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Abstract: Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates
composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate
from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding
of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating
the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading
is of utmost importance in the fight against tauopathies. In recent years, several molecules have
been developed for the modulation of tau aggregation and spreading. In this review, we discuss
the processes of tau aggregation and spreading and highlight selected chemicals developed for the
modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a
stronger understanding of the molecular mechanisms involved, and the properties of the substances
developed to modulate them, will lead to the development of safer and better strategies for the
treatment of tauopathies.
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1. Introduction

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal
microtubule-associated protein tau (MAPT) in the brain. Tau is a tubulin-associated unit, and
tauopathies are a group of clinically, morphologically, and biochemically heterogeneous disorders
closely related with dementia [1–3]. The spectrum of tau pathologies includes neuropathological
phenotypes like Pick’s disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration
(CBD), argyrophilic grain disease (AGD), primary age-related tauopathy (PART), formerly known as
neurofibrillary tangle-only dementia (NFT-dementia), and a recently characterized entity called globular
glial tauopathy (GGT) [2,4–9]. The neuropathological phenotypes of tauopathies are distinguished on
the basis of the involvement of different anatomical areas, cell types and presence of distinct isoforms
of tau in the pathological deposits. Nonetheless, the high degree of clinical overlap between different
tauopathies limits the specificity of the clinical diagnosis [10]. Additionally, based on whether tau
pathology is considered the major contributing factor to neurodegeneration or associated with other
pathologies, tauopathies can be divided into primary and secondary [11,12]. PiD, PSP, CBD, AGD,
PART, and GGT are primary tauopathies, while Alzheimer’s disease (AD) and chronic traumatic
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encephalopathy (CTE) are secondary tauopathies [2,8,13–18]. Another way to classify tauopathies is
based on which isoform of tau is the main one present and, in this regard, tauopathies can be divided
into 3R and 4R tauopathies [19].

Regardless of the precise type of pathology, one of the main features is the presence of tau
aggregates. As such, aggregation of tau is characteristic of several neurodegenerative diseases.
However, tau aggregates are also observed in PART [8,20,21] patients, and these show no obvious
cognitive impairment [22].

In this review, we discuss the topic of tau aggregation and spreading and the prospect of
pharmacological modulation of these processes.

2. Tau Physiology

Tau is a microtubule-associated protein (MAP) mainly expressed in the central and peripheral
nervous systems [23] and is encoded by the MAPT gene on chromosome 17q21.31 [24]. Tau is a
hydrophilic, highly soluble, natively unfolded protein predominantly present in the cytosol and
is primarily localized in axons [23,25–27], where it promotes the formation of axonal microtubules
and stabilizes them by binding at the interface between tubulin heterodimers and drives axonal
outgrowth and neuronal plasticity [25,28,29]. The binding and stabilization of microtubules requires
the C-terminal region, which regulates the ability of tau to induce microtubule polymerization
and its interaction with the plasma membrane [30–33]. Physiologically, more than 80% of tau is
bound to microtubules [24] in an important dynamic process involved in the regulation of neuronal
morphogenesis and differentiation. This is mediated by the interaction with the motor proteins
kinesin and dynein, thereby regulating neuritic plasticity, axon outgrowth/elongation, and axonal
cargo transport to the presynaptic terminal [23,26,27,34–40].

The microtubule binding domains of tau contain a number of lysine residues, of which positive
charges drive tau to bind negatively charged microtubules [41].

Alternative splicing, specifically of exons 2, 3, and 10, generates six known tau isoforms in the
adult human brain, ranging from 352 to 441 amino acids [24,40]. Splicing is tissue specific and is
developmentally regulated [42–44].

Three repeat tau isoforms bind microtubules less effectively than isoforms with four repeats,
probably due to the presence of the interrepeat sequence between the first and second microtubule
binding domains, which is unique to 4R isoforms [45].

Besides alternative splicing, tau can undergo several posttranslational modifications (PTMs), such
as phosphorylation, acetylation, methylation, glycation, isomerization, O-GlcNAcylation, nitration,
sumoylation, glycosylation, ubiquitination, and truncation, creating a large heterogeneity of tau
molecules that influences tau functions [46–48]. Several of these PTMs impact the localization and the
propensity for the aggregation of tau.

3. Aggregation and Characteristics of Pathological Tau

Thus far, over 50 mutations have been confirmed in the MAPT gene. These are classified as
missense and splicing mutations and mostly are associated with frontotemporal dementia (FTD), with
parkinsonism linked to chromosome 17 (FTDP-17) [49–51].

A large group of progressive neurological disorders pathologically defined by the presence of tau
inclusions in neuronal and glial cells are collectively known as “tauopathies” [52] and are primarily
represented by AD, the most prevalent tauopathy.

In pathological conditions, tau fails to stabilize microtubules and appears as insoluble
aggregates which subsequently lead to further tau aggregation, neuronal toxicity, and ultimately
neurodegeneration [53–55]. Different tau assemblies have been defined including monomers,
dimers/trimers, small soluble oligomers, insoluble granular oligomers, filaments, pretangles,
neurofibrillary tangles, and ghost tangles [56]. Interestingly, AD brain samples showed a four-fold
higher concentration of tau oligomers in comparison to control samples. Studies using atomic force
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microscopy revealed that tau oligomers consist of dynamic structures that share a spherical-shaped
morphology consisting of two or three molecules that are able to turn into β-rich structures with
detrimental consequences [57]. Three different types of tau aggregates strongly correlate with neuronal
degeneration: the neurofibrillary tangles (NFTs) in neuronal somata, which is the primary cause of
neurodegeneration in a number of tauopathies, neuropil threads (NTs) in neuronal dendrites, and
neuritic plaques (NPs) [58,59] (Figure 1A). In particular, the density of NFTs correlates fairly well
with regional and global aspects of cognitive decline during the progression of AD [60,61]. Although
the presence of neurofibrillary tangles in tau inclusions is a critical biomarker for the pathological
diagnosis of AD patients, AD is considered as a secondary tauopathy, due to the combined deposits
consisting of intracellular NFTs and of extracellular amyloid-β (Aβ) plaques [62–64].

The progressive formation of NFTs, consisting predominantly of paired helical filaments, is closely
linked to abnormal PTMs of tau proteins [65,66]. In particular, tau proteins isolated from NFTs exhibit
a greater degree of abnormal hyperphosphorylation.

As an early pathological event, progressive hyperphosphorylation leads to the dissociation of
tau from microtubules, which apparently alters cytoskeleton dynamics and impairs axonal transport,
resulting in synaptic dysfunction [67] (Figure 1A). Soluble tau proteins undergo conformational changes
that can be key drivers for aggregation to begin [68–71]. Progressive hyperphosphorylation and
increased local tau concentrations in restricted areas promote misfolding and lead to neuropathological
alterations in AD brains, particularly correlated with synaptic loss and tangle formation [72–74],
accompanied by astrogliosis [75,76], and microglial cell activation [76–78]. In addition to the
deposition of Aβ plaques and neurofibrillary tangles, AD progression is related to cholinergic
deficiency, as demonstrated by structural alterations in cholinergic synapses, diminished activity of
the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT), loss of specific subtypes of
acetylcholine (ACh) receptors, and the death of ACh-generating neurons, which ultimately impair
cholinergic neurotransmission [79,80].

Disrupting tau homeostasis is associated with neurodegeneration, but the precise molecular
mechanisms involved are still poorly understood. What is clear is that, in addition to
hyperphosphorylation, a variety of factors such as point mutations, truncation, or interaction with
binding partners affects tau aggregation in the brain [70,81–86].

Tau aggregation can be accelerated by polyanions [87,88]. In vitro, this can be achieved with
sulfated glycosaminoglycans (heparin), nucleic acids, acidic peptides, micelles of arachidonic acid,
or even carboxylated microbeads [87–92]. Additionally, posttranslational modifications, of which
phosphorylation is a chief representative, may affect tau aggregation, [93]. In fact, abnormally
hyperphosphorylated tau isolated from human AD brains can self-assemble into PHFs in vitro [93].
Truncation can also affect aggregation, as tau fragments that contain the repeat domain have a
higher tendency for aggregation [94], a process that is related with pathology [95]. Regardless of the
aggregation process, these aggregates can spread throughout the brain, expanding the pathology [96,97].
Additionally, in vitro aggregation studies suggest that the two hexapeptide sequence motifs (VQIINK
and VQIVYK) at the beginning of R2 and R3 consist of the core region with a high predicted β-structure
potential that is crucial for PHF assembly [98–101]. Especially, the motif VQIVYK forms fibrils composed
of steric ‘zippers’ of two tightly interdigitated β-sheets leading to aggregation [101–103]. The formation
of these zippers allows stacking into β-sheets that can interdigitate [104]. The disruption of these motifs
reduces the tendency for tau to aggregate and, in contrast, strengthening the β-structure with certain
mutations (for instance, ∆K280 or P301L), accelerates tau aggregation, in vitro and in vivo [104–108].

The self-oligomerization of tau in vitro can be driven by heparin in a process involving two
different types of dimers (cysteine dependent or cysteine independent dimers) that is mediated by
intermolecular disulfide crosslinking along with PHF hexapeptide [109]. These interactions force
the formation of granular and fibrillar tau aggregates. Importantly, atomic force microscopy (AFM)
analysis of material derived from AD brains revealed that the amount of granular tau aggregates was
elevated in the prefrontal cortex of Braak stage I cases compared to that of Braak stage 0. On the
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basis of this observation, granular tau species likely precede the formation of PHF and, therefore, may
possibly be used as a candidate marker for the diagnosis of certain tauopathies [110].
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Figure 1. Tau aggregation and spreading. (A) Tau stabilizes microtubules and contributes to the
maintenance of axonal shape and neuronal morphology. In pathological conditions, tau is subjected to
various posttranslational modifications (PTMs) that reduce microtubule binding and, thereby, promote
the generation of insoluble tau. Soluble monomers form oligomers which aggregate to generate paired
helical filaments (PHFs). These, in turn, assemble to produce neurofibrillary tangles (NFTs). (B) Possible
mechanisms involved in the cell-to-cell transmission of pathological tau. Transmission may occur
via direct translocation across the plasma membrane, via exosomes/synaptic vesicles, by clustering
with the plasma membrane and interaction with the cell Heparan sulfate proteoglycans (HSPGs), and
through cytoplasmic bridges called tunneling nanotubes. Uptake from the extracellular space can be
mediated by binding and internalization with HSPGs or through endocytosis.
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Tau PTMs generate modified forms of monomeric tau and may, eventually, induce conformational
changes that promote aggregation. This does not rule out the possibility that some of those modified
monomeric forms may themselves be neurotoxic [111–114].

4. Spreading of Tau Pathology

Many recent studies demonstrated that the progressive accumulation of tau inclusions in specific
brain regions in AD and other tauopathies can be explained by the self-propagation of aggregated
tau between synaptically connected neurons [96,115–118], favoring the hypothesis of a prion-like
mechanism for the transmission of tau pathology [119–121]. This inter-neuronal propagation of
abnormal tau, often referred to as “spreading”, appears to occur along neuroanatomically connected
areas and requires a continuous repeating process of release/secretion of soluble or aggregated tau from
neurons or glial cells, uptake by neighboring recipient cells, and the seeding of intracellular aggregation
in the recipient cells [96,97,122,123] (Figure 1B). In agreement with the strain hypothesis, the cell-to-cell
transmission seems to be affected by the different conformations of the released and internalized tau
protein species [124–128]. According to this concept, different tau strains show distinct seeding capacity
upon interaction with endogenous protein [129,130]. Several studies revealed that the spreading of tau
pathology could occur via synaptic and non-synaptic mechanisms and that tau species are internalized
and transported both anterogradely and retrogradely along neuronal networks [70,131,132].

As we previously reviewed in detail [133], tau can be released by dying/dead cells, secreted
by direct translocation across the plasma membrane [42], released by exosomes or other types of
extracellular vesicles [29], or transmitted through intercellular cytoplasmic bridges composed of F-actin,
known as tunneling nanotubes [43] (Figure 1B). Notably, the release of endogenous tau from neurons
might be a physiological process mediated by neuronal activity and is likely to occur in the absence
of cell death through a pre-synaptic mechanism. Such release is thought not to be connected with
the propagation of tau, indicating that secretion might normally be a regulated process that becomes
disrupted in diseased brains [25,134]. Increased levels of tau were also detected in the cerebrospinal
fluid (CSF) and in the brain interstitial fluid (ISF) of wild-type and transgenic mice as well as in healthy
and AD individuals [135–139]. In a recent study, the tau spreading hypothesis was investigated using
positron emission tomography (PET) in human brains. This study suggested that tau is transmitted
from cell to cell, mainly through communicating neurons and not through the extracellular space [140].

During AD progression, tau pathology follows a hierarchical pattern of accumulation between
anatomically connected brain regions, starting from the transentorhinal cortex, from where it spreads
to the hippocampus and neocortex [141]. These findings are further supported by in vivo studies
showing that intracerebral inoculation of brain homogenate from mice with filamentous tau pathology
induces the progressive development of aggregated hyperphosphorylated tau protein in transgenic
mice, expressing wild-type tau, which normally do not show tau aggregates. Furthermore, over time,
tau deposition follows a predictable spreading pattern among neighboring brain regions to the injection
sites or to each other [122]. Similarly, the intracerebral injection of AD brain-derived tau aggregates into
normal C57BL/6 mice can induce cerebral amyloidosis and tau pathology propagation [97]. Using the
same approach, the injection of synthetic preformed tau fibrils (pffs) in young asymptomatic PS19 mice
expressing mutant human tau (P301S) leads to a rapid induction of NFT-like tau aggregates as well as a
time-dependent propagation of tau pathology from injected sites to connected brain regions [142,143],
demonstrating overall a template-dependent misfolding of the native tau protein.

The restricted overexpression of human tau P301L in the entorhinal cortex results in the
development of filamentous tau pathology, spreading to the dentate gyrus of the hippocampus
and synaptic destruction, suggesting the propagation to neighboring synaptically connected
neurons [144,145]. In this context, several studies showed that the propagation of tau pathology is
dependent on synaptic connectivity rather than spatial proximity, further supporting the involvement
of trans-synaptic neuronal mechanisms [131,142,146]. On the other hand, the reduction of tau
endogenous levels seems to be protective against neurotoxicity and prevents behavioral deficits
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in transgenic mice [147–149], although overexpressed tau propagates to synaptically connected
neurons [126]. Notably, tau derived from AD patients with Aβ plaque pathology appears to be more
seeding-competent than tau isolated from cases without Aβ plaques [150]. Furthermore, tau from
AD patients is phosphorylated and seed-competent [132,151] and can also be found in brain regions
with no extensive tau pathology, confirming the spreading of tau through synaptically connected
neurons [152].

Despite numerous compelling studies, the mechanisms that trigger the initial conversion of
physiologically soluble proteins into pathogenic polymers remain unresolved. We posit that a better
understanding of the underlying mechanisms may lead to the development of novel therapeutic targets.

The neuronal internalization of tau protein is also part of a physiological process, with both
monomeric and aggregated species entering neurons through clathrin-mediated endocytosis [73,78], by
binding the cell surface HSPGs [66] or by uptake through bulk endocytosis [70] (Figure 1B). Microglia
and astrocytes phagocytose extracellular tau as part of the clearance of toxic protein aggregated
species, and they are thought to contribute to the spreading, due to the fact that are unable to fully
degrade such aggregates. As a response, secretion back to the extracellular space contributes to disease
progression [37–39,67].

Consistent with this idea, prior to the assembly into fibrils, tau forms soluble oligomers that
diffuse and are efficiently taken up by surrounding neurons and are able to seed the aggregation
of endogenous tau and cause synaptotoxicity in healthy neurons [70,153,154]. However, it remains
unclear whether these tau conformers constitute the primary neurotoxic core that is more prone to
propagation throughout the nervous system.

5. Pharmacological Modulators of Tau Aggregation

Since the 1990s, several treatments have been tried for different tauopathies. However, several
of the strategies developed were only symptomatic, such as cholinesterase inhibitors [155,156] and
NMDA-receptor antagonists such as memantine [157]. These strategies are only aimed at ameliorating
some of the symptoms and not at modulating disease progression [155–157]. Therefore, in recent years,
several strategies targeting Aβ, amyloid precursor protein (APP), and tau have been developed and
entered clinical trials [155,158–160]. Thus far, all clinical trials targeting Aβ have produced negative or
somewhat disappointing results. Therefore, there is growing interest in targeting tau as a possible
alternative [161].

Different tau-based strategies have been considered, such as microtubule stabilization,
immunotherapy, O-GlcNAc inhibition (O-GlcNAcases), and tau aggregation inhibition. Among
them, inhibition of tau aggregation is the most widely investigated strategy in AD [162], as the
substantial increase in bulk tau levels that accompanies lesion formation results primarily from the
accumulation of insoluble tau aggregates [163,164].

Two different pharmacological strategies aiming at inhibiting tau aggregation have been developed.
One consists of the direct binding to tau, keeping it in an interaction-incompetent conformation, thereby
hampering its aggregation [163,165]. This strategy poses some difficulties because tau is an intrinsically
disordered protein. Therefore, the rational drug design strategy that has been used successfully since
the 1980s cannot be used, as it relies on knowledge of the three-dimensional structure of the target
protein, for the design of ligands (usually inhibitors) with the aid of computational tools [166,167].
The other strategy is based on interactions (that do not need to be direct binding) that promote the
stabilization of non-toxic species [163,165,168,169].

Two six-residue segments, VQIINK at the start of repeat 2 and VQIVYK at the start of repeat 3,
drive the formation of amyloid aggregates of tau [101,165,170]. Hence, the first therapeutic strategy
should focus on targeting those sequences by the use of covalent inhibitors that can either covalently
modify tau directly or foster formation of covalent bonds within or between tau proteins to yield
aggregation-incompetent products (Figures 2A and 3). Covalent inhibitors can attack any or all species
in an aggregation pathway, but appear to be especially efficacious modifiers of tau monomer, from
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which all aggregated species ultimately derive [163]. Additionally, inhibitors should be able to cross
the blood-brain barrier [163].
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Figure 2. Inhibition of tau aggregation and spreading. (A) Sites for direct binding of covalent tau
aggregation inhibitors. There are two main groups that bind to the VQIINK and VQIVYK sequences
(purple) or to the K residues (green). (B) Mechanisms of action of non-covalent tau aggregation
inhibitors on tau aggregation. The red arrows point to the different points of inhibition. Molecular
tweezers lower aggregation propensity by increasing reconfiguration rate, steric zipper blockers block
the formation of the steric zippers structures, and oligomerization stabilizers block the process in
the oligomer phase. Finally, PHFs and NFTs can be broken by aggregation disruptors. (C) Tau
spreading can be inhibited by blocking exosomal release, by blocking tau interaction with HSPG, or
by blocking endocytosis, either by blocking the receptors responsible for tau internalization or by
blocking micropinocytosis.
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The first covalent inhibitor used was methylthioninium chloride (methylene blue, MB) [171], a
phenotyacine dye first developed in 1876. MB binds to the repeat domain of tau, blocking tau-tau
interactions during paired helical filament (PHF) formation [105]. This compound has a potentially
broad pharmacology, including antibacterial properties, inhibition of microtubule assembly, inhibition
of butyrilcholinesterase, inhibition of noradrenalin re-uptake, increase in serotonin extracellular
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levels, and modulation of AMPA/kainate and NMDA-type ionotropic glutamate receptors [7,172–179].
Additionally, it can attenuate tauopathy by induction of autophagy, by inhibition of Hsp70 ATPase
activity, and by cysteine oxidation [180–182]. Furthermore, in P301L mutant mice, MB reduces
abnormal tau accumulation [183]. It was the first compound that underwent clinical trials as a tau
aggregation inhibitor [184], but it was discarded in phase III. Atomic force microscopy studies revealed
that MB reduces the number of tau fibrils but increases the number of granular tau oligomers, which
has been proposed as an explanation for its failure [185].

Aminothienopyridazines are compounds related to MB which act by accelerating disulfide bond
formation inside and between tau molecules, via cysteine oxidation [182]. Several modifications
have been made to this family of compounds, leading to the development of new modulators of tau
aggregation [186]. Among these modulators, leuco-methylthioninium bis(hydromethanesulfonate)
(LMTM) [187] reached phase III clinical trials for FTD [188,189]. However, it did not show benefit
when tested at two doses in participants with mild-to-moderate AD, for unknown reasons [189,190].
Additionally, the effects of this inhibitor are affected by anticholinesterase, as LMTM increases
hippocampal acetylcholine levels [187]. Another compound from this family that underwent clinical
trials was hydromethylthionine [191], reaching phase III, where it failed to reach the primary efficacy
endpoints in terms of attenuating the rate of progression of the disease at doses in the range of
150–250 mg daily [191]. Interestingly, compounds from this family can be used as imaging probes for
different tauopathies [192].

Other covalent inhibitors include: oleocanthal, a natural aldehyde with anti-inflammatory
properties present in olive oil [193] that reacts with tau lysines, especially lysine 311, reducing filament
formation [194,195]; cinnamaldehyde, which blocks tau aggregation by undergoing nucleophilic attack
by the cysteine residues of tau [196], a specific mechanism of tau aggregation inhibition common with
other aldehydes, such as the Aspergillus nidulans metabolite asperbenzaldehyde [163,197], and several
azaphilone derivatives [198]; baicalein, a polyalcohol flavonoid, is oxidized to the quinone form, before
acting as a covalent inhibitor [199]. However, covalent inhibitors may interact non-specifically with
other proteins, causing off-target effects [163] and, therefore, this type of substances has long been
avoided, due to the fear of unspecific modifications and the fear that the haptenization of modified
proteins might lead to an immune response [200,201].

The second group of inhibitors consists of non-covalent inhibitors, consisting of structurally and
mechanistically diverse molecules [163,202] (Figures 2B and 3). The mechanisms of action are diverse
and they can be further classified into several different groups [163]. Due to the similarities and
interactions between alpha-synuclein (aSyn) and tau [133,203,204], compounds that have proven to
be effective against aSyn aggregation may also modulate tau aggregation. One of these compounds,
now undergoing clinical trials, is curcumin [205]. Curcumin is a yellow-orange polyphenol compound
found in abundance in the rhizome of the plant Curcuma longa [206]. Curcumin affects aSyn, Aβ,
and tau aggregation and can also inhibit Aβ production [207–210]. However, it is unclear whether
curcumin or other related ligands can be optimized to interact with a specific molecular target. This is
relevant because cross-reactivities with other natively unfolded peptides might occur [211]. Therefore,
several derivatives aimed at acting more specifically on tau and/or Aβ have been developed [212–214].

Another group of non-covalent inhibitors are molecular tweezers, such as CLR01. Like with
curcumin and its derivatives, the mechanism of action of these compounds was first elucidated for
aSyn, where they lower the aggregation propensity by increasing the reconfiguration rate, similarly
to curcumin [215]. They interact with tau through lysine side chains, inhibiting its aggregation [216].
In vivo studies in mice showed a decrease in Aβ levels and tau burden in animals treated with
CLR01 [217].

Similarly to molecular tweezers and curcumin, steric zipper blockers such as Orange-G also
interact with tau through its lysine side chains [218]. As the name suggests, the mechanism of action
blocks the formation of steric zipper structures common to cross-β-sheet forming peptides [163]. Using
X-ray diffraction, it was shown that the blocking of tau aggregation is performed by the aromatic rings
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of Orange-G, which are packed against apolar side chains of Val309, establishing polar interactions
with glutamine and lysine side chains at the edges of the steric zipper [219].

Apart from interacting with lysine chains, curcumin derivatives, molecular tweezers, and steric
zipper blockers share another common characteristic, which is that they bind with their long axes
parallel to the fiber axis [218,219]. Therefore, it has been proposed that these modulators should be
combined in therapeutic cocktails [218].

Other compounds such as cyanine, rhodamine, and triarylmethine derivatives (such as crystal
violet) may decrease tau aggregation by stabilizing soluble oligomeric species at the expense of
filamentous aggregates [220]. Amongst them, cyanine does not interact with natively unfolded tau
monomers and leads to the formation of off-path tau oligomers unable to further elongate [220]. Using
structure activity relationship (SAR) analysis, it was observed that they can be more potent than
methylene blue [221]. However, they lead to an increase in oligomeric species which results in the
formation of PHF and NFTs [111–114]. Other compounds, such as phthalocyanine tetrasulfonate
(PcTS) modulate tau aggregation by targeting the protein into soluble oligomers, thus interfering with
filament formation [222]. This has been shown in vitro by NMR spectroscopy, electron paramagnetic
resonance, and small-angle X-ray scattering, observing that the soluble tau oligomers contain a dynamic,
non-cooperatively stabilized core with a diameter of 30–40 nm that is distinct from the core of tau
filaments [222].

Another group of tau aggregation inhibitors are dibenzofuran derivatives, such as usnic acid
and its derivatives. Usnic acid is a high-level secondary metabolite in lichen [223] that decreases
tau aggregation in vivo and in vitro [224] but, so far, the mechanism of action is still not completely
understood. Another metabolite, fulvic acid, is a mixture of different polyphenolic acids produced by
humus that decreases heparin-induced tau aggregation in vitro [225,226]. We have also observed that
fulvic acid inhibits K18 tau aggregation in vitro and full-length tau in a cell model. Interestingly, fulvic
acid seems to disaggregate previously formed tau aggregates in cells, in agreement with findings using
heparin-induced tau aggregation.

Other compounds that act, not only inhibiting aggregation but also disaggregating aggregates
already formed, are naphtoquinone-tryptophan derivatives such as NQTrp, and its most stable
derivative Cl-NQTrp, which significantly disrupted pre-formed fibrillar aggregates of Tau-derived
PHF6 (VQIVYK) peptide and full-length tau protein, both in vitro and in a drosophila model [227,228].
These compounds target not only tau but also Aβ and, possibly, aSyn, as it has been observed that
mannitol-NQTrp conjugates decrease aSyn aggregation in vitro [229,230].

Additionally, as mentioned above, compounds that can modulate aSyn aggregation have also
been used used to modulate tau aggregation. In this regard, we tested Anle138b in a cell model
and observed a decrease of tau aggregation [231]. Anle138b is a diphenylpyrazole that blocks
aSyn, Aβ and tau aggregation [232–236]. Anle138b seems to be effective against pre-formed tau
aggregates [231] and has been shown to ameliorate pathology and metabolic decline in mouse models
of tauopathies [235,236]. Furthermore, compounds that inhibit the aggregation of Aβmight also be
effective against tau aggregation. One such example is the aforementioned curcumin [237]. Curcumin
and other secondary metabolites from plants affect Aβ aggregation, as observed by thioflavin T assay.
These substances include rosmarinic acid, gallic acid, salvianolic acid B, luteolin, quercetin, fisetin,
myricetin, dihidromyricetin, EGCG, silibinin, oleuropein, rutin, curcumin, crocin, cryptotanshinone,
and tabersonine [237]. Among these substances, EGCG also inhibits aSyn aggregation, but shows no
effect on tau aggregation in cell culture [231].

There are also modulators that, rather than inhibiting tau aggregation, increase aggregation. The
study of these compounds is also interesting because they afford us a handle on the aggregation
process as experimental tools. In recent years, several heparin-based in vitro methods to induce tau
aggregation have been developed [89,90,238–240], but some of these methods lead to the formation of
aggregates whose structures differ from those formed in tauopathies [241,242]. Polyanionic substances
promote paired helical filament formation and do not strongly affect tau binding to microtubules [107].
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Two different mechanisms have been proposed to explain this: a nucleation-dependent polymerization
(NDP) [243] and a nucleation-independent mechanism [244].

Recently, it was proposed that tau polymerizes through association with cofactors to form a
metastable complex that remains “inert” and reversible, until encountering a relevant seed that
can trigger an irreversible transition to β-sheet containing species [245], consistently with the NDP
mechanism [246]. This happens not only with heparin but also with nucleic acids [247] and other
anionic compounds [248]. It has also been shown that the liquid-liquid phase separation can initiate tau
aggregation [249]. However, since heparin-induced tau aggregates are different from real pathological
aggregates found in the brains of patients, the use of heparin-induced aggregates as models for
aggregation inhibition needs to be interpreted with caution [250].

Additionally, other tau aggregation modulators may act indirectly, by affecting metabolic pathways
that may regulate tau expression and aggregation. Tau protein accumulation is regulated by a chaperone
system involving Hsp90 and Hsp70 [251]. Hsp90 binds tau, causing a conformational change that
allows tau phosphorylation by glycogen synthase kinase (GSK3β), leading to tau aggregation [252–254].
Hsp70, on the other hand, has shown to inhibit nucleation and the elongation of tau and sequesters tau
aggregates with high affinity in the ∆K280 variant [255]. Therefore, compounds acting on Hsp70, Hsp90,
or GSK3βmay indirectly modulate tau aggregation. Several such compounds are being developed,
including the 1H-pyrrolo [2,3-b]pyridine derivative, B10 [256], which affects tau aggregation by
inhibiting GSK3β, the Hsc70/Hsp90 inhibitor 17-AAG and Hsp90 inhibitor KU-32 [257], and Aha1, an
activator of Hsp90 that drives the formation of pathological tau aggregates [258]. Substances that act
on Hsp70 include MKT-077 and YM-1, rhodocyanines that cause selective death of cancer cells and
bind, with low micromolar affinity, to the nucleotide binding domain of ADP- but not ATP-bound
Hsp70, stabilizing the ADP-bound state [259].

Other compounds acting indirectly on tau aggregation include modulators of PP2A, PP5, or other
kinases (such as ALK), and affect aggregation by modulating its phosphorylation status [260–263]. As
mentioned above, progressive hyperphosphorylation leads to the dissociation of tau from microtubules,
promotes misfolding and aggregation and leads to neuropathological alterations [67–71]. Thus, another
possible strategy to counteract tau aggregation may be by decreasing hyperphosphorylation by acting
on kinases. Amongst these, inhibition of tyrosine kinases has especial relevance, as it leads to the
progression of the disease in AD and Parkinson’s disease (PD) [264,265]. In fact, tau has 5 tyrosine
residues: 18, 29, 197, 310, and 394. Tyrosines 18, 197, and 394 have been shown to be phosphorylated in
AD patients [266]. In recent years, several anticancer drugs have been repurposed for the study of their
effects in neurodegenerative diseases. These drugs act on different tyrosine kinases showing effects in
different pathologies such as AD, PD, stroke, spinal cord injury, and multiple sclerosis [264,265,267–270].
Among these drugs nilotinib, dasatinib, vatalanib, and imatinib have shown promising results. Nilotinib
is undergoing phase 2 clinical trials, where its safety is being tested [271,272], while dasatinib has been
approved for clinical use in senescent cell clearing in the United States since 2006 [273]. Vatalanib can
affect VEGF and decreases Aβ accumulation [274], and imatinib shows a broad spectrum of activities
that may allow for its future use in several different pathologies [269,275]. Another modulator of
phosphorylation that can affect tau aggregation is davunetide, a small peptide whose efficiency has
been tested in several in vitro and mouse models [276–278] and was tested in a phase III clinical trial
for progressive supranuclear palsy, albeit with a negative outcome [279].

TPI-287, a taxane derivative, is another modulator of tau aggregation that may affect cancer cells,
as it stabilizes microtubular structures [280]. TPI-287is currently in a phase I clinical study for the
treatment of mild to moderate AD and for some other disorders related to the disruption of intracellular
transport [158,281].

In recent years, other alternative strategies for modulating tau aggregation have been developed,
such as knockdown strategies [282] and immunotherapies [254,283], but these are outside the scope of
the present manuscript and should be discussed elsewhere, as they require a dedicated review.



Brain Sci. 2020, 10, 858 12 of 29

6. Pharmacological Modulators of Tau Spreading

Another possible therapeutic strategy in tauopathies is the modulation of tau pathology spreading,
assuming there is a causal role between the accumulation of tau and tauopathies. This strategy is based
on the hypothesis that tau, as other proteins associated with neurodegeneration, spread in a prion-like
manner from neuron to neuron [161]. This has been widely studied in animal models and involves
several different mechanisms, as mentioned above. Therefore, several different strategies are being
tested to interfere with tau spreading (Figure 2C).

Tau can spread via extracellular vesicles, such as exosomes [284,285]. Therefore, the modulation
of exosomes or other extracellular vesicles, for example by mTor1 inhibitors like rapamycin, may
interfere with tau spreading, since mTor1 regulates exosome release on the basis of nutrient and growth
factor conditions [286]. In addition, on the basis of growth factor conditions, it has been proposed that
growth hormone-releasing hormone (GHRH) may modulate the release of neuronal exosomes and,
thereby, tau spreading [287]. However, the results obtained so far are not conclusive, and it remains
unclear whether GHRH impacts the clearing mechanisms involved in reducing AD pathology in the
brain [287]. In addition, exosomes may themselves be used as vehicles to carry different treatments to
hamper tau progression or even as diagnostic tools in tauopathies [288].

Tau can interact with HSPGs, which will lead to its internalization [66]. Thus, an approach to
modulate tau spreading might be to use of exogenous PG mimetics, including heparin [289]. SN-13 is a
heparin-derivative developed from pentasaccharide units that inhibits tau aggregate propagation in a
similar way to heparin [290]. Additionally, simple heparin-like oligosaccharides bearing 2-O, 6-O, and
N-sulfation can bind strongly to tau oligomers, blocking their internalization in SH-SY5Y cells [289].
Animal studies have shown that heparin-mimetics are promising agents for inhibiting prion protein
pathogenesis [291], further supporting the idea that drugs targeting HSPGs might act as modulators of
tau spreading.

Tau can also spread through tunneling nanotubes in cultured cells [43,292]. However, it is
still unclear whether this process happens also in the human brain [43,292]. So far, there are no
pharmacological modulators capable of modulating tau spreading via tunneling nanotubes and,
therefore, additional research is needed on this topic [293].

Another mechanism through which tau may spread is by receptor-mediated endocytosis. Tau
can be internalized via clathrin-mediated endocytosis, a process mediated by dynamin [294]. This
mechanism was associated with the spreading of monomeric tau in iPSCs-derived human neurons [73]
and could be modulated by dynasore, a reversible and non-competitive dynamin 1 and dynamin 2
inhibitor [295,296].

Tau uptake also seems to be mediated by M1 and M3 muscarinic receptors [297], G-coupled
cholinergic receptors whose activation triggers several different second messenger cascades in
neurons [298]. M1 agonists appear to be good candidates as modulators of tau spreading, suggesting
additional studies are necessary.

Another mechanism associated with tau internalization is micropinocytosis [66], an actin-driven
endocytic process involving the formation of the macropinosome in response to the direct
actions of cargo/receptor molecules that coordinate the activity and recruitment of specific effector
molecules and subsequently fuse with degradative compartments of the cell [299,300]. Screening
of 640 FDA-approved compounds through a cell-based assay lead to the identification of seven
inhibitors: uranofin, flubendazole, imipramine, itraconazole, phenoxybenzamine, terfenadine, and
vinblastine [301]. Other compounds that act on macropinocytosis are Cytochalasin D, which disrupt
several clathrin-independent endocytic processes, including bulk endocytosis/micropinocytosis [302].

Another possibility for modulating tau spreading might be reducing tau levels, either by reducing
tau expression, or by promoting its clearance [169]. Therefore, small molecules, immunotherapies, or
genetic interventions might be suitable for reducing tau levels and, thereby, tau spreading. The latter
two strategies are beyond the scope of the present manuscript and should be discussed separately.
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Tau undergoes proteasomal degradation through two different (but not mutually exclusive)
pathways, ubiquitin-dependent and ubiquitin-independent [303]. Molecules that modulate protein
ubiquitination include TH006, MG132, and QC-01–175 [282,304,305]. TH006 has been shown to regulate
tau levels in the mouse brain [304], while QC-01–175 was derived from a PET tracer and optimized to
increase tau degradation and has proven effective in primary human neuronal cultures [305]. MG132
indirectly acts on tau ubiquitination by directly biding to tau and keap1 [282], a protein that facilitates
ubiquitination by binding to other proteins, anchoring them in the cytoplasm [306].

7. Concluding Remarks

In recent years, there has been an increasing number of molecules developed to act on tau
oligomerization and aggregation. The first tau aggregation inhibitors developed were based on direct
binding to tau. Unfortunately, as tau is an intrinsically disordered protein, traditional structure-activity
approaches cannot be performed, thus making the development of direct ligands very difficult.
Therefore, alternative approaches have been developed. For example, inhibitors of aSyn aggregation
were tested and have proven to be effective against tau aggregation as well. These non-covalent
aggregation inhibitors act through diverse mechanisms of action and they can be combined in
therapeutic cocktails. Additionally, the development of molecules that promote aggregation is
interesting for the study of the aggregation process. Likewise, compounds aimed at modulating
oligomerization are also attractive, as they may also enable the interrogation of important biology and
constitute potential therapeutic strategies.

Additionally, as tau may spread in a prion-like manner from neuron to neuron, blocking tau
spreading is a promising strategy to stop disease progression. In this regard, different compounds
are being developed to block specific mechanisms by which tau may spread, including via exosomes,
internalization by HSPGs, receptor-mediated endocytosis, and micropinocytosis.

To conclude, impressive advances have been made in the development of molecules with
therapeutic potential. While true therapeutic success has not happened yet, failures have also pushed
the development of better and safer molecules that enable us to test our hypothesis and continue our
quest to develop effective therapies for tauopathies.
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