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Abstract: Being characterized by progressive and severe damage in neuronal cells, neurodegenerative
diseases (NDDs) are the major cause of disability and morbidity in the elderly, imposing a significant
economic and social burden. As major components of the central nervous system, lipids play important
roles in neural health and pathology. Disturbed lipid metabolism, particularly lipid peroxidation
(LPO), is associated with the development of many NDDs, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), all of which show elevated levels
of LPO products and LPO-modified proteins. Thus, the inhibition of neuronal oxidation might slow
the progression and reduce the severity of NDD; natural antioxidants, such as polyphenols and
antioxidant vitamins, seem to be the most promising agents. Here, we summarize current literature
data that were derived from human studies on the effect of natural polyphenols and vitamins A, C,
and E supplementation in patients with AD, PD, and ALS. Although these compounds may reduce
the severity and slow the progression of NDD, research gaps remain in antioxidants supplementation
in AD, PD, and ALS patients, which indicates that further human studies applying antioxidant
supplementation in different forms of NDDs are urgently needed.

Keywords: neurodegenerative diseases; lipid peroxidation; antioxidant supplementation; Alzheimer’s
disease; Parkinson’s disease; amyotrophic lateral sclerosis

1. Introduction

Neurodegenerative diseases (NDDs) have become the major cause of disability and morbidity
among older people worldwide due to the ageing society and the increased average life expectancy.
Suffering from severe memory and behavioral impairment (dementia) and the loss of movement
control (ataxia and paralysis), these patients need constant and long-term care, which is connected
with huge economic and societal costs.

Neurodegenerative diseases is a collective term for the clinical conditions characterized by gradual
and progressive severe damage to neuronal cells, particularly in the central nervous system (CNS),
which results in the loss of functions that are associated with the affected brain region [1,2]. Different in
etiology and clinical symptomatology, NDDs share some common features at the cellular and molecular
levels, such as protein misfolding, aggregation, and deposition; mitochondrial disfunction; chronic
inflammation; and, oxidative damage of biomolecules, including lipids, proteins, and DNA (Figure 1).
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The most common type of NDD is Alzheimer’s disease (AD), accounting for approximately two-thirds
of all cases [3]. Other NDDs include Parkinson’s disease (PD), Huntington’s disease, multiple sclerosis,
amyotrophic lateral sclerosis (ALS), and many other rare conditions, such as: prion diseases, motor
neuron diseases, spinocerebellar ataxia, spinal muscular atrophy, Friedreich’s ataxia, and Lewy body
disease. All of these diseases, whether genetic or acquired, lead to the progressive decline or even
the complete loss of sensory, motor, and cognitive function. AD, PD, and ALS are typically found
in the elderly and are primarily classified as proteinopathies, meaning that they are associated with
the aggregation and deposition of misfolded proteins that trigger neurotoxicity through cellular
stress pathways [4,5]. In ALS, both upper and lower motor neurons are affected [6]. The disruption
of proteostasis (protein homeostasis) can occur at any step of protein synthesis, including during
transcription, translation, and post-translational modification.
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which further attack lipids, proteins, and DNA, impairing brain function. LPO can affect different 
types of neurons: in hippocampal neurons, LPO products bind to amyloid β peptide and form 
misfolded amyloid β peptide and amyloid β senile plaque, which disturbs nerve signaling and 
structure and induces AD; in dopaminergic neurons, LPO products induce generation and 
accumulation of misfolded α-synuclein, resulting in insufficient dopamine production and 
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causing necrosis and death of the affected neurons in ALS; LPO-modified proteins are also associated 
with neural disruption in ALS. AD, Alzheimer’s disease; PD, Parkinson’s disease; ALS, amyotrophic 
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Figure 1. Pathophysiological mechanisms of Alzheimer’s disease (AD), Parkinson’s disease (PD),
and amyotrophic lateral sclerosis (ALS) development and progression. Reactive oxygen species (ROS)
produced by mitochondrial Cyt p-450, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase,
and lipoxygenase (LOX) attacks brain lipids, proteins, and DNA, further increasing oxidative stress.
Oxidative damage of lipids results in the formation of lipid peroxidation (LPO) products, which further
attack lipids, proteins, and DNA, impairing brain function. LPO can affect different types of neurons:
in hippocampal neurons, LPO products bind to amyloid β peptide and form misfolded amyloid β
peptide and amyloid β senile plaque, which disturbs nerve signaling and structure and induces AD;
in dopaminergic neurons, LPO products induce generation and accumulation of misfolded α-synuclein,
resulting in insufficient dopamine production and development of PD; in motor neurons, mutation
of the superoxide dismutase 1 (SOD1) gene leads to the formation of misfolded SOD1 enzymes and
abnormal production of ROS and LPO products, causing necrosis and death of the affected neurons
in ALS; LPO-modified proteins are also associated with neural disruption in ALS. AD, Alzheimer’s
disease; PD, Parkinson’s disease; ALS, amyotrophic lateral sclerosis; ROS, reactive oxygen species;
NADPH, nicotinamide adenine dinucleotide phosphate; LOX, lipoxygenase; LPO, Lipid peroxidation;
SOD1, superoxide dismutase 1.

Chaperons, which are proteins that facilitate the formation of correct and stable protein
conformations, recognition and translocation of misfolded proteins into the cytosol, and cooperation
with the ubiquitin/proteasome pathway (UPP) or the autophagy–lysosome pathway (ALP) to trigger
degradation of misfolded proteins, regulate protein folding [7,8]. The mammalian targets of the
rapamycin (mTOR) and sirtuin (SIRT) signaling pathways are key regulators of clearance mechanisms
to prevent accumulation of misfolded proteins in neurons. mTOR regulates the ALP, which destroys
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transient proteins in the cytoplasm and core organelles, whereas sirtuin, specifically SIRT1, regulates
the UPP [9].

The accumulation and aggregation of misfolded proteins in the brain and tissue, i.e., amyloid
ß-peptide (Aß) in AD, α-synuclein in PD, ubiquitinated proteins in ALS, and their spread from cell
to cell significantly contribute to the progression of NDDs [10]. The aggregation of these proteins
in the endoplasmic reticulum (ER), a condition that is referred to as ER stress, activates a group of
transcriptional signaling molecules, called the unfolded protein response, which aims to clear unfolded
proteins, restore ER homeostasis, and ensure cell survival. In ER stress, reactive oxygen species (ROS)
are generated, leading to chronic oxidative stress [11]. The accumulation of misfolded proteins in
mitochondria also leads to their disfunction. Mitochondria play important roles in cell respiratory
processes, metabolism, intracellular signaling, free radical production, apoptosis, and adenosine
triphosphate (ATP) synthesis through oxidative phosphorylation. Mitochondrial disfunction leads
to the increased production of ROS and oxidative phosphorylation defects and plays pivotal roles
in ageing and the pathogenesis of NDDs, as neurons are especially vulnerable and susceptible to
oxidative stress, because of their high energy requirements and high oxygen turnover [12].

Oxidative stress biomarkers have been developed due to the interaction of reactive oxygen
and nitrogen species with major biomolecules, like carbohydrate, lipids, proteins, and nucleic acid.
Besides the abovementioned cellular enzymes, endogenous ROS production is induced by the actions
of lipoxygenase, myeloperoxidase, angiotensin II, and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase. Naturally, antioxidant enzymatic and non-enzymatic defense factors maintain a
balance and alleviate oxidative stress. The main components of enzymatic antioxidant defense include
superoxide dismutase, glutathione peroxidase and reductase, glutamyl transpeptidase, and catalase,
whereas non-enzymatic endogenous antioxidants include glutathione (GSH), uric acid, ubiquinone,
tocopherol, retinol, melatonin, and nuclear factor erythroid 2-related factor 2. In NDD, ROS production
is increased and the defense system is weakened, which further aggravates the condition [13–15].

The onset of NDD is associated with a decline in autophagy activity, i.e., the incorporation of
cargoes, such as proteins, organelles, and microbial invaders, into autophagosomes, as a result of
genetic variation, ageing, or lifestyle [16]. Autophagosome formation and maturation depends on
available lipids and lipid-binding proteins, thus indicating the significance of lipids in neural tissue
health and pathology.

2. Lipids in the Central Nervous System (CNS)

Evidence is emerging that, besides disturbances in protein metabolism, the disturbances in
lipid metabolism, particularly of phosphoinositols and sphingolipids, also play significant roles
in neurodegeneration.

Lipids are key components of the structural and functional organization of the CNS, composing
almost 60% of the dry mass of human brain. Lipid properties and the effects in the CNS are directly
determined by the proportion of specific fatty acids in their molecular structure and, in particular,
by the content of long-chain polyunsaturated fatty acids (PUFAs). PUFAs represent about 35% of total
brain lipids and are mostly bonded in phospholipids; palmitic acid (16:0), stearic acid (18:0), and oleic
acid (18:1n-9) together account for ~50% of the total, while all of the other fatty acids constitute less
than 20% of the human brain [17,18]. The most abundant PUFAs in brain tissue are those that belong to
the omega-3 (n-3) and omega-6 (n-6) series: arachidonic acid (20:4n-6; AA) and docosahexaenoic acid
(22:6n-3; DHA) [19]. AA and DHA can both be produced from their precursors through the activity
of the ∆5- and ∆6-desaturase and elongase in liver cell and brain cell endoplasmic reticulum and
peroxisomes. Humans are relatively inefficient in performing this synthesis [20]. Thus, the majority of
AA and DHA have to be consumed in the diet.

The three basic mechanisms of PUFA effects on the nervous system are: (1) modulation of the
physical properties of the cell membrane, (2) secondary messenger activity, and (3) regulation of
gene expression [21]. The presence of PUFAs in neural phospholipids favorably affects membrane
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permeability and fluidity, and it promotes endo- and exocytosis, ion channel activity, and activity
of membrane-bound proteins including neurotransmitter receptors [19]. The effects of PUFAs on
secondary messenger activity are related to the action of enzyme phospholipases. Phospholipases act
directly on the membrane structure, liberate PUFAs from membrane phospholipids, and generate free
fatty acids, which can serve as endogenous secondary messengers. In this way, AA that is released
from the nerve cell membrane by the enzyme phospholipase A2 participates in the transmission of the
signals responsible for the growth, activity, and maturation of neural branches into mature synaptic
terminals [22]. PUFAs regulate gene expression by direct binding to the gene transcription factors or
after being translated into biologically active compounds, such as eicosanoids and prostaglandins [23].
The products of the genes that are activated by AA and DHA participate in the interaction of nerve cells,
enter the membrane ion channels, and contribute to neuro- and synaptogenesis [24,25]. DHA plays
important roles in the regulation of the genes responsible for the glial response to CNS injury, as well
as in the inhibition of proinflammatory and proapoptotic genes and the stimulation of antiapoptotic
genes [26].

The amount of PUFAs, particularly n-3 PUFAs, in the brain decreases during ageing [27,28].
The n-3 PUFAs content of the aged brain largely depends on n-3 PUFAs intake during the life span.
However, reduced activity of key enzymes involved in the biosynthesis of long-chain n-3 PUFAs from
dietary precursors, ∆6- and ∆5-desaturases, is also found in the aged brain. Normal ageing is connected
with decreased antioxidant capacity, an increased rate of lipid peroxidation (LPO), and the consequent
decrease in n-3 PUFAs in brain tissue [29], which results in the altered chemical composition, structure,
and function of the aged brain [19]. Johnson et al. reported a decrease in antioxidants and an increase
in LPO in elderly people when compared with young adult controls [30]. Several reports confirmed
the age-related weakening of the enzymatic antioxidant defense [31]. Moreover, lipid hydroperoxide
and thiobarbituric acid-reactive substances have been identified as sensitive markers of normal
ageing [32]. Therefore, LPO is associated with the development and progression of NDDs as well as
with normal ageing.

3. Lipid Peroxidation

LPO is a complex non-enzymatic process that occurs in three distinct stages: initiation, propagation,
and termination. The process is initiated when reactive oxygen metabolites cause hydrogen abstraction
from the methylene group of the carbon–carbon double bond of PUFAs molecules, thus forming a fatty
acid radical. These unstable compounds stabilize their molecular structure by forming conjugated
dienes with the concomitant production of carbon-centered alkyl radicals [33]. The oxidation of
the carbon-centered alkyl radical with para-magnetic molecular oxygen generates a lipid peroxyl
radical that subsequently attacks another PUFAs. In the propagation stage, the process continues
as an uncontrolled self-perpetuating chain reaction, which leads to the amplification of the initial
oxidative event. Potentially, all PUFAs in the membrane might be oxidized [34]. Termination occurs
when different types of radicals react mutually to form stable products, when radicals react with
chain-breaking antioxidants (e.g., vitamin E) and produce non-radical products, or when the substrate
is depleted [35]. In addition, the generation of LPO toxic products can be significantly decreased by
the activity of antioxidant enzymes, such as catalase (CAT), superoxide dismutase 1 and 2 (SOD1 and
SOD2, respectively), peroxiredoxin (Prx), glutathione peroxidase (GPx), glutathione reductase (GR),
and heme oxygenase-1 (HO-1) [36,37].

4. Products of LPO

The primary products of LPO are unstable peroxides or hydroperoxides that can be further
degraded to secondary products, including hydrocarbons, alcohols, ether, epoxides, and aldehydes.
They react with proteins, lipids, nucleic acids, cofactors, and vitamins, thus influencing their structure
and function [38,39]. Linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA) are
the fatty acids that are most commonly oxidized in the brain [40].
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4.1. Oxidation Products from LA

Hydroperoxyoctadecadienoic acids (HPODE) are formed by radical-mediated and/or enzymatic
oxidation via the lipoxygenase (LOX) of linoleic acid (LA). They exist as four isomers,
13-(E,E)-HPODE, 9-(E,E)-HPODE, 13-(Z,E)-HPODE, and 9-(Z,E)-HPODE, which can be further
reduced to hydroxyoctadecadienoic acid (HODE) by glutathione peroxidase (Figure 2) [35]. 13-HODE
may generate an anti-inflammatory 13-octadecadienoic acid (13-oxoODE) in a dehydrogenation
process that is mediated by NADPH-dependent fatty acid dehydrogenases [41]. The biosyntheses of
13-HPODE and HODE are associated with the pathology of severe inflammatory based diseases [42,43].
13-HODE incorporates into phospholipids and neutral lipids; as a major component of oxidized
low-density lipoprotein (LDL) and atherosclerotic plaques, it plays a central role in the pathogenesis of
atherosclerosis [44].
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4.2. Oxidation Products from AA

Arachidonic acid is vulnerable to free-radical-mediated oxidation. As consequences of this process,
six hydroperoxyeicosatetraenoic acid products (5-, 8-, 9-, 11-, 12-, and 15-hydroperoxyeicosatetraenoic
acid (HPETE)) are formed (Figure 3). Some of them may be generated by LOX enzymes [45]. All the
HPETE molecules may be further reduced, generating hydroxyeicosatetraenoic acid (HETE). Literature
data indicate that 15-HETE incorporates into phospholipids, especially phosphatidylinositol, and thus
changes its structure and function and indirectly influences signal transduction in the cells [46]. 20-HETE
is another product of AA oxidation that is formed by mediation cytochrome P450 oxidoreductase.

The isoprostanes (IsoPs) F, E, and D are a series of prostaglandin-like compounds formed via
free-radical-initiated peroxidation of AA. As chemically very stable molecules, F2-IsoPs are considered
to be the most reliable markers of oxidative damage in humans [47]. F2-IsoPs appear in four isomers, 5-,
12-, 8-, and 15-series, each of which comprises eight diastereomers, forming a total of 64 compounds [48].
The formation of IsoPs affects membrane fluidity and integrity. In addition, IsoPs may be released
from cell membranes by phospholipases; they then circulate in plasma, where they further affect
other molecules. Several studies demonstrated that the level of isoprostanes is higher in some NDDs.
Although IsoPs are mainly generated from AA, F-ring IsoPs may be formed from the peroxidation of
other PUFAs with three double bonds, such as alpha-linolenic acid, EPA, and DHA.
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The oxidation of AA also leads to the formation of isofurans (IsoFs). IsoFs, as biomarkers of
oxidative stress, are used in clinical settings when high concentrations of oxygen are used during
treatments or procedures [40].Antioxidants 2020, 9, x FOR PEER REVIEW 6 of 29 
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4.3. Oxidation Products from DHA

The peroxidation of DHA generates eight isomers with a total of 128 compounds named
neuroprostanes (NPs) (Figure 4), which are abundantly concentrated in the neuronal membranes [49].
Although their biological roles are not entirely clear, some authors found that NPs have
anti-inflammatory properties [50]. The neurofurans (NFs) are also oxidation products from DHA [51].
NPs and NFs are both sensitive and specific markers of neuronal oxidative damage, and their analysis
could more accurately reflect the levels of lipid peroxidation in DHA-rich tissues, such as the brain.Antioxidants 2020, 9, x FOR PEER REVIEW 7 of 29 
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4.4. Short-Chain Aldehydes

The final products of lipid peroxidation of PUFAs are reactive short-chain aldehydes
(Figure 5) [52]. These short-chain aldehydes are mainly classified into three families: 2-alkenals,
4-hydroxy-2-alkenals, and ketoaldehydes. Among them, acrolein (2-alkenal) is the most reactive,
whereas 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) are the most abundant [53].
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Acrolein, which is anα,β-unsaturated aldehyde, is produced from the lipid peroxidation of PUFAs.
As with other LPO peroxides, acrolein is capable of initiating a further process of lipid peroxidation:
it attacks and deforms mitochondrial membranes, and then reacts with DNA and proteins [54]. Acrolein
induces non-programmed necrosis and apoptosis [55], modification and aggregation of the protein,
and inactivation of enzymes [56]. Generally, acrolein is capable of inducing cellular degeneration
and death, and particularly the deterioration of hippocampal neurons [57]. In vitro studies have
demonstrated the neurotoxic effects of acrolein on different types of cells line, thus confirming that
acrolein plays a neurotoxic role in CNS neurodegeneration [58].

4-hydroxy-2-alkenal (HNE) is formed by peroxidation of n-6 PUFA, especially LA and AA, as a
product of a non-enzymatic process in which an initial hydroperoxide undergoes fragmentation and
form HNE [59]. n-3 PUFA, especially alpha-linoleic acid, may be attacked by free radicals, and its
peroxidation generates 4-hydroxy-2-hexenal (HHE). Although HNE usually remains associated with
the site where it is generated, HNE can diffuse to different cellular compartments and interact with
many different substrates, including covalent binding to cysteine, histidine, and lysine residues [60].
Some plasma membrane ion and nutrient transporters, such as Na+/K+-ATPase, glucose, and glutamate
transporters, several receptors for growth factors, neurotransmitters, mitochondrial, cytoskeletal,
and proteasomal proteins, as well as proteins that repair oxidative damage may be targets for HNE [61].
As a signal molecule, HNE may suppress the activity of nuclear transcription factor κB [62] and activate
the caspase pathways, leading to cell death in NDDs [63].

Malondialdehyde (MDA), a ketoaldehyde, which is an extremely reactive and toxic aldehyde,
is generated by the decomposition of AA and larger PUFAs through enzymatic or non-enzymatic
processes [64]. MDA can be generated during the enzymatic biosynthesis of thromboxane A2 [65].
It often has a relatively longer half-life and may, therefore, diffuse from the places of generation to
other sites in vivo, further increasing oxidative and carbonyl stresses. MDA is capable of interacting
or crosslinking on cellular and tissue proteins or DNA, resulting in the formation of adducts and
biomolecular damage [66].

5. NDDs, LPO, and Antioxidants

Evidence shows that the high incidence of NDD may be attributed in part to the negative
influence of daily risk factors, including stress, lack of physical exercise, and unhealthy nutrition.
As such, as oxidative stress plays a crucial role in the process of neurodegeneration, numerous studies
have documented the beneficial effects of exogenous nutritional antioxidants as neuroprotectors [67].
Nutritional antioxidants can modify oxidative stress on several levels: by decreasing the production
of ROS and repairing the oxidized membranes, by neutralizing the free radicals, or through
lipid metabolism in which cholesteryl esters and short-chain free fatty acids neutralize ROS [68].
Fruits, vegetables, beverages, green tea, coffee, spices, nuts, and cereal products are major sources
of plant-derived antioxidants: polyphenols (phenolic acids, flavonoids, anthocyanins, lignans,
and stilbenes), carotenoids (xanthophylls and carotenes), and vitamins (vitamins C and E) [69].
Table 1 summarizes the beneficial effects of the plant-derived antioxidants on NDD.
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Table 1. Dietary antioxidants intake and supplementation in prevention and adjuvant treatment in patients with neurodegenerative disease (NDD).

Antioxidant

Treatment

Population Effect/Conclusion ReferencesDoses/Exposure

Assessment

POLYPHENOLS

Flavonoids

Flavonols (quercetin, kaempferol, myricetin): onion, broccoli, tomato, kale, celery, grapes, apple

Grape seed extract 250 mg/day
12 weeks 111 elderly persons Improves physiological cognitive profiles (attention,

language, immediate and delayed memory) Calapai et al. [70]

Flavonols-rich diet Dietary estimated
follow-up 6 years 921 elderly persons Dietary flavonols inversely associated with incident AD Holland et al. [71]

Flavones (luteolin, apigenin): parsley, celery, hot peppers, thyme

Luteolin Spalmitoylethanolamide combined with luteolin
700 mg/day 4 weeks 17 patients with FTD Reduced behavioral disturbances and improved frontal

lobe functions Assogna et al. [72]

Flavanones (naringenin, hesperetin): grapefruit, orange, lemon, citrus peel, citrus fruits

Dietary citrus 13,373 elderly persons,
follow-up 5–7 years Lower risk of incident dementia Zhang et al. [73]

Anthocyanins (cyanidin, malvidin, petunidin, peonidin): strawberries, raspberries, blueberries, bilberry, elderberry, black currant, other berries, cherries, pomegranate, red wine, red onions

30 mL/day blueberry concentrate (387 mg anthocyanidins)
12 weeks

12 older adults/
8 placebo Improvement in working memory Bowtell et al. [74]

Isoflavones (genistein): soy, tofu

100 mg soy/day, 6 months 59 AD patients No improvement in cognition Gleason et al. [75]

Soybean-rich diet 1006 elderly persons,
follow-up 15 years Reduced risk of dementia Ozawa et al. [76]

Japanese dietary pattern 14,402 older adults,
follow-up 5–7 years Decreased risk of incident dementia Tomata et al. [77]

Flavan-3-ols (flavanols): green tea, red grapes, red wine

Epigallocatechin-3-gallate
(EGCG)

One gelatin capsule (400 mg epigallocatechin gallate)
orally once per day for 4 weeks, then one capsule twice

daily for 4 weeks, and then one capsule three times daily
for 40 weeks, RCT

47 intervention,
45 controls with

multiple system atrophy
Did not modify disease progression Levin et al. [37]

Green tea 2015 elderly persons Associated with low prevalence of AD and severe cognitive
impairment; modulated the CNS immune response Yang et al. [78]



Antioxidants 2020, 9, 1128 9 of 27

Table 1. Cont.

Antioxidant

Treatment

Population Effect/Conclusion ReferencesDoses/Exposure

Assessment

POLYPHENOLS

Stilbenes: red grapes, red cherries, peanut, pomegranate, berries

Resveratrol 500 mg/day orally 119 patients with mild to
moderate AD Preserved the blood–brain barrier integrity Sawda et al. [79]

Curcuminoids: turmeric

Curcumin

1–4 g/day for 6 months 36 patients with AD Slight improvement in cognitive function Baum et al. [80]

1 g/day for 6 weeks 60 patients with MDD Lower HDRS-17 Sanmukhani et al. [81]

40 patients with MCI Improved verbal memory and attention Small et al. [82]

VITAMINS

Vitamin C

200 mg/day ascorbic acid 67 elderly PD patients Can improve levodopa absorption in elderly Nagayama et al. [83]

Dietary estimated 1329 PD patients Dietary vitamin C inversely associated with PD risk in
women at borderline significant Yang et al. [84]

Dietary estimated 1036 PD patients Dietary vitamin C has no relationship with PD risk Hughes et al. [85]

<400 mg/day, 400–700 mg/day, ≥700 mg/day 1,100,910 participants
1093 developed ALS Vitamin C not associated with reduced risk of ALS Fitzgerald et al. [86]

Vitamin E

I: Vitamin E 2000 IU/day
II: donepezil 10 mg/day
III: placebo for 3 years

212 MCI AD patients No benefit on cognition impairment in AD Petersen et al. [87]

Dietary estimated 1329 PD patients Inverse association between dietary vitamin E and PD
in women Yang et al. [84]

Dietary estimated 100 PD patients
100 controls

Higher dietary vitamin E inversely associated with PD
occurrence independently from age and sex Schirinzi et al. [88]

Vitamin E (400 IU/day) + selenium (200 µg/day) 7540 non-demented men
(≥62 years) No effect on AD prevention Kryscio et al. [89]

1000 IU/day for 6 months to 4 years 613 patients with mild to
moderate AD Reduced functional decline Dysken et al. [90]

Vitamin E 2000 IU/day
and/or Deprenyl 10 mg/day

800 untreated PD
patients

α− tocopherol did not improve clinical features in patients
with PD

Parkinson Study
Group (DATATOP

study) [91]

Vitamin E 2000 IU/day 18 vitamin E group
5 placebo group α− tocopherol levels increased in cerebrospinal fluid Vatassery et al. [92]

Dietary estimated 249 PD patients
368 controls Higher consumption of vitamin E reduced risk of PD Miyake et al. [93]
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Table 1. Cont.

Antioxidant

Treatment

Population Effect/Conclusion ReferencesDoses/Exposure

Assessment

VITAMINS

Vitamin E

Dietary estimated 1036 patients with PD No relationship with PD risk Hughes et al. [85]

Dietary estimated Total 124,221
371 PD cases

Intaking foods containing more vitamin E can reduce the
risk of PD Zhang et al. [94]

10 mg/day 5342 individuals
31 PD cases Dietary vitamin E may reduce the risk of PD de Rijk et al. [95]

500 mg/day

288 patients with ALS
144 vitamin E+ riluzole
144 placebo + riluzole

12 months

Vitamin E did not affect survival
and motor function in ALS Desnuelle et al. [96]

Regular use
957,740 individuals,
525 developed ALS

10 years

Vitamin E supplementation associated with a lower risk of
dying of ALS Ascherio et al. [97]

Women (8.8 IU/day)
Men (14.6 IU/day)

1,055,546 participants,
805 developed ALS

Long-term use of vitamin E supplements could be
inversely associated with risk of ALS Wang et al. [98]

28 ALS patients
14 Alsemet
14 placebo
12 months

Alsemet (vitamin E + methionine + Se) increased the rate
of survival in ALS patients Stevic et al., 2001, [99]

Carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, lycopene): cantaloupe, pasta, corn, carrots, orange/yellow peppers, spinach, broccoli, sweet potato, tomato, fish, salmon, eggs

Xanthophyll carotenoids
plus omega-3 fatty acids

lutein:meso-zeaxanthin:zeaxanthin 10:10:2 mg/day plus 1
g/day of fish oil for 18 months 13 patients with AD Slowed the progression of AD with functional benefits in

memory, sight, and mood Nolan et al. [100]

Dietary estimated 1,100,910 participants
1093 developed ALS β-carotene and lutein inversely associated with ALS risk Fitzgerald et al. [86]

Dietary estimated 1329 PD patients ß-carotene associated with a lower risk of PD Yang et al. [84]

Dietary estimated 249 PD patients
348 controls

Higher consumption β-carotene associated with reduced
risk of PD Miyake et al. [93]

FTD, Frontotemporal dementia; MDD, major depression disorder; HDRS-17, Hamilton Depression Rating Scale; MCI, mild cognitive impairment; BPD, bipolar depression.
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6. Alzheimer’s Disease

Alzheimer’s disease is a progressive brain disorder that is associated with neuronal degeneration
and a loss of neurons in brain regions controlling memory, cognition, and emotional behaviors.
AD patients experience rapid declines in the ability to learn, reason, maintain emotional stability,
communicate, and perform common daily functions [101]. The onset of familial AD relates to genetic
mutations in enzymes that are involved in amyloid precursor protein (APP) processing, whereas the
etiology of sporadic AD is still unclear [102]. The complex and heterogeneous AD pathophysiology
is dominated by two main hallmarks: overproduction and extracellular deposition of Aß and the
formation of intracellular neurofibrillary tangles (NFTs), consisting of hyperphosphorylated tau
protein [103]. The aberrant aggregations of Aβ and tau create an overall cytotoxic environment that
results in the disturbance of neuronal cell shape and function, including the disturbance of ATP
production, axonal transport, and synaptic signaling, together leading to severe cognitive and motor
impairment characteristic for AD [104].

LPO is an important factor in the pathogenesis of AD (Figure 1) [105]. Initially, the oxidative
stress environment that prevails in the AD brain induces LPO, which, in turn, further promotes
disturbance of antioxidant capacity within the brain cells [106]. The elevated levels of LPO products
and LPO-modified proteins, all of which are recognized as neurotoxic agents, have been found
in AD-affected subjects. HNE occurs in several NDDs, such as AD, PD, ALS, Huntington disease,
and Down syndrome [107–110]. Increased levels of HNE–protein adducts have been detected in the
diseased brain regions and body fluids of AD patients. HNE commonly targets proteins involved
in energy metabolism and the antioxidant response, leading to the disturbance of these important
cell functions and, consequently, to neuronal dysfunction and death [111]. In addition, HNE–protein
adducts add to the stimulation of the autoimmune response [112]. IsoPs and NPs are also increased in
AD [113]. High levels of F2-IsoP were found in the hippocampus and the cerebrospinal fluid (CSF) of
patients with AD [114]. Acrolein, which is predominantly localized within NFTs, directly attacks DNA,
reacts with DNA base guanine, and forms acrolein–deoxyguanosine, which are excessively presented
in the AD brain [101,113]. There are clinical studies reporting neurotoxicity due to increased acrolein
levels in the brain and spinal cord of patients with AD and spinal cord injury [115,116]. An elevated
level of circulating HODE, which is released from phospholipids by phospholipases, has been found
in the plasma and erythrocytes of patients with AD [117]. However, MDA is the most abundant
LPO product [118]. Significantly higher levels of MDA are found in AD patients when compared to
healthy subjects [119]. MDA accumulated in the AD brain covalently binds to a variety of proteins and
promotes the formation of aberrant protein adducts, which disturb nerve signaling and structure in
AD-affected brain regions, such as the frontal, temporal, and occipital lobes and hippocampus [120].

AD and Antioxidants

Because oxidative stress and LPO lie at the basis of neuronal damage in AD, the potential benefits
from dietary supplementation with antioxidants, such as polyphenols, and antioxidant vitamins
tocopherol (vitamin E), ascorbic acid (vitamin C), and carotenoids (vitamin A), have become the subject
of considerable scientific interest. The majority of studies were conducted in animal models and in vitro;
reports on the effects of antioxidant supplementation in humans with AD are sparse (Table 1).

Polyphenols are phytochemicals that are widely present in plant drinks and foods [121]. Because of
their small molecules and lipophilic nature, they can cross the blood-brain barrier and exert strong
antioxidant and radical scavenging activity within the brain tissue [122,123]. Among others, the most
investigated polyphenols are curcumin, epigallocatechin gallate (EGCG), and rosmarinic acid,
which exert many beneficial effects on AD pathology, although the majority of the results were
produced from studies that were conducted on animal models and in vitro [124,125]. In a mice model
of familial AD, EGCG significantly decreased Aß production and induced marked increases in brain
synapses; these effects were accompanied by improved spatial learning and memory [126,127]. A few
human studies investigating supplementation with curcumin, a polyphenol from turmeric, have found
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improved cognitive status in AD patients [80,128]. The consumption of EGCG-rich green tea correlated
with decreased risk of neurodegeneration and cognitive impairment [129,130], whereas resveratrol,
a polyphenol from red wine, increased brain blood flow and oxygen uptake, and improved auditory,
verbal, and learning memory in AD patients [79]. Similarly, pills containing polyphenols from blueberry
and green tea increased cognitive processing in treated older adults when compared to placebo [131].
Mastroiacovo et al. reported improvement in cognitive function in the elderly due to regular cocoa
flavanols consumption, which is in line with results of Nurk et al., who reported increases in the
cognitive abilities in the elderly consuming a diet high in flavonoids-rich food, such as wine, chocolate,
and tea in a dose-dependent manner [130,132]. The protective effects on cognition were also found in
people that consumed a diet based on walnuts, which are rich in polyphenols [133].

In patients with MCI, supplementation with vitamin E slowed disease progression and reduced risk
of dementia [90]. Parallel supplementation with vitamin C has been shown to improve the beneficial
effect of vitamin E, leading to a decrease in AD incidence and prevalence [134,135]. In contrast,
other groups reported no benefits of vitamin E in patients with MCI [87], or in the prevention of
AD, even in combination with selenium [89]. Vitamin E overdose correlated with an increased risk
of mortality [136]. Various in vivo and in vitro studies reported decreases in oxidative stress and
Aß peptide oligomerization by vitamin C supplementation. Studies in humans also found reduced
oxidative stress, systemic inflammation, and atherosclerosis in persons that were supplemented with
vitamin C [137,138]. However, randomized clinical trials still failed to demonstrate any association
between vitamin C and alleviation of AD pathology, which indicated that the prevention of deficiency
seems to be more beneficial than vitamin C supplementation [139]. The in vitro results for vitamin
A indicated reduction in Aβ plaques and a decrease in cognitive impairment due to vitamin A and
β-carotene supplementation [140,141]. In AD patients, high levels of these vitamins are associated
with better memory and learning performance.

7. Parkinson’s Disease

Parkinson’s disease is the second most common neurodegenerative disorder, with incidence being
consistently higher in men than in women that increases over the age of 60 years [142]. The most
common clinical manifestations in patients with PD are resting tremors, slowness of movement,
rigidity, and postural instability, along with other symptoms, such as dementia, depression, insomnia,
and anosmia. As a chronic and progressive neurodegenerative disorder, PD is associated with an
increased turnover of dopamine and reduced levels of striatal dopamine and its metabolites in the brain
(Figure 1). The persistent and diffuse degeneration of dopamine-producing neurons in the substantia
nigra pars compacta (SNpc) is observed. The pathogenesis of PD is characterized by misfolding and
aggregation of proteins, particularly small synaptic protein α-synuclein, which is the main component
of Lewy bodies [143]. α-synuclein was found to aggregate and accumulate in the remaining neurons in
the SNpc, locus coeruleus, cerebrospinal cord, enteric nervous system, and autonomic ganglia [144].
The role of α-synuclein is primarily connected with the effects on mitochondrial processes and the
formation of synaptic vesicles [143]. It has been proven that reduced levels of glutathione, an antioxidant
critical for protecting dopaminergic neurons in the SNpc from free radical damage, increase LPO,
which is involved in the pathogenesis and progression of PD [145].

Clinical studies have reported significant acrolein levels in the brain. Acrolein promotes initiation
of LPO and further elevation of oxidative stress, as indicated by acrolein-induced increases in HNE [146].
Additionally, acrolein acts on the modification of α-synuclein in dopaminergic neurons, leading to
mitochondrial dysfunction [147]. This results in ROS-mediated apoptosis of the affected neurons [148].
There are three independent mutations in α-synuclein, including A53T, A30P, and E46K, which are
involved in the development of familial PD. However, mutation and aggregation of α-synuclein can
both cause Parkinsonism. The misfolded α-synuclein protein is soluble and it serves as a mediator of
neurotoxicity in dopaminergic neurons. Clinically, the accumulation of acrolein-α-synuclein adducts
was detected in the nigral dopaminergic neurons of PD patients [149], in parallel with results
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from in vivo studies that found that acrolein acts as a Parkinsonian neurotoxin in the nigrostriatal
dopaminergic system of rat brain [58]. In addition, the role of DHA in α-synuclein oligomerization
and aggregation has been suggested [113,150].

4-HNE and Nε-(carboxymethyl) lysine have been localized in Lewy bodies in post-mortem PD
brain tissue [151]. HNE modification leads to conformational changes and the oligomerization of
α-synuclein. The modified oligomers are toxic and may contribute to the deterioration of neurons [152].
It was found that HNE modifies the transport and possibly the loss of dopamine since its content
increases proportionally to the severity stages of PD [153]. Elevated HNE, protein accumulation,
and dopamine loss probably affect the physical capabilities and the process of learning in patients
with PD [147]. Another actin-binding protein has been observed in cell lines and it acts to regulate the
development of the actin microfilament [147]. Upon LPO, this protein decreased in the PD patients,
which led to the reduced recovery of dynamic development of neurons [154]. Consequently, this results
in the muscle damage widely observed in patients with PD. LPO grades are higher in PD patients;
plasma levels of F2-IsoPs, HETEs, 7β-hydroxycholesterol (7β-OHCh), and 27-hydoroxycholesterol
(27-OHCh) 7-ketocholesterol (7-KCh), and NPs are higher when compared to healthy subjects [155].
In particular, plasma F2-IsoPs and HETEs levels are elevated in the early stages of PD. Interestingly,
IsoFs but not F2-IsoPs are increased in the SNpc of patients with PD [156]. Elevated levels of HNE,
MDA, and acrolein have been reported in Lewy bodies in the brain stem and neocortical neurons,
as well as in the CSF of living PD patients [147,148,154].

PD and Antioxidants

Evidence is increasing that oxidative stress plays a role in the pathogenesis of PD [157],
and supplementation with the abovementioned antioxidants could produce beneficial effects in
PD patients (Table 1).

Agents such as flavonoids that can target ROS and mitochondrial dysfunction are prime candidates
for neuroprotection in PD [158,159]. The Mediterranean diet is a rich source of antioxidant bioflavonoids
and polyphenols, which are associated with a decreased risk of PD [160,161]. Nevertheless, data on the
polyphenol intake and the PD risk are contradictory. A large epidemiological study has shown that
men with the highest quintile of flavonoid consumption (tea, berry fruits, apples, red wine, and orange
or orange juice) had a 40% lower risk of developing PD when compared to those in the lowest quintile,
but this was not observed in women [162]. However, 41-year follow-up Finnish data reported the
association of berry consumption with increased risk of PD in men [163]. Other studies demonstrated
that the consumption of green and black tea had beneficial effects in reducing the risk of PD [157,164]. In a
rotenone model of PD, contrary to the previously reported neuroprotective effects that were observed
in AD [165], pomegranate juice exacerbated oxidative stress and neurodegeneration [166]. Polyphenols,
like curcumin, resveratrol, catechin, and oleuropein, inhibit the formation of Lewy bodies [167].
Overall, the preclinical and epidemiological data strongly support the further investigation of specific
flavonoids for the treatment of PD [158].

The roles of vitamins in PD prevention and therapy are yet to be determined. So far, no link
between vitamin A and PD has been established in few human studies [93,168–170], which was
supported by a recent meta-analysis [170]. Only three case-control studies reported a significant
association between lutein intake and PD risk, whereas two studies found a protective effect of
dietary β-carotene intake [84,93] and risk of PD, one only in women [93]. The serum levels of some
carotenoids—α-carotene, β-carotene, and lycopene—were lower in the PD patients, with evidence that
carotenoids are inversely correlated with clinical variables that represent disease progression [84,171].
Decreased serum carotenoid levels are associated with poorer motor function [171].

As for vitamin A, despite numerous studies, no clear association between vitamin C and human
PD [81,93,169,172] has been established. One study indicated that higher intake of fruits and vegetables
containing vitamin C is associated with an increased risk of PD [173]. In contrast, in a case-controlled
study, individuals consuming a diet rich in vitamin C showed a 40% reduction in PD risk [174].
It was suggested that supplementation with vitamin C may not affect disease development, because
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access to the brain is limited by high water solubility and the requirement for active transport at the
choroid plexus to enter the brain [175]. The serum level of vitamin C in patients with PD remains
controversial [176,177]. For instance, the vitamin C level in lymphocytes is significantly lower in
patients with severe PD [178], suggesting that vitamin C supplementation may be beneficial for the
treatment of PD. This was evident in a large cohort study, including patients with PD, which found
that dietary vitamin C intake significantly reduced the risk of PD, but this effect was invalid for the
four-year-lag analysis [85].

Based on literature data, among antioxidant vitamins, only vitamin E intake was found to be
associated with a reduced risk of PD in three of the four studies [179]. A meta-analysis showed a
protective effect against PD in humans with both moderate and high intake of vitamin E [169]. This effect
is more pronounced in men than in women [94], and only higher vitamin E intake (>9.759 mg/day)
is significantly associated with decreased risk of PD in women [93]. These protective effects may be
achieved through preventing oxidative stress in cells and inhibiting apoptosis. Apart from PD risk,
vitamin E has also been used in intervention studies, as PD patients were found to have lower serum
levels of vitamin E than controls [180]. A high-dose supplementation (2000 IU/day) can significantly
elevate the vitamin E level in CSF [92]. Vitamin E supplementation was tested as a therapeutic against
PD in the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) study [181].
However, no beneficial effect of α-tocopherol was observed during follow-up evaluation of PD
symptoms [181]. Recently published data indicate that vitamin E represents a potential therapeutic
target for disease-modifying treatments in PD as a result of both the clinical retrospective analysis and
electrophysiological experiments [88]. Additional trials are still needed in order to confirm the role of
vitamin E in slowing the progressive deterioration of function in PD.

To summarize, a research gap exists in the effect of antioxidants supplementation on lipid
peroxidation products in PD patients [182,183]. Data on supplementation in patients already diagnosed
with PD has failed to show a disease-modifying effect.

8. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis is an NDD that is characterized by progressive loss of motor neurons
in the CNS, leading to muscular atrophy, paralysis, and death [184,185] ALS occurs in the sporadic
form (sALS) in 90% of cases, and in the familial form due to inherited genetic mutations (fALS) with
an estimated incidence of between one and two per 100,000 people [186]. Among all ALS patients,
50% die within 30 months of symptom onset, often from respiratory insufficiency, whereas about 10%
of patients may survive for more than a decade [187,188]. Riluzole, which is the only Food and Drug
Administration (FDA)-approved drug that is currently accessible for ALS, slows disease progression,
and improves limb function and muscle strength, but, unfortunately, it increases life span by only
2–3 months [189]. The mean age at onset this disease is 40–60 years for fALS and 58–63 years for sALS,
with a peak incidence at age 70–79 years [190]. Men have a higher risk of ALS than women, leading to a
male-to-female ratio of 1.2–1.5 [191]. Genetic studies have shown that C9orf72, SOD1, TARDBP, and FUS
are the most common mutated genes in ALS [192]. The first pathological mutation was identified in ALS
patients in the SOD1 gene in 1993 [193]. To date, over 180 different mutations have been described in
the SOD1 gene, which can be found in 10–20% of familial ALS cases and 1–5% of sporadic ALS [192,194].
The SOD1 gene encodes the Cu/Zn SOD1, which is one to three isoenzymes of SOD responsible for the
conversion of the superoxide anion radical to molecular oxygen and hydrogen peroxide. Mutations in
SOD1 lead to numerous alterations in the structure and function of motor neurons in ALS patients
(Figure 1). Thus, the mutated enzymes result in misfolded protein chains, and they form small neurotoxic
aggregates in the nuclei of glial cells (mostly astrocytes) of the spinal cord, which contributes to neuron
degeneration [195]. The SOD enzyme may be post-translationally modified and hyper-oxidized in
sALS patients; through this oxidation, altered SOD1 gains toxic properties [196]. In addition, the SOD
mutant has reduced enzymatic activity, which results in an abnormal production of ROS, which causes
an alteration in the cell function, apoptosis, and necrosis [197]. Previous pathological studies have
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reported evidence of increased LPO products in biological fluids of ALS patients compared with control
samples. Several literature data demonstrate a significant increase in MDA leve-ls in the sera in ALS
patients [198,199], thus strengthening the clinical evidence that prooxidative imbalances contribute to
ALS pathophysiology [200]. In ALS, HNE is bound to three key proteins: dihydropyrimidinase-related
protein 2 (DRP-2), heat shock protein 70, and α-enolase, which leads to their modification [201].
They are involved in axonal development, transmission, and modulation of extracellular signals;
repair mechanism; and, maintaining of redox-homeostasis; thus, their modification leads to the
loss of motor neuron function [53]. The elevated levels of HNE and HNE-modified proteins are
observed in the spinal cord motor neurons of ALS patients [202]. In addition, when HNE attacks
DNA, it may cause cellular damage and apoptosis [203]. Literature data demonstrate significantly
elevated levels of HNE in the sera and spinal fluid of sALS patients when compared with control
subjects, which were positively correlated with the extent of disease but not a rate of progression [204].
Moreover, these authors showed that HNE levels from sALS serum and CSF samples were significantly
above those that were collected from fALS patients, suggesting that the familial and sporadic forms
are qualitatively different concerning oxidative stress. In accordance, the same group of authors
previously documented increased levels of HNE in the CSF and spinal cord motor neurons of ALS
patients [109,202]. Several studies examined the level of IsoP in patients with ALS. Significantly higher
levels of F2-IsoPs have been found in the urine of patients with sALS when compared with healthy
subjects [205]. However, Montine et al. did not find differences in IsoP among ALS patients and
healthy subjects [114].

ALS and Antioxidants

Evidence shows that neural oxidative damage contributes to neuronal oxidation, dysfunction,
and degeneration in ALS, as discussed above. In line with this, inhibition or suppression of neuronal
oxidation may slow or even stop disease progression. Among natural antioxidants, vitamins A, E, and C,
as well as polyphenols-rich fruits, can be potential antioxidants whose effect could be investigated.
However, the literature data about the effects of antioxidative therapy in ALS are scarce (Table 1) and
they are mostly limited to in vitro studies and experimental model studies.

Despite a well-documented protective role against LPO [206], only a few studies examined the
effect of vitamin E on ALS. One of them investigated the influence of vitamin E supplementation on
survival and motor function in ALS. After three months of treatment with vitamin E (500 mg twice
daily) and riluzole as standard drug therapy in ALS, a decrease in plasma MDA levels and an increase
in plasma GSH levels were observed [96]. However, survival was not influenced by the treatment.
Additionally, Ascherio et al. observed that regular use of vitamin E supplements for 10 years or more
was associated with a lower risk of dying from ALS [97]. Similarly, Wang et al. found a positive
trend for a decline in ALS progression in patients with long-term use of vitamin E supplements,
but did not find an overall protective role for vitamin E [98]. In a randomized controlled trial (RCT)
that was conducted in ex-Yugoslavia, a combination of methionine, vitamin E, and selenium led to a
significant increase in the rate of survival and increase in activity of GPx in 28 patients with ALS after
12 months of supplementation [99]. However, the analysis of data from 10 different RCT studies with
1050 participants and shorter durations of the supplementation period revealed no significant beneficial
effect of vitamin E on survival in ALS patients [207]. Studies on the impact of vitamin C on progression
and duration of ALS are also rare. A recently-published original study, including 202 patients with
ALS, showed lower serum level of vitamin C level in patients with ALS when compared to healthy
controls [208]. Conversely, in a study with only 19 ALS patients, there was no significant difference in
plasma and CSF vitamin C levels compared with controls [209]. The results from pooled analysis of five
large prospective studies with 1093 cases of ALS indicated that high dietary intakes or supplemental
use of vitamin C appear to not affect the risk of ALS [86]. One animal study indicated that a high dose
of vitamin C administered before the onset of disease prolonged survival and motor function in fALS
transgenic mice, whereas vitamin C that was administered after the onset disease did not have effect
on survival [210].
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A recently published study showed that the level of vitamin A is significantly higher in patients
with ALS when compared to healthy controls [208]. Conversely, in a case-controlled study with
77 patients with ALS, β-carotene was found to decrease the risk of sporadic ALS [211]. Several studies
have documented a beneficial association between ALS and the intake of carotenes [212,213], as well
as the consumption of foods rich in carotenoids helping the prevention or even delay of the onset
of ALS [86]. According to our knowledge, there are no data about the influence of vitamin A on the
level of LPO and/or other parameters of oxidative stress in ALS patients. Additionally, long-term
dietary supplementation with retinoic acid has been reported to shorten the lifespan in an ALS mouse
model [214].

Flavonoids are among the natural substances that are present in fruits and vegetables and have
a protective effect against ROS. However, few studies examined whether these molecules impact
ALS. Among them, Korkmas et al. showed that chronic administration of 7,8-dihydroxyflavone
significantly improved motor deficits and enhanced lower neuronal survival in the transgenic ALS
mouse model [215], whereas Ip et al. found that quercetin and its derivative could be therapeutic
inhibitors of the aggregation and misfolding of SOD1 that is noticed in ALS [216].

9. Future Perspectives

Searching the FDA registry, Cummings et al. found 121 pharmacologic agents currently being
investigated in clinical trials for the treatment of AD. The majority of agents (17 out of 29) in 36 Phase III
trials are disease modifiers that mainly target amyloid, inflammation/infection/immunity, and synaptic
plasticity. Among them, gingko biloba extract, rich in flavonoids, is the only natural antioxidant [217].
Plant extracts may produce better antioxidant/disease-modifying activities than a single compound
through the additive or synergistic effects of their different active ingredients and a variety of secondary
metabolites [218]. Evidence is accumulating that combination of FDA-approved drugs with natural
antioxidants, as well as combinations of appropriate antioxidants, may be more effective, considerably
lower cost, and, therefore, more affordable and acceptable, especially for long-term prevention of
NDDs [68,219].

Dietary habits and nutrition consumption affect cognitive functions. The peak of cognitive function
is around 20 or 30 years of age, and then cognitive functions decline after 50 or 60 years of age. Evidence
suggests that diet interventions show promise for dementia prevention [220]. Clinical trials for the
prevention decline of cognitive function in adults with antioxidants are still in their infancy. Polyphenol
berry fruit juice consumption was most beneficial for immediate verbal memory. Isoflavone-based
interventions were associated with significant improvements for delayed spatial memory and executive
function [221]. However, no clear evidence exists for an association between cognitive outcomes and
polyphenol dose response, duration of intervention, or population studied. Therefore, further studies
are needed in order to determine whether long-term antioxidants intake can reduce the risk of memory
loss in adult population.

10. Conclusions

No cure exists for NDDs, particularly in advanced stages. The drugs that are approved by the
FDA, such as acetylcholine esterase inhibitors (donepezil, rivastigmine) as well as levodopa for
PD, which crosses the blood–brain barrier and restores dopamine levels in the substantia nigra,
only ameliorate the symptoms and slow the progression of the diseases for several years [1].
Newer therapy approaches that are focused on neuroregeneration, i.e., structural and functional
recovery of the damaged nervous system through immunomodulation, inhibition of formation of
protein aggregates, disaggregation of misfolded proteins, and induction of autophagy, give hope that
the degeneration process of afflicted neurons might be slowed and the recovery rates and longevity
improved [222]. Because of the complex nature of NDDs, a multi-target drug approach is encouraged,
as it may produce additional beneficial effects. When considering the role of lipid peroxidation in the
development and progression of NDDs, further human studies applying antioxidant supplementation
in different forms of NDD are urgently needed.



Antioxidants 2020, 9, 1128 17 of 27

Author Contributions: S.P., A.A., D.R.-M., and Z.C., drafted the manuscript and approved the final manuscript;
S.P., reviewed and edited drafts; V.V., conceptualized manuscript, edited draft, and approved the final manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Ministry of Education, Science and Technological
Development of the Republic of Serbia contract 451-03-68/2020-14/200015.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Malar, D.S.; Prasanth, M.I.; Brimson, J.M.; Sharika, R.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T.
Neuroprotective Properties of Green Tea (Camellia sinensis) in Parkinson’s Disease: A Review. Molecules 2020,
25, 3926. [CrossRef] [PubMed]

2. Prasansuklab, A.; Brimson, J.M.; Tencomnao, T. Potential Thai medicinal plants for neurodegenerative
diseases: A review focusing on the anti-glutamate toxicity effect. J. Tradit. Complement. Med. 2020, 10,
301–308. [CrossRef] [PubMed]

3. Desikan, R.S.; Fan, C.C.; Wang, Y.; Schork, A.J.; Cabral, H.J.; Cupples, L.A.; Thompson, W.K.; Besser, L.;
Kukull, W.A.; Holland, D.; et al. Genetic assessment of age-associated Alzheimer disease risk: Development
and validation of a polygenic hazard score. PLoS Med. 2017, 14, e1002258. [CrossRef] [PubMed]

4. Shafi, S.; Singh, A.; Gupta, P.; Chawla, P.A.; Fayaz, F.; Sharma, A.; Pottoo, F.H. Deciphering the role of
aberrant protein post translational modification in the pathology of neurodegeneration. CNS Neurol. Disord.
Drug Targets 2020, 19. [CrossRef]

5. Gandhi, J.; Antonelli, A.C.; Afridi, A.; Vatsia, S.; Joshi, G.; Romanov, V.; Murray, I.V.J.; Khan, S.A. Protein
misfolding and aggregation in neurodegenerative diseases: A review of pathogeneses, novel detection
strategies, and potential therapeutics. Rev. Neurosci. 2019, 30, 339–358. [CrossRef] [PubMed]

6. Strong, M.J.; Abrahams, S.; Goldstein, L.H.; Woolley, S.; Mclaughlin, P.; Snowden, J.; Mioshi, E.;
Roberts-South, A.; Benatar, M.; HortobáGyi, T.; et al. Amyotrophic lateral sclerosis—frontotemporal spectrum
disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 153–174.
[CrossRef] [PubMed]

7. Tawo, R.; Pokrzywa, W.; Kevei, É.; Akyuz, M.E.; Balaji, V.; Adrian, S.; Höhfeld, J.; Hoppe, T. The Ubiquitin
Ligase CHIP Integrates Proteostasis and Ageing by Regulation of Insulin Receptor Turnover. Cell 2017, 169,
470–482. [CrossRef] [PubMed]

8. Hoppe, T.; Cohen, E. Organismal Protein Homeostasis Mechanisms. Genetics 2020, 215, 889–901. [CrossRef]
9. Abdullah, A.; Mohd Murshid, N.; Makpol, S. Antioxidant Modulation of mTOR and Sirtuin Pathways in

Age-Related Neurodegenerative Diseases. Mol. Neurobiol. 2020. [CrossRef]
10. Jucker, M.; Walker, L.C. Propagation and spread of pathogenic protein assemblies in neurodegenerative

diseases. Nat. Neurosci. 2018, 21, 1341–1349. [CrossRef] [PubMed]
11. Uddin, M.S.; Tewari, D.; Sharma, G.; Kabir, M.T.; Barreto, G.E.; Bin-Jumah, M.N.; Perveen, A.;

Abdel-Daim, M.M.; Ashraf, G.M. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis
of Alzheimer’s Disease. Mol. Neurobiol. 2020, 57, 2902–2919. [CrossRef]

12. Golpich, M.; Amini, E.; Mohamed, Z.; Azman Ali, R.; Mohamed Ibrahim, N.; Ahmadiani, A. Mitochondrial
Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci.
2017, 23, 5–22. [CrossRef] [PubMed]

13. Saleem, U.; Sabir, S.; Niazi, S.G.; Naeem, M.; Ahmad, B. Role of Oxidative Stress and Antioxidant Defense
Biomarkers in Neurodegenerative Diseases. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 311–322. [CrossRef]
[PubMed]

14. Warraich, U.-A.; Hussain, F.; Kayani, H.U.R. Ageing—Oxidative stress, antioxidants and computational
modeling. Heliyon 2020, 6, e04107. [CrossRef] [PubMed]

15. Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases.
Molecules 2019, 24, 1583. [CrossRef]

16. Hernandez-Diaz, S.; Soukup, S.-F. The role of lipids in autophagy and its implication in neurodegeneration.
Cell Stress 2020, 4, 167–186. [CrossRef]

http://dx.doi.org/10.3390/molecules25173926
http://www.ncbi.nlm.nih.gov/pubmed/32867388
http://dx.doi.org/10.1016/j.jtcme.2020.03.003
http://www.ncbi.nlm.nih.gov/pubmed/32670825
http://dx.doi.org/10.1371/journal.pmed.1002258
http://www.ncbi.nlm.nih.gov/pubmed/28323831
http://dx.doi.org/10.2174/1871527319666200903162200
http://dx.doi.org/10.1515/revneuro-2016-0035
http://www.ncbi.nlm.nih.gov/pubmed/30742586
http://dx.doi.org/10.1080/21678421.2016.1267768
http://www.ncbi.nlm.nih.gov/pubmed/28054827
http://dx.doi.org/10.1016/j.cell.2017.04.003
http://www.ncbi.nlm.nih.gov/pubmed/28431247
http://dx.doi.org/10.1534/genetics.120.301283
http://dx.doi.org/10.1007/s12035-020-02083-1
http://dx.doi.org/10.1038/s41593-018-0238-6
http://www.ncbi.nlm.nih.gov/pubmed/30258241
http://dx.doi.org/10.1007/s12035-020-01929-y
http://dx.doi.org/10.1111/cns.12655
http://www.ncbi.nlm.nih.gov/pubmed/27873462
http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2020029202
http://www.ncbi.nlm.nih.gov/pubmed/32894661
http://dx.doi.org/10.1016/j.heliyon.2020.e04107
http://www.ncbi.nlm.nih.gov/pubmed/32509998
http://dx.doi.org/10.3390/molecules24081583
http://dx.doi.org/10.15698/cst2020.07.225


Antioxidants 2020, 9, 1128 18 of 27

17. Barón-Mendoza, I.; González-Arenas, A. Relationship between the effect of polyunsaturated fatty acids
(PUFAs) on brain plasticity and the improvement on cognition and behavior in individuals with autism
spectrum disorder. Nutr. Neurosci. 2020, 1–24. [CrossRef]

18. Taha, A.Y. Linoleic acid–good or bad for the brain? NPJ Sci. Food 2020, 4, 1. [CrossRef]
19. Bos, D.J.; van Montfort, S.J.T.; Oranje, B.; Durston, S.; Smeets, P.A.M. Effects of omega-3 polyunsaturated

fatty acids on human brain morphology and function: What is the evidence? Eur. Neuropsychopharmacol.
2016, 26, 546–561. [CrossRef]

20. Vucic, V. The role of dietary polyunsaturated fatty acids in inflammation. Serb. J. Exp. Clin. Res. 2013, 14,
93–99. [CrossRef]

21. Ristic-Medic, D.; Vucic, V.; Takic, M.; Karadzic, I.; Glibetic, M. Polyunsaturated fatty acids in health and
disease. J. Serb. Chem. Soc. 2013, 78, 1269–1289. [CrossRef]

22. Cauli, B.; Hamel, E. Brain Perfusion and Astrocytes. Trends Neurosci. 2018, 41, 409–413. [CrossRef]
23. Hopperton, K.E.; Trépanier, M.-O.; James, N.C.E.; Chouinard-Watkins, R.; Bazinet, R.P. Fish oil feeding

attenuates neuroinflammatory gene expression without concomitant changes in brain eicosanoids and
docosanoids in a mouse model of Alzheimer’s disease. Brain. Behav. Immun. 2018, 69, 74–90. [CrossRef]
[PubMed]

24. Echeverría, F.; Valenzuela, R.; Catalina Hernandez-Rodas, M.; Valenzuela, A. Docosahexaenoic acid (DHA),
a fundamental fatty acid for the brain: New dietary sources. ProstaglandinsLeukot. Essent. Fat. Acids 2017,
124, 1–10. [CrossRef] [PubMed]

25. Ugidos, I.F.; Santos-Galdiano, M.; Pérez-Rodríguez, D.; Anuncibay-Soto, B.; Font-Belmonte, E.; López, D.J.;
Ibarguren, M.; Busquets, X.; Fernández-López, A. Neuroprotective effect of 2-hydroxy arachidonic acid
in a rat model of transient middle cerebral artery occlusion. Biochim. Biophys. Acta Biomembr. 2017, 1859,
1648–1656. [CrossRef]

26. Hashimoto, M.; Hossain, S.; Al Mamun, A.; Matsuzaki, K.; Arai, H. Docosahexaenoic acid: One molecule
diverse functions. Crit. Rev. Biotechnol. 2017, 37, 579–597. [CrossRef]

27. Cutuli, D. Functional and Structural Benefits Induced by Omega-3 Polyunsaturated Fatty Acids During
Ageing. Curr. Neuropharmacol. 2017, 15, 534–542. [CrossRef] [PubMed]

28. Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain
Development and Function. Nutrients 2016, 8, 6. [CrossRef]

29. Grimm, A.; Eckert, A. Brain ageing and neurodegeneration: From a mitochondrial point of view. J. Neurochem.
2017, 143, 418–431. [CrossRef]

30. Johnson, A.A.; Stolzing, A. The role of lipid metabolism in, lifespan regulation, and age-related disease.
Aging Cell 2019, 18. [CrossRef]
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