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Abstract: Continuous monitoring by wearable technology is ideal for quantifying mobility outcomes
in “real-world” conditions. Concurrent factors such as validity, usability, and acceptability of such
technology need to be accounted for when choosing a monitoring device. This study proposes a
bespoke methodology focused on defining a decision matrix to allow for effective decision making.
A weighting system based on responses (n = 69) from a purpose-built questionnaire circulated
within the IMI Mobilise-D consortium and its external collaborators was established, accounting for
respondents’ background and level of expertise in using wearables in clinical practice. Four domains
(concurrent validity, CV; human factors, HF; wearability and usability, WU; and data capture process,
CP), associated evaluation criteria, and scores were established through literature research and group
discussions. While the CV was perceived as the most relevant domain (37%), the others were also
considered highly relevant (WU: 30%, HF: 17%, CP: 16%). Respondents (~90%) preferred a hidden
fixation and identified the lower back as an ideal sensor location for mobility outcomes. Overall,
this study provides a novel, holistic, objective, as well as a standardized approach accounting for
complementary aspects that should be considered by professionals and researchers when selecting a
solution for continuous mobility monitoring.

Keywords: wearable technology; real-world assessment; continuous monitoring; healthcare
challenges; inertial measurement units; digital mobility outcomes; mobility assessment

1. Introduction

Mobility is recognised as one of the vital signs, as reduced mobility, reflected by slower walking
speed and its reduction over time, has been associated with greater mortality, morbidity, cognitive
decline, dementia, and falls risk [1]. Therefore, walking speed could be used as an outcome to monitor
health and function, and evaluate innovative interventions or drug treatments [1–3]. Measurement of
mobility usually occurs in laboratory or clinical settings [3], where individuals’ mobility capacity (what
they can do) is tested under standardised conditions. However, this assessment could be influenced
by clinicians’ subjectivity or by patients’ extra effort during short-term examinations [4]. Mobility
performance (what they actually do) is instead assessed in the real-world and may show a better
discriminative validity, especially in diseases characterised by specific mobility dysfunctions and
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fluctuations, such as in Parkinsons Disease [5]. Therefore, continuous mobility monitoring could detect,
measure, and eventually predict mobility loss linked to a change in speed. This is, in turn, may provide
essential information for a personalized treatment [1,3] as well as other adverse clinical events or
outcomes. Therefore, a low-cost, easy-to-use, and accurate approach using technology that can operate
in “real-world” scenario is essential to complete this aim, and wearable devices are ideal candidates.

A variety of data processing algorithms to estimate digital mobility outcomes (DMOs, e.g., walking
speed, cadence, etc.), from either a single or multiple devices, have been proposed and validated [6–22],
and the effect of different device locations has also been assessed [23–32]. Nonetheless, algorithms
and associated wearable devices are still far from widespread adoption outside of research labs due to
several other limiting factors, such as human factors, wearability, usability, and data capture.

Effective deployment of continuous mobility monitoring is strongly influenced by the perception
and acceptability of a wearable device to the user [33] and its wearability and usability [34,35]. However,
these aspects have not been widely investigated. Usability of different wearable devices has been
assessed in older adults [36,37], patients with chronic obstructive pulmonary disease (COPD) [38,39],
adults with chronic diseases [40], and on target populations interested in wearable solutions (e.g., novel
vs. experienced users [34]). The data capture process, and the amount of interaction expected from the
participant, might also be a limiting factor in adopting wearable devices. For example, to enhance the
accuracy of DMOs, some approaches require the subject to perform a given movement before data
acquisition (e.g., holding a static posture as in Bugané et al. [7]) or input anthropometric measures [6,21],
which can affect the overall experience for both participants and assessors.

While all of the above factors should be considered when selecting a wearable device for
continuous mobility assessment, typically, these have only been considered in isolation [30,40,41] or as
subsets [27,38,39]. One reason for this is the lack of a structured methodology to combine and objectively
evaluate such various factors for a comprehensive assessment of concurrent wearable devices. Among
these methodologies, decision matrices, typical of well-established design processes [42], are the most
practical and objective tools for a multi-domain evaluation approach in selecting one option from
several alternative solutions. Therefore, the primary aim of this study is to design a bespoke decision
matrix to assist in selecting the optimal wearable device for continuous mobility monitoring. The study
will initially identify the factors to be evaluated and their relevant scoring criteria (i.e., scoring system).
The relevant importance of these factors in the overall assessment will then be established considering
the perspective of professional and research staff using an ad-hoc questionnaire. This information
will then be used to determine the decision matrix, and different practical examples of its use will
be provided.

2. Materials and Methods

A decision matrix (Figure 1) is generally constituted of three main elements: (1) the different
elements to be evaluated, (2) a weighting system to establish their relevant importance, and (3) a
scoring system to rank various solutions [42]. The following sections describe how these elements
were established in this study. A demonstration of how this tool can be used is also provided using
data available in the literature.
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Figure 1. (Left Panel) Structure of the procedures required to identify the three elements that compose 
a decision matrix. 𝐿𝐿𝐿𝐿𝐿𝐿 = level of experience in the use of wearable devices. (Right Panel) Visual 
representation of the use of the decision matrix for ranking different wearable devices. 

2.1. Domains and Relevant Criteria 

The factors to evaluate were grouped into the following four domains (𝑑𝑑 = 1, … ,4 ). Both 
domains and the associated criteria (𝑐𝑐 = 1, … ,𝑁𝑁) were identified (Figure 2) through a combination of 
literature search and expert opinions within the IMI Mobilise-D consortium, which consists of many 
of the world’s leading scientists, clinicians, and companies on mobility assessment (>150 
professionals from 34 partners; https://www.mobilise-d.eu): 

Concurrent validity–factors related to the validity of the measurements; 
Human factors–factors related to the context of data capture, perception of the user towards the 
technology, data security and privacy, effect of monitoring outside clinical settings; 
Wearability & usability for the wearer–e.g., size, location, fixation modality, charging frequency; 
Data capture process–e.g., whether a calibration procedure, device programming, or anthropometric 
information are required for appropriate data capture. 

 
Figure 2. Identified key domains and their relevant criteria affecting wearable devices selection. 

Figure 1. (Left Panel) Structure of the procedures required to identify the three elements that compose
a decision matrix. LoE = level of experience in the use of wearable devices. (Right Panel) Visual
representation of the use of the decision matrix for ranking different wearable devices.

2.1. Domains and Relevant Criteria

The factors to evaluate were grouped into the following four domains (d = 1, . . . , 4). Both domains
and the associated criteria (c = 1, . . . , N) were identified (Figure 2) through a combination of literature
search and expert opinions within the IMI Mobilise-D consortium, which consists of many of the
world’s leading scientists, clinicians, and companies on mobility assessment (>150 professionals from
34 partners; https://www.mobilise-d.eu):

Concurrent validity–factors related to the validity of the measurements;
Human factors–factors related to the context of data capture, perception of the user towards the
technology, data security and privacy, effect of monitoring outside clinical settings;
Wearability & usability for the wearer–e.g., size, location, fixation modality, charging frequency;
Data capture process–e.g., whether a calibration procedure, device programming, or anthropometric
information are required for appropriate data capture.
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2.1.1. Concurrent Validity criteria

To properly assess the criteria within this domain, reference parameters measured with a gold
standard system (e.g., stereophotogrammetry or instrumented walking for mobility evaluation) need
to be available. While several parameters can be captured during continuous mobility monitoring,
this study focused on real-world walking speed (RWS), as a representative example. Level of agreement
(expressed as the interclass correlation coefficient–ICC), accuracy, robustness, and reliability of RWS
measurements can be assessed to quantify associated sources of error. Since the validity of RWS
estimation depends on both the identification of a walking bout [5], and the initial and final contacts of
the foot with the floor [29], the validity of these events needs to be considered as well.

2.1.2. Human Factors Criteria

Acceptance and adoption of wearable devices are affected by the wearer’s view on the use
of such devices to manage their health condition [33,34], data security [33], and their experience
of, and adherence to, the proposed data capture process [38]. Of paramount importance for the
wearer is the perceived impact that being monitored can have on daily life activities, as well as trust
in the measurements collected by the device; perceived usefulness strongly correlates with wearer
acceptance [43].

2.1.3. Wearability and Usability Criteria

Widespread deployment of wearables requires “perceived usefulness” by the stakeholders,
and benefits of use to be balanced with “perceived ease of use” [43]. Comfort, battery life, and feedback
provided by the device are additional elements to be considered within this domain [35,36], as well as
its size, location, and method of attachment to the body [39,44,45].

2.1.4. Data Capture Process Criteria

Some devices/algorithms perform optimally when additional calibration procedures are performed,
such as holding a static posture [7,31], device programming [46], or providing anthropometric
measurements as an input [6,21]. These elements directly affect participant–device interaction and
should be accounted for.

2.2. Weighting System

A questionnaire was designed to establish the relevance (i.e., weighting system) of the selected
domains and criteria. Approval from the University of Sheffield Research Ethics Committee (Application
027211) was obtained for this study, and participants agreed to take part in the research by completing
the anonymous online form. The online questionnaire was circulated among 34 partner institutions
belonging to the Mobilise-D consortium, which consists of more than 150 professionals (e.g., scientists,
clinicians, and companies) working on mobility assessment using wearable devices (www.mobilise-d.
eu), and its external collaborators. Before widespread distribution, the ad-hoc questionnaire was pilot
tested for both readability and data acquisition by using feedback from various professionals.

Following the process visualized in Figure 3, the gathered responses were used to assess:

i Respondents’ background: clinical, technical, or both.
ii Respondents’ level of expertise (LoE) with the use of wearable devices in clinical practice based

on four questions:

1. Do you know how a wearable device works and how it is used to identify gait features?
2. As a researcher, have you ever used a wearable device?
3. Have you ever used wearable devices directly on patients as opposed to healthy individuals?
4. Have you ever analysed the information/data extracted from wearable devices to characterise

patients’ mobility?

www.mobilise-d.eu
www.mobilise-d.eu
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iii Each positive response was scored as 0.25, and the total LoE was obtained as a sum of the partial
scores. LoE of each participant was then classified as excellent, good, average, poor, or none if
total LoE was 1.00, 0.75, 0.50, 0.25, and 0, respectively.

iv Respondents’ perceived level of importance of each domain and criterion, based on a 1–5 Likert
scale (1 = unimportant; 5 = very important).

v The modal value of the responses of each domain and criterion, ωd and ωd,c, respectively,
calculated as the preferences indicated by each respondent. The latter were multiplied by the
relevant LoE, which allowed us to account for the relevant respondents’ level of expertise.

Finally, the computed weights were normalised as [42]:

For each domain d: wd =
ωd∑4

d=1 ωd
(1)

For each criterion c: wd,c =
ωd,c∑N

c=1 ωd,c
(2)

where N are the criteria included in the relevant domain (d).
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2.3. Scoring System

Each criterion was first classified as either “benefit” or “cost” (Table 1) and scored higher/lower if
implying a better/worse sensor/algorithm solution [42], using scores that were normalised concerning
their range of variation within each criterion and domain:

Benefit criteria ed,c =
sd,c −min

i
sd,c

max
d,c

sd,c −min
d,c

sd,c
(3)

Cost criteria ed,c =

max
d,c

sd,c − sd,c

max
d,c

sd,c −min
d,c

sd,c
(4)

where sd,c is the score assigned to the criteria c of the d domain (0 ≤ ed,c ≤ 1).

Table 1. Cost/benefit criteria and scoring system.

Domain Criterion Benefit Cost Score

Concurrent
Validity

Walking speed accuracy 4

Scores based on the relevant
technical definitions

Walking speed robustness 4

Walking speed reliability 4

Walking speed–Interclass
coefficient 4

Walking bout detection
sensitivity 4

Walking bout detection
specificity 4

Walking bout detection
accuracy 4

Walking bout detection
robustness 4

Walking bout detection
reliability 4

Gait event sensitivity 4

Gait events identification 4

Human Factors

Use of technology in
healthcare * 4 –

Data security 4 Yes(1)/No(0)
Adherence to data capture 4 Yes(1)/No(0)
Burden of data capture * 4 –

Impact of monitoring 4 Yes(1)/No(0)
Trust in the device 4 Commercial: Yes(1)/No(0)

Wearability and
usability

Comfort * 4 –
Location 4 1

Ease of use 4 Interaction: Yes(1)/No(0)
Frequency of recharging 4 Battery Life 2

Perceived usefulness * 4 NA
Whether it provides feedback 4 Yes(1)/No(0)

Size 4 width x height x depth x mass
Fixation modality 4 1

Data Capture
Process

Calibration procedure 4 Yes(1)/No(0)
Required static/functional

movements 4 Yes(1)/No(0)

Required device programming 4 Yes(1)/No(0)
Questionnaires/Anthropometric

measures 4 Yes(1)/No(0)

1 Scores established via the purposely developed questionnaire. 2 Daily recharging (5/5); 2–3 days BL (4/5); 4–5 days
BL (3/5); 6–7 days BL (2/5); 7+ days BL (1/5). * Scores usually established through dedicated questionnaires available
in the litarature.
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Only respondents who had declared to have a technical background were asked to score concurrent
validity criteria based on the following definitions:

• Accuracy: closeness of an estimated parameter (p) to the “true value” measured using a gold
standard (pGS) and is expressed in percentage as:

e% =

∣∣∣p− pGS
∣∣∣∣∣∣pGS

∣∣∣ × 100

• Robustness to changes in the device positioning, quantified as e%.
• Reliability between different trials, quantified as e%.
• ICC: the agreement between p and pGS in different trials.
• Sensitivity (%): describes the true positive (TP) events, i.e., the number of gait events (GEs–defined

as initial and final foot-to-ground contacts and used to identify strides, steps, as well as gait cycle
phases [18], expressed as unitless numbers) and Walking Bouts (WBs) correctly identified with a
device/algorithm solution (nGE) as compared to the values from a gold standard (nGE_GS):

sens% =
nGE

nGE_GS
× 100 or sens% =

TP
TP + FN

× 100

• Specificity (%): number of true negative (TN) events relative to the actual events assessed with a
gold standard:

spec% =
TN

FP + TN
× 100

• Positive predictive value (%): TP events over the total amount of identified GEs, including falsely
detected GEs (TP + FP):

PPV% =
TP

TP + FP
× 100

Criteria from the other domains were scored using the system shown in Table 1. Location and
fixation modality criteria scores were defined by asking participants to rank possible choices taken from
the literature [20,47–49]. They were then asked to indicate the best three from twelve locations (lower
back/hip/waist; pocket; chest; neck (body-fixed); neck (pendant); head; foot; ankle; shank; thigh; wrist;
arm) and five fixation modalities (adhesive on the skin; strap above/below clothes; clip above/below
clothes). The recorded ranking scores (1, 2, 3 for 3rd, 2nd, 1st, respectively) were then scaled by the
respondents’ LoE.

2.4. Comparison of Concurrent Solutions

For each monitoring solution (Ei), an overall score, based on the partial scores obtained for the
different domains and criteria and on the calculated weights and scores, was finally computed:

Ei =
4∑

d=1

ed ∗wd =
4∑

d=1

 N∑
c=1

ed,c ∗wd,c

 ∗wd (5)

where ed is the overall score of each domain d, obtained as the combination of the scores ed,c and
normalised weights wd,c, assigned to each of the N criteria.

2.5. Application of the Decision Matrix

Among the different studies in the literature evaluating either different solutions for DMOs
estimations, the information and results extracted from two studies were used to feed the decision
matrix and practically demonstrate how this tool can be used in future research.
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1. Example 1. Three different concurrent methods [10,16,21] for gait temporal parameter estimations
with a single device that was attached to the lower trunk [31].

2. Example 2. An evaluation of four (Movemonitor, Mc Roberts, The Hague, The Netherlands;
Up, Jawbone, San Francisco, USA; One, Fitbit, San Francisco, USA; ActivPAL, PAL Technologies
Ltd., Glasgow, UK) of the seven wearable devices placed in different locations as explored in
Storm et al. [28].

Among the different domains’ proposed criteria, a subset of the available scores for the relevant
studies was available and used in the decision matrix. The weighting systems were, therefore,
accordingly adjusted based on the results obtained in this study. Benefit and cost scores were assigned
based on Table 1 and the relevant information obtained through the ad-hoc questionnaire (i.e., fixation
modality and device location) and normalised as described in Section 2.3. For each wearable device,
the overall score was calculated using Equation (5).

3. Results

3.1. Participants

Sixty-nine participants submitted their responses to the questionnaire (Figure 4). Among them,
83% had either an excellent or good level of expertise (LoE ≥ 0.75) in the use of wearable devices.Sensors 2020, 20, x FOR PEER REVIEW 8 of 16 
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3.2. Weighting System

Table 2 shows the normalised weights for domains and relevant criteria, as calculated based on
each respondent’s perceived level of importance (Figure 5).Sensors 2020, 20, x FOR PEER REVIEW 9 of 16 
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Figure 5. For each perceived level of importance (1–5 Likert scale; 1 = unimportant, 5 = very important),
the absolute number of responses expressed by the participants for the four domains (a) concurrent
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a pattern fill. The responses adjusted by the relevant LoE of each participant are shown with a solid fill.
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Table 2. Weighting system.

Domains Criteria

Weight Weight

Concurrent Validity 0.368

Walking speed accuracy 0.133
Walking speed reliability 0.130
Walking speed robustness 0.107

Walking speed–Interclass coefficient 0.107
Walking bout detection specificity 0.097
Walking bout detection reliability 0.095
Walking bout detection accuracy 0.087

Walking bout detection sensitivity 0.064
Walking bout detection robustness 0.062

Gait event sensitivity 0.059
Gait events identification (PPV) 0.057

Human Factors 0.175

Trust in the device 0.193
Burden of data capture 0.193

Data security 0.181
Impact of monitoring 0.163

Adherence to data capture 0.136
Use of technology in healthcare 0.134

Wearability and usability 0.296

Ease of use 0.185
Comfort 0.168

Fixation modality 0.141
Size 0.119

Location 0.116
Perceived usefulness 0.096

Frequency of recharging 0.092
Whether it provides feedback 0.083

Data Capture Process 0.161

Calibration procedure 0.326
Required static/functional movements 0.286

Required device programming 0.197
Questionnaires/Anthropometric measures 0.192

Based on the obtained modal values ωd of each domain, both concurrent validity and wearability
and usability domains were classified as “very important” for a seven-day mobility monitoring solution.
The other two domains were labeled as “important”; and this classification was not modified when the
respondents’ LoE was considered (Figure 5).

3.3. Scores

The favourite location and fixation criteria were the “lower back/hip/waist” and “strap below
clothes,” respectively, as shown by the results reported in Figure 6. The most common explanations
behind the choice of the lower back/hip/waist location were the respondents’ previous experience with
this solution with their patients, comfort, proximity to the centre of mass location, the possibility of
the device to be integrated with a belt and the potential to “track” the movement of both lower limbs
with a single device. The fixation with a strap below the clothes was indicated as preferred due to this
method’s robustness, the possibility of hiding the sensor, and preserving participant privacy and past
positive experiences with this approach.



Sensors 2020, 20, 6509 10 of 16

Sensors 2020, 20, x FOR PEER REVIEW 9 of 16 

 

 
Figure 5. For each perceived level of importance (1–5 Likert scale; 1 = unimportant, 5 = very 
important), the absolute number of responses expressed by the participants for the four domains (a) 
concurrent validity, (b) human factors, (c) data capture process, and (d) wearability and usability) are 
shown with a pattern fill. The responses adjusted by the relevant 𝐿𝐿𝐿𝐿𝐿𝐿 of each participant are shown 
with a solid fill. 

Based on the obtained modal values 𝜔𝜔𝑑𝑑  of each domain, both concurrent validity and 
wearability and usability domains were classified as “very important” for a seven-day mobility 
monitoring solution. The other two domains were labeled as “important”; and this classification was 
not modified when the respondents’ 𝐿𝐿𝐿𝐿𝐿𝐿 was considered (Figure 5). 

3.3. Scores 

The favourite location and fixation criteria were the “lower back/hip/waist” and “strap below 
clothes,” respectively, as shown by the results reported in Figure 6. The most common explanations 
behind the choice of the lower back/hip/waist location were the respondents’ previous experience 
with this solution with their patients, comfort, proximity to the centre of mass location, the possibility 
of the device to be integrated with a belt and the potential to “track” the movement of both lower 
limbs with a single device. The fixation with a strap below the clothes was indicated as preferred due 
to this method's robustness, the possibility of hiding the sensor, and preserving participant privacy 
and past positive experiences with this approach. 

 
Figure 6. Scores for the different identified device locations (a) and fixation modality (b). Values were 
obtained based on the best three choices expressed from each participant and their relevant 𝐿𝐿𝐿𝐿𝐿𝐿. 

Figure 6. Scores for the different identified device locations (a) and fixation modality (b). Values were
obtained based on the best three choices expressed from each participant and their relevant LoE.

3.4. Use of the Decision Matrix

3.4.1. Example 1

Among the methods described in Reference [31], the three for which the robustness had been
assessed (T1–Zijlstra and Hof [21]; T2–González et al. [10], T3–McCamley et al. [16], Table 3) were
considered for the concurrent evaluation. Step time accuracy and robustness (highest e% value reported
for each method) were considered as representative for walking bout detection accuracy and robustness
(Table 3), respectively.

Table 3. Evaluation matrix applied to three concurrent methods. Normalised scores are reported
in bold.

Domains Criteria

Weight Weight T1 T2 T3

Concurrent Validity 0.368

Walking bout detection accuracy 1 0.328 8 4 2
0.00 0.67 1.00

Walking bout detection robustness 1 0.234 9 4 2
0.00 0.71 1.00

Gait event identification (PPV) 0.215 100 97 100
1.00 0.00 1.00

Gait events sensitivity 0.223 97 82 100
0.83 0.00 1.00

Human Factors 0.175

Trust in the device 0.516 1 1 1
1 1 1

Data security 0.484 1 1 1
1 1 1

Wearability & usability 0.296

Fixation modality 0.301 0.137 0.137 0.137
1.00 1.00 1.00

Size 0.254 525.76 525.76 525.76
1.00 1.00 1.00

Location 0.248 0.386 0.386 0.386
1.00 1.00 1.00

Frequency of recharging 0.197 1 1 1
1.00 1.00 1.00

Data Capture Process 0.161

Calibration procedure 0.326 0 0 0
1.00 1.00 1.00

Required static/functional movements 0.286 1 1 1
0.00 0.00 0.00

Required device programming 0.197 0 0 0
1.00 1.00 1.00

Questionnaires/Anthropometric measures 0.192 1 0 0
0.00 1.00 1.00

Overall score 0.70 0.73 0.95
1 Represented as step time accuracy and robustness.
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3.4.2. Example 2

Among the seven wearable devices explored in Storm et al. [28], four (S1–Movemonitor, S2–Up,
S3–One, S4–ActivPAL, Table 4) were selected for the concurrent evaluation, performed using step
detection accuracy as a concurrent validity criterion (Table 4). The mean step detection accuracy
value was calculated for each monitoring solution over those reported for slow, self-selected, and fast
walking speeds.

Table 4. Evaluation matrix applied to four wearable devices. Normalised scores are reported in bold.

Domains Criteria

Weight Weight S1 S2 S3 S4

Concurrent
Validity 0.368

Step detection accuracy 1.000 1.483 4.897 1.567 2.493
1.00 0.00 0.98 0.70

Human Factors 0.175

Trust in the device 0.516 1 1 1 1
1.00 1.00 1.00 1.00

Data security 0.484 1 1 1 1
1.00 1.00 1.00 1.00

Wearability &
usability 0.296

Fixation modality 0.301 0.319 0.174 0.174 0.271
1.00 0.00 0.00 0.67

Size 0.254 3910.62 23.17 79.01 259.70
0.00 1.00 0.99 0.94

Location 0.248 0.386 0.15 0.386 0.013
1.00 0.37 1.00 0.00

Frequency of recharging 0.197 0.2 0.2 0.2 0.2
1.00 1.00 1.00 1.00

Data Capture
Process

0.161

Calibration procedure 0.326 0 0 0 0
1.00 1.00 1.00 1.00

Required static/functional movements 0.286 0 0 0 0
1.00 1.00 1.00 1.00

Required device programming 0.197 1 0 0 0
0.00 1.00 1.00 1.00

Questionnaires/Anthropometric measures 0.192 0 0 0 0
1.00 1.00 1.00 1.00

Overall
score 0.89 0.41 0.81 0.78

4. Discussion

This study aimed to propose a standardised methodology for selecting the optimal device for
continuous mobility monitoring, with a special focus on walking speed. Although this method was
implemented using professionals/researchers, a similar approach could also be used to evaluate user
perspectives. This approach’s novelty allows researchers to assess the relevance of domains that were
previously quantified only in isolation [33–37,39,40], such as the wearability and usability of a device,
in combination with aspects related to its validity and other domains. This ensures a more robust
choice of a specific solution.

The different aspects to be considered while exploring concurrent continuous mobility monitoring
solutions were first identified, and their relevance assessed by capturing information from experts in
this research area. The identified domains of relevant criteria, and calculated weighting and scoring
systems, were the three elements that identify the decision matrix, representing the successfully
developed method.

The scoring system, which combined “benefit” and “cost” criteria, highlighted the differences
among monitoring solutions and allowed the calculation of an overall score for each of them [42].
This procedure allows a trade-off on multiple and concurrent domain/criteria.

The weighting system was obtained via an experts’ questionnaire and constituted an objective
methodology to assess the selected elements’ relevance while aiming to identify an optimal monitoring
solution. Critically, this method’s reliability does not rely on the knowledge and expertise of a single
decision-maker, which could bias the outcomes [42]. The novelty of this developed approach is that
it allows researchers to consider the respondents’ expertise, making the unbiased results especially
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relevant for the field. The use of examples taken from the literature demonstrated how this framework
could be used when only a subset of domains/criteria are available by adjusting the relevant scoring
system to specific requirements.

From a professional’s perspective, the concurrent validity domain, which is the one most widely
considered in the literature when a new wearable device is proposed, was also confirmed to be the
most important in this study (37%), even by respondents from a non-technical background (33%).
Nonetheless, results indicate that the other domains are also important for the widespread deployment
of wearable devices (wearability and usability: 30%; human factors: 17%; data capture process: 16%).
Recently, a study [50] attempted to provide some guidelines for selecting and comparing different
devices; however, the focus was still mostly on how technical specifications and raw data quality affect
the validity domain.

Respondents to the questionnaire, who were professionals (i.e., developers, clinicians,
and researchers) who deploy the technology, were asked to select the best three location and fixation
solutions. This has allowed for the establishment of an exact ranking among different solutions for
continuous mobility monitoring. Although previous studies have assessed the effect of different device
locations [23–32], the effect of a variety of fixation methods had not yet been explored. Thus, we have
developed and applied a novel quantitative approach to allow these criteria to be explicitly identified
and ranked. Almost 90% of the responders chose a device placed on the lower back (of these, 62%, 24%,
and 14% identified this as the first, second, and third choice, respectively) because it provides accurate
measurement and can be integrated with a belt. This solution is indeed usually accepted for long-term
at-home use, approximates the centre of mass location, and is the most common location adopted in
studies assessing mobility [48]. For the fixation method, the solution identified as an ideal one can
be hidden under the clothes (83% of the respondents). In particular, a strap (43%) and adhesive on
the skin (43%) were indicated as the most robust fixation methods (i.e., less relative motion between
the device and the segment where it is placed). Other explicit preferences for location and fixation
modality included choosing a solution that provides reliable measures, allows comfort, as well as
device aesthetics, confirming what has been previously reported in the literature [35,43].

Once developed, the proposed framework was successfully used for ranking concurrent solutions
using data extracted from the literature to compare different algorithms applied to the same raw data,
which led to conclusions similar to those from the original study [31] while also providing a single
summary score for each proposed solution. When used to evaluate the performance of the different
wearable devices reported in Storm et al. [28], the differences among the solutions can be further
highlighted, not just considering their concurrent validity, but also the other three domains, which are
key elements for the widespread use of this technology. Moreover, a similar methodology could also
be implemented when selecting concurrent devices for different applications.

Users (i.e., wearer, either patients or participants), which are the real stakeholders who will
directly use this technology, did not participate in this questionnaire, which certainly represents the
main limitation of this study. Nonetheless, their opinion might have been biased by their previous
experience, which is usually limited to using a single wearable device. In order to include this
essential aspect, future studies should either recruit a specific population of individuals who previously
experienced different wearable solutions for mobility monitoring or having them participating in
an ad-hoc comparative assessment. As highlighted by Manta et al. [51], both patients and care
partners should be engaged in the selection and development of digital mobility outcome solutions for
identifying a solution that is effective, helpful, and improves both quality and efficiency in clinical
research and care. Future studies might include the opinion from a specific population of individuals
who previously experienced different wearable solutions for mobility monitoring or include them in a
comparative assessment. Their relevant perception of the importance of the identified factors could
then be integrated and combined with the information collected in this study. Moreover, it would be
of interest to evaluate the effect that awareness of the criteria adopted behind the design of a device
might have on user perception and acceptance of the device.
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5. Conclusions

This study proposed a new methodology that provides a novel, holistic, objective, as well
as standardised approach accounting for complementary aspects that should be considered by
professionals and researchers when selecting a solution for continuous mobility monitoring. An ad-hoc
decision matrix has been established for this aim, the definition of which made it explicit that a
comprehensive approach should be adopted when choosing a technology for continuous mobility
monitoring if aiming for widespread adoption. In particular, the four identified domains: concurrent
validity, human factors, wearability and usability, and data capture process should be simultaneously
considered when evaluating concurrent solutions.
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