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Abstract: (1) Ultimate frisbee involves frequent cutting motions, which have a high risk of anterior
cruciate ligament (ACL) injury, especially for female players. This study investigated the in-game
cutting maneuvers performed by female ultimate frisbee athletes to understand the movements that
could put them at risk of ACL injury. (2) Lower-body kinematics and movement around the field
were reconstructed from wearable lower-body inertial sensors worn by 12 female players during
16 league-sanctioned ultimate frisbee games. (3) 422 cuts were identified from speed and direction
change criteria. The mean cut had approach speed of 3.4 m/s, approach acceleration of 3.1 m/s2,
cut angle of 94 degrees, and ground-contact knee flexion of 34 degrees. Shallow cuts from 30 to
90 degrees were most common. Speed and acceleration did not change based on cut angle. Players on
more competitive teams had higher speed and acceleration and reduced knee flexion during cutting.
(4) This study demonstrates that a lower-body set of wearable inertial sensors can successfully track
an athlete’s motion during real games, producing detailed biomechanical metrics of behavior and
performance. These in-game measurements can be used to specify controlled cutting movements in
future laboratory studies. These studies should prioritize higher-level players since they may exhibit
higher-risk cutting behavior.
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1. Introduction

Ultimate frisbee (UF) is a popular sport played by three million people in the United States each
year [1]. At the collegiate level, there are 499 schools with men’s teams and 327 with women’s teams
that are registered to compete [2]. In a study of club sports in college, more people were hurt playing
UF than nearly any other sport including soccer, basketball, baseball, and volleyball, and surpassed
only by rugby [3]. Injuries from UF tend to occur on the lower limbs of athletes with 53% of frequent
players experiencing knee injuries [4]. These injuries are often sustained by women who are injured
twice as often as men in collegiate club UF [3]. Some of this discrepancy may be due to women having
a higher risk of anterior cruciate ligament (ACL) injury in general: female athletes of other sports
have 2–8 times higher rates of ACL injury than their male counterparts [5–8]. In a study of men’s
semi-professional UF, ligament sprains in the knee were the fifth highest cause of injury, making up
3.3% of all injury cases observed [9]. It could therefore be predicted that for high level female players,
these kinds of injuries could make up 7–20% of all injuries. Despite this high level of risk, UF has been
little studied in clinical and biomechanical research [3,4,9,10].

The present study documented and analyzed players’ speed, acceleration, and knee joint angles
during in-game cutting movements for female UF players. Female participants were recruited since
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they are at a greater risk of injury. Cutting was examined because of its high correlation to ACL tears.
Cutting is the act of changing direction in a sharp, sudden motion. Cutting has been well studied
in other sports [11–13], but rarely outside of laboratory conditions. Thanks to a new generation of
motion capture technology, Inertial sensors can now record movement in the real world rather than in
labs [14–17]. UF is the perfect sport for this kind of experiment because it involves frequent cutting
to the point that its most common position is even called a “cutter”. It is also important to capture
players in competition settings because in similar sports like basketball and soccer, three to nine times
more ACL injuries take place during games than during practices [6].

To begin understanding cutting in UF, this study used wearable movement sensors to track and
characterize in-game cutting movements. These movement characteristics will help examine the type
and amount of risk to ACL injury involved in playing UF. The present analysis focuses on kinematic
quantities measurable with current field-based wearables appropriate for in-game use—specifically,
the speeds, accelerations and knee angles associated with each cut. Speeds and accelerations during
cutting were chosen because of their link to higher ACL loading [18], which is considered a risk factor
for ACL injury such as ACL rupture. Knee flexion was also examined to determine individuals’ levels
of quadriceps dominance during cutting, another risk factor for ACL injury [19]. These movement
characteristics could be used to design an appropriate in-lab study of more detailed biomechanics,
such as knee valgus movement and multiaxial knee moment, or to interpret past data from in-lab
cutting studies in the context of UF. Additionally, this study tested athletes on teams of three different
levels and examined how team caliber impacts movement characteristics that may indicate relative
ACL injury risk. Among different divisions of collegiate basketball and soccer, more advanced teams
do not appear to have higher levels of ACL injury [20], but such data are lacking for UF.

It is the goal of this study to create a foundation for understanding the cutting movements of
female UF players. Knowing the characteristics of players’ cuts will help to replicate real-world
conditions in any future laboratory testing. This study also examined how UF players on different
teams perform cuts to determine what kinds of leagues should be targeted for future study and
intervention. The long-term vision is to drive the research that inform both collective and individual
training and injury prevention practices to ensure UF remains a safe and enjoyable sport.

2. Materials and Methods

2.1. In-Game Data Recordings

Twelve (12) healthy female UF players gave their prior written informed consent to participate
in this study. The study was performed in adherence to the rules of the Declaration of Helsinki and
the protocol was approved by the University of Wisconsin-Madison Health Sciences Institutional
Review Board (protocol 2018-0743, approved 30 July 2018). These participants played in 17 tournament
games on three different teams (an advanced collegiate team, A; an intermediate collegiate team,
B; and a competitive Club team) while wearing a lower body XSens MVN Awinda inertial
measurement unit (IMU) system (seven segments: two feet, two shanks, two thighs, one pelvis;
XSens, The Netherlands; Figure 1). These sensors had nine degrees of freedom, collecting 3-axis angular
velocity (±2000 degrees/s), 3-axis acceleration (±160 m/s2), and 3-axis earth magnetic field (±1.9 Gauss).
The wearable sensors transmitted wirelessly in real-time to a wireless base-station connected to a
laptop computer, which were carried along the sideline by the experimenter to stay within range of the
instrumented player (roughly 50 m). The sensors have a 10 s buffer that allows for brief out-of-range
periods as well. Data for three games (games 3, 6, and 12 in Appendix A, Table A1) were collected at
60 Hz with all other games collected at 100 Hz due to a software update.
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Figure 1. (a) shows a participant with the seven IMU sensors. (b) is the kinematic model created from 
their movement and the coordinate system defined at the start of each footfall. 

2.2. Movement Reconstruction and Segmentation 

Raw IMU data were processed through the human body model in the proprietary software 
(XSens MVN Analyze; Figure 1) to reconstruct foot contact with the ground, movement of the body 
around the playing field, pose of the instrumented lower body segments (pelvis, thighs, shanks, feet), 
and joint angles at each hip, knee and ankle, at each data frame. These kinematic data were then 
exported for post-processing in MATLAB (The Mathworks, Natick, MA, USA). Custom MATLAB 
scripts processed all exported files and created the statistical results of this study with some published 
scripts used to create Figures 4 and 5 [21], Figures 7,9, and 10 [22]. 

Overall movement was broken down into individual footfalls of the left and right feet. Footfalls 
were identified using the exported foot contact data: a footfall was defined from initial contact to final 
contact of one foot with the ground. To further improve these contact data, gaps of contact lasting 
150ms or less between footfalls of the same foot were closed, as this is too short a time for a realistic 
swing phase. Then, contact periods lasting 50 ms or less were removed, as contacts that brief were 
assumed to be erroneous contact detections. 

The primary source of whole-body cut kinematics was the pelvis segment’s position. Pelvis 
position data were fed through a 5-point median filter to remove spikes in the data. These spikes 
were caused by the proprietary IMU software adjusting for the uneven ground the participants 
played on and imperfect motion reconstruction. After smoothing, a coordinate system was defined 
for each footfall, using the initial and final horizontal position of the pelvis to define the X-axis and 
the world-frame vertical to define the Z-axis. Using the initial and final horizontal pelvis position, 
footfall speed (ܛ) was calculated across each footfall, in each footfall’s local coordinate system. 

2.3. Identification of In-Game Cuts 

Potential cuts of interest were initially identified by looking for patterns in footfall speed (ܛ) 
data. For any sequence of footfalls to be called a cut, the sequence had to have at least two successive 
footfalls with a lower ܛ than the previous footfall. The last of these slowing footfalls (the one with 
the lowest ܛ) was called the cut footfall, while any previous slowing footfalls were called approach 
footfalls. The cut footfall had to be followed by at least one exit footfall, where ܛ increased with each 
footfall compared to the previous one. We allowed up to five approach footfalls if each continued to 
have a slower ܛ than the previous footfall. These footfalls were denoted as C-5 through C-1. The cut 
footfall was denoted C-0. We allowed up to five exit footfalls if each subsequent ܛ continued to 

Figure 1. (a) Shows a participant with the seven IMU sensors. (b) is the kinematic model created from
their movement and the coordinate system defined at the start of each footfall.

Participants ranged in age from 20–34 years (mean 26 years) and wore cleats during all data
collections. All players were in trained competitive condition and were not suffering from any current
injury that impeded their ability to compete. The IMU system was calibrated before each game, at half
time, and any other time the body reconstruction became noticeably flawed (for example, if a sensor
shifted). Games were played on different grass fields that were in good condition (not muddy).

2.2. Movement Reconstruction and Segmentation

Raw IMU data were processed through the human body model in the proprietary software
(XSens MVN Analyze; Figure 1) to reconstruct foot contact with the ground, movement of the body
around the playing field, pose of the instrumented lower body segments (pelvis, thighs, shanks, feet),
and joint angles at each hip, knee and ankle, at each data frame. These kinematic data were then
exported for post-processing in MATLAB (The Mathworks, Natick, MA, USA). Custom MATLAB
scripts processed all exported files and created the statistical results of this study with some published
scripts used to create Figures 4 and 5 [21], Figures 7, 9 and 10 [22].

Overall movement was broken down into individual footfalls of the left and right feet. Footfalls
were identified using the exported foot contact data: a footfall was defined from initial contact to final
contact of one foot with the ground. To further improve these contact data, gaps of contact lasting
150 ms or less between footfalls of the same foot were closed, as this is too short a time for a realistic
swing phase. Then, contact periods lasting 50 ms or less were removed, as contacts that brief were
assumed to be erroneous contact detections.

The primary source of whole-body cut kinematics was the pelvis segment’s position. Pelvis position
data were fed through a 5-point median filter to remove spikes in the data. These spikes were caused
by the proprietary IMU software adjusting for the uneven ground the participants played on and
imperfect motion reconstruction. After smoothing, a coordinate system was defined for each footfall,
using the initial and final horizontal position of the pelvis to define the X-axis and the world-frame
vertical to define the Z-axis. Using the initial and final horizontal pelvis position, footfall speed (sff)

was calculated across each footfall, in each footfall’s local coordinate system.

2.3. Identification of In-Game Cuts

Potential cuts of interest were initially identified by looking for patterns in footfall speed (sff)
data. For any sequence of footfalls to be called a cut, the sequence had to have at least two successive
footfalls with a lower sff than the previous footfall. The last of these slowing footfalls (the one with
the lowest sff) was called the cut footfall, while any previous slowing footfalls were called approach
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footfalls. The cut footfall had to be followed by at least one exit footfall, where sff increased with each
footfall compared to the previous one. We allowed up to five approach footfalls if each continued to
have a slower sff than the previous footfall. These footfalls were denoted as C-5 through C-1. The cut
footfall was denoted C-0. We allowed up to five exit footfalls if each subsequent sff continued to
increase, and these were denoted C + 1 through C + 5. An example cut showing this sequence of
footfalls is shown in Figure 2.
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because ground reaction forces could not definitively be calculated from the kinematic-only data 
collected. Example videos of the reconstructed kinematics during cutting maneuvers are included as 
supplementary files. 
  

Figure 2. The 3 phases of cuts are the approach footfalls, the cut footfall, and the exit footfalls. The start
of each footfall is shown. The yellow arrows represent the sff of each cut step (not drawn to scale).

If a series of footfalls met these sff requirements, thresholds on minimum speed and direction
change were applied (Figure 2), as slow movements and near-straight-line movements are not typically
considered cuts. The approach speed (sapp) was defined as the horizontal speed of the pelvis in the first
frame of the first approach footfall. The exit speed (sexit) was defined as the horizontal speed of the
pelvis in the last frame of the last exit footfall. The change in direction associated with a potential cut
was defined as the cut angle (θ), calculated using the direction of the horizontal-plane velocity at the
beginning of C-1 and the final direction at the end of C + 1 (a straight line has 0 degree cut angle). For a
sequence of footfalls to be called a cut, both sapp and sexit had to be greater than 2 m/s, the cut angle had
to exceed 30 degrees in magnitude, and no footfalls within the sequence could exceed 2 s in duration.
A sequence of footfalls was classified a cut if it met all these thresholds and the sff pattern conditions.

2.4. Outcome Metrics

For each cut, a series of properties were used to characterize the cutting movement. All the
properties used in defining the cut—number of approach steps, number of exit steps, approach and
exit speeds, and cut angle—were included. The data frame with the minimum horizontal pelvis speed
during the cut footfall was defined as the cut frame, with the value of the minimum speed denoted smin.
Then the average approach acceleration (aapp) was calculated as the difference of the approach speed
sapp and the minimum speed smin, divided by the elapsed time between these frames. Exit acceleration
(aexit) was calculated using smin and sexit and the time between their respective frames.

For each footfall in a cut, behavioral and biomechanical outcomes were measured. Footfall
speeds (sff) used to define cuts were included. Footfall acceleration (aff) was defined as the mean
pelvis acceleration vector during each footfall, expressed in the footfall’s local coordinate system.
Knee flexion (α) was recorded as the mean knee flexion angle during each footfall (defining a straight
knee as 0 degree). Other common ACL strain indicators, such as knee moment, were not calculated
because ground reaction forces could not definitively be calculated from the kinematic-only data
collected. Example videos of the reconstructed kinematics during cutting maneuvers are included as
supplementary files.
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2.5. Statistical Analysis

To characterize the distribution of cutting movements, cut properties were gathered into histograms
and summary statistics. The numbers of approach steps and exit steps in each cut were characterized
by mean and standard deviation. Approach speed and exit speed were plotted as histograms in
increments of 1 m/s. Cut angle was plotted as a histogram in increments of 30 degrees. The relationships
between approach and exit speeds and cut angle were plotted as polar plots, with mean and standard
deviation of speed for each 30 degrees bin of cut angle. The relationships between approach and exit
accelerations and cut angle were plotted similarly. The relationship of acceleration to speed within
cutting maneuvers was determined for approach and exit phases. Approach and exit acceleration were
plotted against approach and exit speed, respectively, and best-fit linear relationships were determined
using a robust fitting regression tool (MATLAB fitlm) to reduce the influence of outliers. Finally, the
footfall accelerations during left and right footfalls were plotted for each footfall of a cut. For each
footfall index (C-5 to C + 5), each footfall acceleration was plotted by foot (left or right), along with
the mean acceleration for footfalls of each foot. The lateral accelerations attributable to left and right
footfalls were compared using a two-tailed t-test.

To determine behavioral performance differences among the three teams (A, B and Club), data
were segmented according to each player’s team and compared statistically using ANOVA and a
Tukey’s Honest Significant Difference test. Cut speeds and cut accelerations were compared across
each team. The mean and standard deviation of approach speed, exit speed, approach acceleration,
and exit acceleration are graphed for each team, and for all cuts (combining all teams). For approach
acceleration, the absolute value was taken to improve graph formatting (approach accelerations are
negative). Mean footfall acceleration magnitude for each team was compared for approach footfalls
(C-5 to C-1), cut footfalls (C-0), exit footfalls (C + 1 to C + 5), and all cutting footfalls (C-5 to C + 5).
Mean knee flexion across different cut phases and teams was plotted similarly. All processing code, as
well as the raw and MATLAB data files were uploaded onto IEEE DataPort.

3. Results

Data collection yielded 93 points of UF games. 14 points were removed from consideration due to
faulty data, including all data from one participant whose sensor calibration failed. The remaining
79 points lasted a mean of 3.4 min, spanned 16 games, and included a mean of 273 steps per point.
Both the B-team and Club team had four participants take part in this study, while the A-team had three.
The B-team was the most tested with 39 points of gameplay being captured. The A team was sampled
during 22 points and the Club team had 18 points recorded. These data yielded 424 detected cuts.
Two cuts were removed because of unrealistic cut accelerations (> 20 m/s2) brought on by faulty data.
These descriptive characteristics are summarized in Table 1 with individual characteristics summarized
in Appendix A, Table A1.

Table 1. Total values for each team.

Team Participants Games Points Cuts

A 3 (3 cutters) 6 22 104

B 4 (2 cutters, 2 handlers) 6 39 227

Club 4 (3 cutters, 1 handler) 4 18 91

Total 11 16 79 422

Mean values of approach and exit speed, number of approach and exit steps, and cut angle are
presented in Table 2. Mean approach and exit speeds are 3.4 and 3.7 m/s respectively. Cut angle, which
spans from 30 to 180 degrees, has a mean of 94 degrees. The numbers of approach and exit footfalls,
which can range from 1 to 5, have means of 2.8 and 3.1, respectively.



Sensors 2020, 20, 6508 6 of 17

Table 2. Mean values of basic cut metrics for all detected cuts.

Approach Speed Approach Footfalls Cut Angle Exit Footfalls Exit Speed

3.4 ± 0.9 m/s 2.8 ± 1.5 94 ± 45 degree 3.1 ± 1.6 3.7 ± 1.1 m/s

To further characterize the distribution of cutting movements, frequency histograms for approach
and exit speeds and cut angle are shown in Figure 3. The majority of cuts occurred at approach and
exit speeds from 2 to 4 m/s. Average approach speed was 3.4 m/s and average exit speed was 3.7 m/s,
and sprinting cuts (over 5 m/s) were few. Cut angles between 30 and 60 degrees were most common,
though reversal cuts (150–180 degrees) were also prevalent. The mean cut angle was 94 degrees.
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These two variables, cut speed and cut angle, are graphed together in Figure 4. Neither approach
nor exit speed were significantly impacted by the cut angle; however mean approach and exit speed
values were higher for the lower cut angles. The highest mean approach speed in Figure 4 is 3.60 m/s
for 30–60 degrees, while the lowest is 3.28 m/s at 150–180 degrees. Mean exit speed ranged from
3.52 m/s at 150–180 degrees to 3.84 m/s for 30–60 degrees.
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Figure 4. Distribution of approach (a) and exit (b) speeds for different cut angle ranges (in degrees).
The large purple dot shows the average speed for each cut angle range, while the black line shows
standard deviation. Speeds from the three teams are shown in different colors, and an example path of
a player through a cut is shown in green arrows. The polar axes are restricted to better show trends; 4
outlier speeds are outside this view.
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Similarly, there were no statistical differences in mean cut acceleration at different cut angles.
In Figure 5, mean approach acceleration varied from 2.73 m/s2 at 120–150 degrees to 3.28 m/s2 for
90–120 degrees. Similarly, mean exit acceleration ranged from 2.55 m/s2 at 90–120 degrees to 3.09 m/s2

for 30–60 degrees. Outliers present in cut acceleration and speed data were caused by errors in the IMU
system’s footfall detection, which shortened the time over which some accelerations were computed.
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Figure 5. Approach (a) and exit (b) accelerations for different cut angle ranges (in degrees). The
purple dot shows the average speed for each cut angle range, while the black line shows standard
deviation. Though approach acceleration values are all negative, they are shown on the left as positive.
Accelerations from the three teams are shown in different colors and an example path of a player
through a cut is shown in green arrows. The polar axes are restricted to better show trends; 13 outlier
accelerations are outside this view.

Though cut speed and acceleration were unaffected by cut angle, they were linked to each other.
Figure 6 shows that faster cuts tend to have higher acceleration for both the approach and exit phases.
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Figure 6. A linear regression model was applied to each data set to generate trend lines. Both approach
(a) and exit (b) accelerations increased in magnitude with higher approach and exit speeds. Iterative
weighted robust fitting was used to reduce the influence of outliers. Outliers were shaded darker than
data closer to the trend line. 13 acceleration and 4 speed outliers are outside this view.
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Speed and acceleration during approach and exit differed across the three teams, as shown in
Figure 7. Players on the A-team had significantly higher approach speed, approach acceleration,
and exit acceleration than either the B-team or Club team. Players on the B-team had higher exit
acceleration than those on the Club team. There were no statistical differences in final exit speed across
the three teams, though their mean values followed the same trend as the other metrics. The mean
A-team cuts began at 3.66 m/s and ended at 3.88 m/s. In contrast, the mean Club team cuts began at
3.28 m/s and ended at 3.55 m/s. Similar relationships were present in acceleration: the mean approach
and exit accelerations for the A-team were 3.95 m/s2 and 3.53 m/s2, respectively, whereas for the Club
team, the mean accelerations were 2.37 m/s2 for approach and 2.13 m/s2 for exit. For each of these
mean speed and acceleration metrics, the B-team cuts were between the A-team and the Club team.
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Figure 7. Mean and standard deviation for speeds (a) and accelerations (b) in approach and exit
footfalls for each team. Pooled means for all cuts observed (across all teams) are also included. The
A-team players performed cuts with greater speed and acceleration. Approach accelerations are shown
as absolute values (raw values are negative).

To further examine accelerations during cutting maneuvers, acceleration during each footfall was
graphed for each cutting footfall. The mean acceleration for each approach footfall was pointed in the
opposite direction of the player’s movement (-X). Similarly, mean acceleration for each exit footfall was
pointed forward, in the direction of the player’s movement (+ X). The cut footfall (C-0) had near-zero
acceleration on average. In each approach footfall (C-5 to C-1) and in C + 1, the lateral component of
footfall acceleration differed significantly between right and left footfalls (p < 0.012). For right footfalls,
mean acceleration of the body was to the left, and for left footfalls, mean acceleration was to the right.
These footfall accelerations yielded many outliers, attributable mainly to inaccurate timing of foot
contact detection by the IMU system. Plots of the acceleration with each footfall are shown for the
middle five footfalls of each cut in Figure 8. Plots for all footfalls in all cuts are included in Appendix A,
Figure A1.

Comparison of footfall acceleration magnitude across the three teams revealed differences in some
phases of the cutting maneuver (Figure 9). The A-team had significantly higher acceleration magnitudes
than either of the other two teams when comparing approach footfalls and all pooled footfalls. For exit
footfalls, the Club team had significantly smaller acceleration magnitudes. There were no statistical
differences in cut step acceleration among the three teams. For all cutting footfalls, the A-team had a
mean footfall acceleration of 5.49 m/s2, the B-team had 4.92 m/s2, and the Club team had 3.86 m/s2.
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Figure 9. Mean footfall acceleration magnitude for each team, and for all cuts collectively. Mean values
for each phase of the cut, in addition to all cutting footfalls, are shown. Cuts from the A-team tend to
have larger footfall acceleration vectors.

Further differences across teams were observed in the knee flexion data across the 3 cut phases.
Mean peak knee flexion for all footfalls was 31.75 degrees for the A-team, 34.98 degrees for the B-Team,
and 34.96 degrees for the Club team (Figure 10). The A-team had statistically lower knee flexion than
the B-team or Club team for approach, exit, and all footfalls. The A-team also had lower knee flexion
than the B-team during the cut footfall.
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4. Discussion

4.1. Discussion of Findings

This study introduces a way of measuring and detecting cutting maneuvers and estimating
whole-body and lower-limb kinematics on-field during competitive sports, with ultimate frisbee (UF)
as a specific case. Using these methods, cuts were detected, and their kinematics were analyzed.
These cuts occurred often (1.5 times per minute of gameplay) which supports the notion that cutting is
frequent in UF. The speed data from these cuts allows for context to be compared between on-field
cutting and lab-based studies. For example, studies in which cutting was performed at 3 m/s (e.g., [23])
were testing cuts in the 37th percentile with respect to the in-game cuts observed in this sample of
collegiate women, while other studies that used 4 m/s (e.g., [24]) were sampling in the 72nd percentile.
Similarly, cuts have been studied in the lab across the whole spectrum of direction change, from 45 to
180 degrees [24,25]. In this study, players averaged 90-degree cuts, although there is no overwhelming
preference by the players. Though it is important for cuts of all speeds and direction changes to be
studied, this data set shows how frequent certain kinds of cuts are in UF competition. By having
participants run at different speeds and follow different cutting paths, representative speeds and
direction changes can be created in future lab-based studies on UF players.

Accelerations seen on the field can also be replicated in labs. This could be done by adjusting
the amount of space a participant may have to perform the approach or exit of a cut. Figures 4 and 5
show that acceleration and speed are constant across different changes in direction. This contradicts
what has been observed in previous lab studies, wherein greater changes of direction yielded lower
speeds [24]. This disagreement may be due to players cutting with different amounts of effort, which
impacts acceleration and speed [12]. his random variability may overshadow any differences between
acceleration and direction change (θ) that a controlled, maximal-effort lab study could discover.
Conversely, the observation that in real UF games there is no difference in acceleration for different
cutting angles suggests that certain lab conditions may not be relevant for understanding true in-game
injury risk.

Figure 6 shows that cut speed and cut acceleration are correlated to each other. This relationship
was anticipated because both high speeds and high accelerations are associated with intense moments
in a game. Faster cuts in laboratories should therefore also have greater cut acceleration. On the other
hand, the acceleration vs. speed plots also have a great deal of variability, which may indicate the
variety of strategies a cutting player may use to elude a defender or, on defense, to keep up with
an opposing player trying to get free. Such strategies may include, for example, high-acceleration
cuts from relatively modest speeds (surprise cuts) or high-speed cuts with relatively low acceleration
(e.g., if the player is already free from her defender but needs to adjust direction to reach an open space
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or catch the disc). Thus, the overall relationship between speed and acceleration holds, but it is heavily
influenced by behavioral factors.

Figure 8 provides insight into the kinds of accelerations these players are experiencing when
cutting during each footfall. Left and right feet were separated and shown to have the same acceleration
magnitude. However, the right foot acceleration was more leftward and the left foot acceleration more
rightward during approach footfalls. This was expected because each leg tends to push the body
toward the opposite side during locomotion. However, this relationship was not true for most exit
cut steps: the lateral difference in acceleration disappeared after step C + 1. The reasons for lateral
acceleration asymmetry during approach but not during exit are not fully clear and could be studied in
greater detail in the future. One possible explanation is that players may use a wider stance during
deceleration to leave themselves the option of cutting either direction; then after the cut, they may
simply sprint in a straight line to maximize their chances of getting free. Regardless of the cause,
these graphs show footfall accelerations which could be used as a target for future lab-based data.
Since higher accelerations are linked with higher ground reaction forces (GRF) and ACL loading [12,18],
matching this cutting metric is important in order to study ACL injury risks for any sport.

Team comparisons were made in order to determine how different levels of competitive play may
impact cutting behavior. This can cleanly be done by comparing the A-team and B-team participants
in this study. They were both part of a single collegiate organization which divided up into two teams
based mostly on skill level and experience. Comparing these teams with the Club team is more difficult
because it is hard to establish the relative level of the Club team players. The Club team was comprised
of adults, only some of whom were college age. Anecdotally, the Club team appeared to the researchers
more similar to the B-team, and this similarity is reflected in the data.

Figure 7 shows that the A-team had higher cut speeds and higher approach acceleration.
Though exit acceleration had a higher mean than the other teams, this difference was not significant
(p = 0.09). The observed cutting differences probably reflect the higher-caliber games the A-team plays
in. Acceleration for each footfall, shown in Figure 9, indicates that the A-team has higher footfall
acceleration (aff) for approach steps and exit steps. This further supports the idea that the A-team cuts
with greater acceleration, and thus is applying greater horizontal force against the ground with each
cutting step. This difference was expected because players on higher-level teams are likely to be more
athletic and play in more competitive games. The A-team, and advanced UF teams in general, may be
at a greater risk of ACL injury because high speeds and accelerations cause larger ACL loading when
cutting [18].

Additional risk for the A-team is suggested by their small knee flexion angles observed during
cuts (Figure 10). They had statistically less knee flexion overall (i.e., for all cutting steps) and specifically
for exit steps when compared to either other team. For all cutting steps, the difference between the
A and B teams was 3 degrees. In comparison, the knee flexion difference between male and female
soccer players was shown to be 7−10 degrees during cutting [26]. Given the large differences between
sexes with regards to ACL injury rates, a 3-degree difference could still result in more ACL strain for
the A-team.

In collegiate basketball and soccer, different rates of ACL injury have not been found among
different levels of competition [20]. It is therefore contradictory that the A-team appeared to exhibit
higher-risk movements during cutting in this study. However, even if these movements result in higher
ground reaction forces and ACL strain, it is possible this would not result in more injuries. For example,
if A-team players have stronger knee-stabilizing muscles, perhaps they can endure these higher-risk
movements. If this is the case, more competitive players may exhibit higher-risk behavior while not
actually having higher rates of ACL injury. A wide survey study would have to be conducted to
know if these faster and harder cuts performed by higher-level teams translated to more ACL injuries.
Until this is performed however, the results of this study suggest that future studies and interventions
should focus on players on more competitive teams since they exhibit higher risk kinematics while
cutting in UF games.
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4.2. Limitations

With the design of this study, there are components of cutting in UF that are left unexamined.
First, comparisons between player positions (“cutter” vs. “handler”) were not performed. This is
because players may switch positions depending on who else from their team is playing during a point.
Additionally, the nominal position of the player covers only offensive possessions, whereas many of
these sampled cuts are likely on defense, where a player’s cuts are likely to match more closely the
position of the opposing player they are guarding. Therefore, the most common position a participant
played was recorded, but each individual’s data may include cuts made in both handler and cutter
positions and on defense. Comparisons between players’ nominal positions could be calculated in
a future study with a greater number of players, subject to the same caveats. For similar reasons,
it was deemed unnecessary to equalize the ratio of players in each position across the three teams.
Avoiding this enrollment restriction enabled the study to enroll any player and thereby to maximize
participation, but the consequence was that team comparisons were also made without accounting for
the positions of the participants. Another limitation of the team comparisons is that they implicitly
assumed that all players on a team have similar cutting behavior. This assumption allowed cuts from
all players on each team to be pooled; however, a consequence is that the sample includes more cuts
from some players than from others, which could bias the data. An alternative approach would be to
limit the number of cuts analyzed from each player, but this approach would have discarded too many
valuable measurements from the present limited data set. Finally, the finding that the A-team had
greater ACL injury risk factors in this study assumes that the only difference among teams was their
level of competition. Other situational factors could have played a part in differentiating the teams,
such as weather or field conditions, the importance of the captured game, or random error based on
who participated from each team. These results, again, could be strengthened with more participants.
Differences in age may also have led to differences between teams. The average age of the club players
was 30, potentially a bit removed from their physical prime. The A-team (average age 25) was older
than the B-team (average age 21) which likely reflects differences in experience and may also affect
physical maturity and strength.

More types of data could have been reported if the games had been filmed. Filming games would
have allowed for cuts to be separated by possession, i.e., when the participant was on offense vs.
defense. This would allow for comparisons to be made between unexpected (defensive) and expected
(offensive) cuts, as in past studies [27,28]. Additional comparisons could also have been studied if
injury history data had been collected. Players had no injuries that were currently limiting their ability
to play (this was an inclusion criterion), but it is possible that some may have had previous injuries
that could still impact their cutting mechanics and have affected these results.

The most important shortcoming of measuring cutting during games is that the wearable inertial
motion capture suit measures only kinematics, rather than the combined kinematics and kinetics (e.g.,
ground reaction forces (GRF), joint moments (JM)) measured in a motion laboratory. At present, there are
no feasible approaches for complete biomechanical analysis based on wearables. Partial information can
be obtained from in-shoe pressure insoles, but these do not measure the full GRF vector. Alternatively,
wearing a full body IMU suit could allow GRF and JM to be estimated [29]. However, after a few trial
data collections, feedback from participants revealed the upper-body sensors were obtrusive. This
study chose to minimize interference with participants’ normal game play, so only IMU’s on the lower
body were used. Another recent technique could allow direct estimation of joint moments through
tendon forces [30], but a compact wearable version suitable for in-game recording is not yet available.
Thus, current wearables are not yet sufficient to fully replace a laboratory.

Errors with the IMU system made 16 points of play unusable. These faulty data were either
corrupted (files unable to be opened) or contained obviously faulty kinematic reconstructions of the
player. These instances could be brought about by poor system calibration, sensors going out of range,
or sensors falling off the participant during the game. The IMU software was also imperfect when
detecting ground contact. This led to some accelerations registering during the supposed flight phase.
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Though contact with another player on the field may have produced some of these effects, it is unlikely
player contact is the entire cause of the errors. These footfall inaccuracies caused most of the data point
outliers that were either not shown in graphs or removed from the data set. Additionally, although
valgus knee rotation is a risk factor for ACL injuries, knee valgus rotations from the IMU software were
not reliably calculated, with unrealistic spikes in rotations populating the data set. It was therefore
excluded from this paper.

4.3. Future Work

In addition to laboratory studies, there are many possibilities for future UF research to take place
on the field. Landing maneuvers, as well as cutting, have been shown to cause ACL injuries [12,31,32]
and could be studied using this existing data set. The cuts characterized in this study could also be
further classified into the 3 types of cutting techniques (side-step, crossover, split-step) which have
previously been compared in lab settings [13]. Examining how cuts change throughout the duration
of a game or tournament may also be valuable since fatigue can increase risk of ACL injury [33].
Filming games would also be useful for examining planned (offense) vs. unexpected (defense) cutting
maneuvers. Additionally, GRF estimation methods using a limited number of sensors [34] could be
further developed. These forces and moments would allow other important injury risk metrics to be
calculated while not burdening the participant with awkward sensors. If a GRF estimation method is
validated using only a set of lower-body IMU sensors, this UF data set could be modeled in OpenSim
or other biomechanical modeling software. Such a model could measure ACL strain for detected cuts
and determine how this strain could be affected by strengthening different muscles [35]. Armed with
these findings, physical therapists and athletic trainers could create exercise programs specifically
designed to reduce ACL injuries during cutting for individuals or UF athletes as a whole.

5. Conclusions

Current wearable movement sensors provide accurate enough estimates of lower body kinematics
to characterize important aspects of athletic maneuvers such as cutting, while being unobtrusive enough
to wear during competition in some sports. The ability to measure not just accelerations and step
counts, but also foot placement, direction changes and some aspects of leg kinematics during cutting
maneuvers enables the prevalence and risk level of dynamic maneuvers to be characterized. Further
methodological development should emphasize estimating ground reaction forces and lower-limb
joint kinetics using a limited set of sensors, and robust motion reconstruction in the highly dynamic
conditions that occur in sports.

Cutting is shown to be a common maneuver in women’s UF games, occurring roughly 1.5
times per minute during play. Cuts occur in all directions at a range of starting and ending speeds,
most prominently the 2 to 4 m/s range, with cut angles of 30 to 90 degrees and reversal cuts (150 to
180 degrees) most common. These kinematic characteristics will serve to inform future studies that
strive to replicate in-game cutting movements in laboratory conditions. Acceleration, speed, and
knee flexion calculated for these game-time cuts serve to quantify movements associated with ACL
injury risk for UF players. Players on higher-level teams appear to cut from faster speeds and with
higher accelerations, and to exhibit lower stance-phase knee flexion during these maneuvers, which
could lead to greater risk of ACL injuries for those athletes. Future studies of cutting mechanics and
interventions should place priority on these more advanced teams, while also seeking to understand
the prevalence of ACL injuries and risk factors and protective factors at different levels of UF play.
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Appendix A

Table A1. Characteristics for Data Collected on Games and Participants.

Participant Data Game Data

Player Age Height
(cm) Team Nominal

Position Game Points Cuts Game Location * Temp **
(◦C)

1 21 168 B-Team Cutter
1 6 60 Madison, WI 19

2 10 56 Madison, WI 28

2 27 168 A-Team Cutter
3 2 2 Columbia, MO 12

4 4 46 Madison, WI 27

3 20 167 B-Team Cutter 5 4 19 Madison, WI 19

4 21 166 A-Team Cutter
6 3 16 Columbia, MO 12

7 3 7 Madison, WI 12

5 22 168 B-Team Handler 8 7 42 Madison, WI 27

6 34 166 Club Cutter 9 6 18 Minneapolis, MN 18

7 30 182 Club Cutter 10 4 42 Madison, WI 22

8 29 175 Club Handler 11 4 22 Madison, WI 22

9 26 168 A-Team Cutter
12 5 14 Columbia, MO 12

13 5 19 Madison, WI 19

10 27 172 Club Cutter 14 4 9 Minneapolis, MN 18

11 22 172 B-Team Handler
15 2 9 Madison, WI 19

16 10 41 Madison, WI 26

12 30 167 Club Handler 17 - - Minneapolis, MN 24

* Location refers to city and state in the United States of America (MN: Minnesota; MO: Missouri; WI: Wisconsin). **
Weather conditions ranged from sunny to cloudy but excluded rain by policy (UF games are delayed or canceled for
rain or muddy playing fields).
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Figure A2. Footfall accelerations for each cutting footfall not featured in Figure 8. The zero-degree 
direction was defined as the player’s local forward axis ( + X); the 90˚line ( + Y) is to the player’s left. 
The solid blue and red dots represent the mean left and right accelerations, respectively. 
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