Skip to main content
. 2020 Nov 11;10(11):835. doi: 10.3390/brainsci10110835

Table 2.

Comparison of classification accuracy on simulated database (using traditional methods and deep-learning-based multilayer perceptron (MLP) model). PCA, principal component analysis; FCM, fuzzy C-means; FSDE, first and second derivative extrema; CORR, correlation-based; SVM, support vector machine.

Dataset NL 1 PCA + FCM FSDE + K-means CORR + FCM Fusion + SVM MLP 1D-CNN
F 2 = 3 F = 10 F = 3 F = 3 F = 10 F = 10 E2 3
C_Easy1 005 99.37 99.35 94.62 97.50 97.38 98.66 99.26 99.53
010 99.72 99.72 95.54 94.04 96.45 98.98 99.43 99.72
015 99.25 99.28 94.45 90.54 94.94 98.22 99.25 99.49
020 99.40 99.40 95.08 88.77 92.43 97.35 99.19 99.33
025 99.24 99.24 84.41 86.84 95.45 99.56
030 98.73 98.59 81.50 80.83 88.66 99.65
035 97.76 95.16 77.02 73.80 83.22 99.43
040 96.49 68.54 75.58 64.62 78.12 99.51
C_Easy2 005 98.48 98.68 94.81 93.20 96.04 92.23 98.68 99.64
010 97.16 98.24 94.83 86.02 82.19 92.93 98.49 99.62
015 92.52 94.49 94.96 83.05 82.82 89.80 97.19 98.89
020 85.20 88.60 92.71 79.81 78.22 86.24 95.20 99.69
C_Difficult1 005 95.86 72.54 94.50 83.48 86.08 97.58 98.78 99.21
010 89.56 66.11 94.78 65.69 71.55 94.81 98.93 99.00
015 76.41 61.33 93.81 57.49 58.84 87.85 97.55 98.43
020 63.03 54.05 90.60 53.72 53.81 78.59 96.62 98.54
C_Difficult2 005 98.69 98.81 94.38 91.50 94.50 87.40 98.49 98.88
010 98.64 98.76 94.48 90.96 96.33 88.07 94.66 99.78
015 94.39 97.33 87.18 88.17 96.02 74.65 82.20 99.58
020 84.63 83.37 81.71 84.77 95.48 67.25 51.55 99.75

1 Noise level; 2 feature dimensions; 3 experiment.