examination of how the mathematical model incorporates indirect and environmental transmission. 

We discuss a calculation of the proportion of the transmission in a given setting that can be attributed to 
environmental transmission.

4.	 Simulations of “reservoir world” scenarios, where the environmental transmission value is set to one of the 
reservoirs for which there are published findings30. This is designed to identify how hypothetical settings 
comprising SARS-CoV-2 environmental transmission of a certain kind influences disease dynamics.

Establishing features of indirect or  environmental transmission using country outbreak 
data.  Using the Akaike information criterion (AIC), SEIR models with an environmental compartment 
(SEIR-W) provide a strong relative fit to country incidence data. As discussed in the Methods and supplemen-
tary information, we compared the performance of models with (SEIR-W) and without (SEIR) environmental 
transmission across multiple countries to assess the role of environmental transmission in different contexts. 
Using the fitted parameters provided in Tables 1–3, and S1–S3, we calculate AIC values for the two mechanistic 
models: the standard SEIR model and the SEIR-W model. Table S4 displays the summary of the AIC values for 
each model-type fit to the first 30 days after the first day with total counts ≥ 10. In 10/17 countries (including 
9/11 European countries), the SEIR-W model provided a better fit to the country data. In Fig. 1, we display the 
comparative individual country fit results for 4 of the countries with the fastest 30-day case growth rates—Spain, 
Italy, Iran, and Switzerland. The SEIR-W variant provides a better fit (significantly lower AIC score) than the 
standard SEIR model for all of these. Results for additional country fits can be found in the supplementary 
information, Fig. S2.

Sensitivity analysis reveals how environmental transmission can modulate disease dynam‑
ics.  Partial Rank Correlation Coefficient (PRCC) analyses for the four examined features of the outbreak—(1) 
R0 , (2) total number of infected individuals after 30 days, (3) time to peak number of infected individuals, and 
(3) size of peak number of infected individuals. Figure 2 demonstrates the PRCC calculations for all four of these 
outbreak characteristics. For R0 , we observe that the model was strongly sensitive to several aspects related to 
virus transmission—βA, βS, βw—as well as the rate at which asymptomatic individuals develop symptoms (⍵), 
the rate of recovery (4) and SARS-CoV-2 free-living survival rate (k).

One can also observe how some parameters are better suited to modify the peak of the infection, such as the 
recovery rate (ν; which includes in it the swiftness of diagnosing and treating the virus). Others modulate the 
timing of the peak, such as ε, the rate of leaving the “exposed” compartment (or equally well, the reciprocal of 
the average time spent in the exposed compartment). Note that across all features, the fraction of cases that move 
along the “mild” route (p), from E → IA → R, has a powerful influence on all factors.

(7)R0 =
Rp +

√

R2
p + 4R2

e

2

(8a)Rp =
ε(βA(µS + ν)+ βS(1− p)ω)

(µ+ ε)(µ+ ω)(µS + ν)

(8b)R2

e =
εβW (σA(µS + ν)+ σS(1− p)ω)

k(µ+ ε)(µ+ ω)(µS + ν)
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Figure 1.   Illustrative model fit comparisons for SEIR-W and standard SEIR to case counts in early windows of 
the outbreak. The model fits are comparable across four countries with the largest early epidemics. These were 
chosen based having the highest cumulative number of infected cases after 30 days, following the first day when 
case counts were greater than or equal to 10. The four countries are (a,b) Spain, (c,d) Italy, (e,f) Iran and (g,h) 
Switzerland. These constitute a subset of 17 countries that had the highest number of cumulative COVID-19 
cases (of the 181 total countries affected) as of March 30, 2020. Data come from the European Centre for Disease 
Control and Prevention, and from ourworldindata.org14,65. See supplementary information for more details.

Figure 2.   A partial rank correlation coefficient (PRCC) sensitivity analysis. PRCC was performed with respect 
to (A) R0 , (B) total number of infected (and symptomatic) after 30 days of outbreak, (C) time to peak number 
of symptomatic individuals (tmax), and (D) peak number of symptomatic individuals. This analysis highlights the 
intercorrelated sensitivities of each of the model parameters. The blue bars show the mean value of each PRCC, 
with error bars at one standard deviation. This analysis was performed by sampling over uniform distributions 
of 4.5% around the nominal model parameter values. Parameters correspond to the fixed ones in Table 3, and 
the average fitted parameters values in Table S5. The red line marks PRCC values of + /− 0.50 and helps identify 
parameters that are more influential (greater than 0.50 or less than—0.50). See supplementary information for 
more details.
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The R
0
 comprises person‑to‑person and indirect/environmental transmission.  In the Meth-

ods, we described how the R0 is composed of two sub-R0 components, corresponding to different infectious 
interactions: person to person (Rp), person to environment and environment to person (Re). Tornado plots were 
constructed that demonstrate how the R0-components have their own architecture and sensitivity (Fig. 3). These 
results highlight that Re is sensitive to parameters associated with environmental transmission (βW, σA, σs, k). 
while Rp is sensitive to terms associated with direct transmission (⍵, βA, βS).

In Fig. 4, we observe how variation in free-living survival (1/k) influences four characteristics of an outbreak: 
R0 , total number of infected individuals after 30 days, time to peak number of infected and symptomatic indi-
viduals, and maximum number of symptomatic individuals in the first 30 days. Note the annotations on the 
figure that highlight where the empirically determined survival times of SARS-CoV-2 on a range of reservoir 
types (aerosol, copper, plastic, cardboard, stainless steel)30. Also note that the quantitative relationships between 
1/k and various outbreak features are slightly different. For example, the R0 increases more gradually across a 
wider range of free-living survival values than some of the other features (Fig. 4).

We should reemphasize some aspects of the underlying physics of the simulations in this study that were 
introduced in the Methods section. Studies have demonstrated that aerosol transmission is a key contributor to 
person-to-person transmission52–56. There are, however, scenarios where aerosols can serve as environmental 
reservoirs, capable of transmitting between individuals in an “indirect” way.

The composition of abiotic reservoirs modulates outbreak dynamics.  Figure 5 depicts the results 
of “reservoir world” simulations, where the k values correspond to those from a 2020 study highlighting the sur-
vival of SARS-CoV-1 and SARS-CoV-2 on different physical surfaces30. While different physical surfaces might 
conceivably influence multiple parameters in our model, we focused only on the k values, as they are informed 
directly by available empirical data. In addition, modifying a single parameter allows for a simpler comparison 
of the dynamics between settings.

The summary of these simulations (Fig. 5) highlights that the surface composition of a setting has a meaning-
ful impact on several features of outbreak dynamics. Of the “reservoir world” simulations, “aerosol world” (5a) 
and “copper world” (Fig. 5c) takes the longest amount of time (91.5 and 88.4 days, respectively) to rise to the peak 
number of infected-symptomatic individuals, indicating an outbreak which is slower to develop. Relatedly, the 
R0 values are much different in the different “reservoir world” scenarios: The “aerosol world” simulation has an 
R0 of 2.38, the “copper world” simulation an R0 of 2.4, and the “plastic world” simulation an R0 of 3.18 (Fig. 6 
and Table S5). In addition, the total number of individuals infected after 30 days of the outbreak, and the total 
number dead after 30 days are both significantly lower in the “aerosol world” and “copper world” setting (Fig. 6 
and Table S5). The peak value of infected individuals is not dramatically different across “reservoir worlds.” That 
is, while many features associated with severity differ greatly across “reservoir world” settings, we observed lower 
variation in the peak of the epidemic as compared with the time to the peak of the epidemic (Table S5). Maybe 
the most noteworthy of the differences is the vast disparity in the number of deaths in the first 30 days of the 
outbreak, where the “plastic world” setting has more than 30 times the number of deaths as the “copper world” 
scenario (1814 vs. 55, respectively; Fig. 6 and Table S5).

Lastly, comparisons of the metric, Re
2/(Re

2 + Rp), which measures the extent to which transmissions can be 
attributed to the environmental route, further highlights how different environmental reservoirs influence disease 
transmission (Fig. 6). The “aerosol world” and “copper world” settings comprise 4.6% and 6% of transmission 
events occurring through non-person-to-person transmission. This differs dramatically from the “plastic world” 
setting, where 52% of transmission events are occurring through the environmental route.

Figure 3.   R0 subcomponents have different parameter architecture. We compare the parameter architecture for 
the two R0 components that compose the full R0 expression, (a) Rp, (b) Re

2 and (c) R0. Parameters are colored 
according to their relation with the environment or people: green parameters refer to the environment, blue 
parameters strictly refer to people, and black parameters are neutral in this regard. Black bars show the extent 
to which the component after changed when the parameter values are increased by 4.5%, The white bars show 
the same except for a decrease of 4.5%. For clarity, the single parameter that most influences the R0 and its 
subcomponents is the faction of cases that move through the mild route (p) has been removed. For more details 
on how this parameter influences the R0 and other features of the outbreak, see the PRCC analysis as discussed 
in the Methods and supplementary information.
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Discussion
Deconstructing the basic reproductive number ( R

0
 ) into subcomponents highlights the role 

of indirect transmission.  By deconstructing the basic reproductive number into components, we can bet-
ter understand how variation in the R0—by setting, time, or geography—may reside in how these contexts 
are driven by environmental transmission. Many of these effects may be (as they are in this study) localized to 
one component of the R0 , labeled Re

2 in this study. Notably, the Re
2 component is highly sensitive to the trans-

mission interaction between people and the environment (βw), and the decay rate of virus in the environment 
(k). Interestingly, the Re

2 is relatively robust to the rate of infectious virus shed into the environment from the 
asymptomatic infected individuals (the parameter called σA in this model). Also, deconstructing the R0 value 
into these components facilitates the development of new metrics that quantify how much a given epidemic is 
driven by certain routes. As many viral diseases may contain multiple transmission routes, being able to properly 
quantify their relative contribution may be important for public health interventions. Adding dimensionality 
to the understanding of the R0 is a theme of modern epidemiology, as many recent findings have revealed the 
limitations of the standard definitions and sought to expand them57,58.

Models that include indirect transmission recapitulate aspects of real‑world outbreaks.  In 
this study, we introduce a general framework for studying the joint effects of direct and indirect microparasite 
transmission and then analyzed that model with respect to real world SARS-CoV-2 outbreaks in different coun-
tries. We demonstrate that understanding the particulars of environmental transmission, including variation 
in viral free-living survival, can alter fundamental characteristics of disease dynamics. For SARS-CoV-2, we 
find that for 10 out of the 17 countries examined, the SEIR-W model better explained the epidemiological pat-
terns than did SEIR models. Critically, both models include asymptomatic/sub-clinical transmission. Given that 
features of indirect transmission can influence central properties of disease dynamics, we should consider the 
possibility that variation in free-living survival may contribute to variation in the shape of real-world epidemics. 
Nevertheless, as features of individual country epidemics (e.g. quality of data, testing capacity) are myriad and 
difficult to disentangle, several aspects independent of the actual route of transmission could explain the supe-
rior fit of the SEIR-W models. The model is strongly sensitive to several aspects related to virus transmission, 
including the rate at which both symptomatic and asymptomatic individuals transmit infection to susceptible 

Figure 4.   Environmental transmission: Various features of an outbreak change as a function of 1/k (where 
k is the rate of decay of SARS-CoV-2 survival in the environmental compartment): to (A) R0 , (B) total 
number of infected (and symptomatic) after 30 days of outbreak, (C) time to peak number of symptomatic 
individuals (tmax), and (D) peak number of symptomatic individuals. The black dashed lines show the value of 
the respective plotted value at the average value of 1/k (~ 1.5 days), used in the fits from above. The top red line 
shows the maximum of plotted value for either the smallest value of 1/k chosen (= 1 h) or the largest value of 
1/k chosen (= 3 days), depending on whether the plotted value decreases or increases with 1/k, and the bottom 
red line shows the plotted value at the other extreme of 1/k. We emphasize that these correspond to indirect, 
environmental transmission only. Aerosol transmission, for example, is likely a cause of direct transmission 
between individuals.
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Figure 5.   Hypothetical “reservoir world” simulations feature differing environmental transmission dynamics. 
Population and environmental dynamics of SEIR-W model outbreaks in hypothetical settings composed of pure 
substances where SARS-CoV-2 can survive and be transmitted. (A,B) “aerosol world,” (C,D) “copper world,” 
(E,F) “cardboard world,” (G,H) “stainless steel world,” and (I,J) “plastic world.” Environment infectiousness 
corresponds to the proportion of the environment that contains infectious SARS-CoV-2. Note that the surface 
where the viral decay is strongest (Copper), the peak of the epidemic is pushed farthest from the origin. Also 
note the R0 values graphs A, C, E, and G, which highlight that the different “reservoir worlds” behave like 
fundamentally different outbreaks in several ways.
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hosts, the rate at which asymptomatic individuals develop symptoms, the rate of recovery (ν) and SARS-CoV-2 
decay rate (k). Even more, recent studies highlight how host behavior during a pandemic59 and the importance 
of urbanization60 can also influence disease dynamics. It is possible that the SEIR-W model captures various 
unknown features of epidemic dynamics, rooted in environmental transmission, or some other yet undiscovered 
mechanism.

Disease dynamics in different hypothetical “reservoir world” settings resemble essentially dif‑
ferent outbreaks.  Questions about the existence and implications of indirect and aerosol transmission 
have been front-and-center in our attempts to understand COVID-19. Analysis of the R0 and its subcompo-
nents highlights that many aspects of outbreak dynamics are sensitive to the parameter associated with environ-

Figure 6.   Summary of the hypothetical “reservoir world” outbreak intensity measures. Graphs correspond to 
the attributes of simulated epidemics where environments are entirely composed of a given physical surface, 
and larger values correspond to various aspects of outbreak intensity. (A) R0 , (B) total number of infected (and 
symptomatic) after 30 days of outbreak, (C) the inverse time to peak number of symptomatic individuals (tmax

-1; 
larger values = shorter times to reach peak), (D) peak number of symptomatic individuals, (E) deaths after 
30 days, and (F) environmental transmission fraction. Note the log scales on the y-axis in (B), (D) and (E).
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mental decay rate (k in the model presented in this study). Analysis of hypothetical settings purely comprising 
reservoirs of a certain kind (“reservoir world”) fortifies the significance of free-living survival on physical sur-
faces and environmental transmission in outbreak dynamics. While our findings cannot speak to the outbreak 
dynamics in any particular setting in the real world, they do reveal that the surface composition of a setting 
can significantly influence the behavior of a theoretical outbreak. For example, the R0 in the “plastic world” 
simulation ( R0 = 3.18) is over 1.3 times the R0 in the “copper world” simulation ( R0 = 2.4). Many other differ-
ences between these outbreaks come as a consequence of the different R0 values. The “plastic world” simulation 
reaches a peak number of symptomatic infectious individuals almost 1.7 times faster than the “copper world” 
simulation and kills over 30 times more people in the first 30 days (1814 deaths in “plastic world” vs. 55 deaths 
in the “plastic world”).

The differences between “reservoir world” epidemics are so significant that they might be naively interpreted 
as being caused by completely different pathogens. Note, however, that the maximum value of the infected- 
symptomatic populations are roughly equivalent across “reservoir worlds,” and so the influence of SARS-CoV-2 
survival on physical surfaces (mediated by difference in free-living survival) doesn’t affect all aspects of outbreak 
dynamics equally.

Despite the breadth of differences observed across surfaces, the similarity between the “aerosol world” and 
“copper world” results is notable. That is, an outbreak in a hypothetical world where there are no physical sur-
faces, but only transmission via aerosols would be only slightly more intense than an outbreak where indirect 
transmission was driven entirely by copper (using R0 as a quick proxy, “aerosol world” = 2.38, and “copper 
world” = 2.4). The implications here are subtle, but worth elaborating on: while a lot of discussion has focused 
on a dichotomy between aerosol-mediated transmission and indirect transmission, our findings suggest that 
the differences between aerosol transmission and some physical surfaces is so minute that the epidemiological 
signature for differences between them may be indistinguishable. Consequently, conversations about transmis-
sion might be centered around a different point of contention: not on the existence of indirect transmission, but 
how the combination of aerosols and surfaces contribute to non-contact transmission events.

Implications for the ecology of emerging outbreaks.  Many months after COVID-19 has firmly 
established itself as a large and very costly pandemic, the scientific community remains in the fact-finding phase 
of SARS-CoV-2 biology and COVID-19 understanding. A significant source of fear and speculation in the pan-
demic involves the plausibility that SARS-CoV-2 has undergone local adaptation in certain settings, translating 
to different epidemiological properties. While there is no convincing molecular or clinical support for local 
adaptation in SARS-CoV-2, our findings highlight how easy it is to conflate an environmental (or ecological) 
difference for a genetic one: the same virus, spreading in populations of identical size and behavior, differing only 
in the composition of physical surfaces where the virus can be transmitted through the environment, can have 
R0 values between 2.4 and 3.18, with early death rates 30 times apart. Even further, our findings highlight how 
models of direct and indirect/environmental transmission can provide comparable results, rendering it easy to 
conflate routes of transmission9,61,62.

Limitations and future directions.  Though the findings provide insight into the dynamics and implica-
tions of environmental transmission in viral infections, this study—and others of its kind—have several limita-
tions. For one, phenomenological models requiring the fitting of multiple parameters to limited (and noisy) data 
can be prone to spurious results. In addition, there are specific challenges involved with resolving the mechanism 
of transmission from simplistic models. The latter limitation is related to a challenge known as the identifi-
ability problem that arises when models are fit to early outbreak data9,61,62.The difficulty in predicting outbreaks 
conferred by this identifiability problem, and the generic variability in disease dynamics from setting to set-
ting has been encapsulated in a concept called permutation entropy63. Even more, environmental reservoirs 
composed of certain physical surfaces (plastic-like in our model) may be associated with phenomenon resem-
bling a “superspreading” event, where individual variation in contagiousness can drive unusually large numbers 
of infections64. Perhaps a better understanding of how, and on what surfaces, viral populations survive may 
improve the predictability of outbreak trajectories.

Because of the identifiability problem9,61,62 and a general lack of consensus regarding the mechanisms of trans-
mission in various diseases, we caution against the overextrapolation of these findings to any particular epidemic. 
As of fall 2020, the evidence for widespread surface transmission of SARS-CoV-2 remains dubious30–41. Insofar as 
SARS-CoV-2 is not the last of the emerging infectious diseases, then we should remain vigilant about understand-
ing how different routes of transmission may influence disease dynamics, as there remain other microparasites 
in human and nonhuman hosts that are transmitted via the environmental route and require our attention.

Data availability
All data is available in the main text or the supplementary information. The code used for our analyses is publicly 
available on Github: https​://githu​b.com/OgPle​xus/Coppe​rland​.
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