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Abstract: Filamin C (FLNC), being one of the major actin-binding proteins, is involved in the
maintenance of key muscle cell functions. Inherited skeletal muscle and cardiac disorders linked
to genetic variants in FLNC have attracted attention because of their high clinical importance and
possibility of genotype-phenotype correlations. To further expand on the role of FLNC in muscle cells,
we focused on detailed alterations of muscle cell properties developed after the loss of FLNC. Using the
CRISPR/Cas9 method we generated a C2C12 murine myoblast cell line with stably suppressed Flnc
expression. FLNC-deficient myoblasts have a significantly higher proliferation rate combined with
an impaired cell migration capacity. The suppression of Flnc expression leads to inability to complete
myogenic differentiation, diminished expression of Myh1 and Myh4, alteration of transcriptional
dynamics of myogenic factors, such as Mymk and Myog, and deregulation of Hippo signaling pathway.
Specifically, we identified elevated basal levels of Hippo activity in myoblasts with loss of FLNC,
and ineffective reduction of Hippo signaling activity during myogenic differentiation. The latter
was restored by Flnc overexpression. In summary, we confirmed the role of FLNC in muscle cell
proliferation, migration and differentiation, and demonstrated for the first time the direct link between
Flnc expression and activity of TEAD-YAP\TAZ signaling. These findings support a role of FLNC in
regulation of essential muscle processes relying on mechanical as well as signaling mechanisms.
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1. Introduction

Filamin C (FLNC) is a member of the actin-binding filamin protein family expressed predominantly
in skeletal and cardiac muscle tissue [1,2]. Pathogenic variants in this gene have long been associated
with neuromuscular disorders such as distal myopathies and myofibrillar myopathies [3–5]. Recently,
the FLNC gene was also implicated in a variety of inherited cardiac disorders, such as restrictive,
hypertrophic, dilated and arrhythmogenic cardiomyopathies, often in association with a neuromuscular
phenotype [6]. The phenotypic variability of filaminopathies can be attributed to several distinct
molecular mechanisms triggered by Flnc mutations [7]. Missense mutations are predominantly
associated with misfolded protein aggregate formation and are often linked to myofibrillar myopathies
and restrictive cardiomyopathies, while truncating mutations leading to protein haploinsufficiency and
loss of dimerization are mainly associated with dilated and arrhythmogenic cardiomyopathies [8–12].
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The precise role of FLNC in muscle cell function and regulation of molecular pathways currently
remains a subject for intensive research. It was reported that Flnc expression gradually increases during
C2C12 myogenic differentiation, and during regeneration after skeletal muscle injury [13]. Knock-down
of Flnc in mouse myoblast C2C12 cells leads to impaired formation of elongated myotubes under
differentiation conditions (data obtained on a FLNC-deficient mouse model) and FLNC is considered
to be critical for mouse viability and muscle development [14]. However, the detailed impact of FLNC
on muscle cell functional and differentiation properties is still under discussion and the link between
FLNC levels, actin cytoskeleton reorganization and signaling cascades activity in muscle cells have not
yet been studied in detail.

Muscle cell properties and function are tightly linked to actin cytoskeleton remodeling and
reorganization. Since all filamin family members (FLNA, FLNB and FLNC) are able to bind actin
filaments through an N-terminal actin-binding domain and form orthogonal actin network [15,
16], these proteins could regulate actin reorganization dependent processes such as cell migration,
proliferation and differentiation in different types of cells [17]. Recent studies have identified
Yes-associated protein 1 (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ), members
of the Hippo signaling pathway, as regulators of myocyte proliferation and mechanotransduction,
at least in part, through interaction with actin cytoskeleton [18–20]. We hypothesized that loss of
FLNC in myoblast cells can lead to changes in cell migration, proliferation and muscle differentiation,
as well as dysregulation of signaling cascades, such as Hippo pathway. Using C2C12 myoblast
Flnc knock-out (FlncKO) cells we demonstrated an increased proliferative dynamics of FlncKO
myoblasts, altered differentiation capacity and overactivation of Hippo signaling in dividing cells and
under myogenic differentiation after the loss of FLNC. We confirmed the essential role of FLNC in
myogenic differentiation and highlighted a tight link between FLNC levels and activity of the Hippo
signaling pathway.

2. Material and Methods

2.1. Generation of Flnc Knock-Out Cell Line Using CRISPR/Cas9

Generation of the Flnc knock-out C2C12 murine myoblast cell line (FlncKO) was performed by
targeting the first exon of the mouse Flnc gene (NC_000072.6 (2933153.29461889)) using a previously
described protocol [21]. Design of CRISPR/Cas9 guide RNA sequences was performed using
the mit.broadinsitute/crispr online tool [21]. GuideRNA sequence was chosen among others by
highest specifity score and minimal predicted off-target effect. A scramble guide RNA which does
not target any mouse genome fragments was chosen as a scramble-control (Supplementary Table
S1) [22]. Guide RNA sequences were cloned into pSpCas9(BB)-2A-GFP (PX458) (#48138, Addgene,
Watertown, MA, USA) plasmid using BbsI restriction sites. Generated plasmids were verified by Sanger
sequencing with U6 primer (Supplementary Table S1). C2C12 cells were transfected with CRISPR
plasmid using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions. Twenty-four hours after transfection GFP-positive cells were sorted using a FACSAria flow
cytometer (BD Biosciences, San Jose, CA, USA). After sorting, cells were seeded in 96-wells plates at a
density of 33 cells/plate. Plates were screened under a light microscope and the individual clones were
grown up and re-plated for subsequent freezing, genomic DNA analysis and protein quantification.

TA-cloning of derived FlncKO clone alleles was performed using a Quick-TA kit (Evrogen, Moscow,
Russia). Primers for amplification of desired DNA fragments are described in Supplementary Table S1.

2.2. Cell Culture

C2C12 murine mouse myoblasts (CRL-1772, ATCC, Manassas, VA, USA) were cultured in
Dulbecco’s Modified Eagle Medium (Gibco, Waltham, MA USA) supplemented with 10% fetal bovine
serum (FBS) (Gibco, USA), 2 mM L-glutamine, 50 IU/mL penicillin and 50 µg/mL streptomycin,
hereafter mentioned as growth media. Cells were passaged every two days. For muscle differentiation,
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cells were seeded at 70% confluency. The following day, media was replaced to differentiation
media (DM), consisting of DMEM supplemented with 2% horse serum, 2 mM L-glutamine, 50 IU/mL
penicillin and 50 µg/mL streptomycin. Differentiation media was replaced every day for the duration
of the experiment.

2.3. Western Blotting

Cells were trypsinized, pelleted by centrifugation at 300 g for 5 min and lysed in RIPA buffer,
containing 50 mM NaCl, 25mM Tris-HCl pH8.0, 0.1% SDS. Lysates were centrifuged at 16,000 g and
Laemmli buffer was added to supernatant and further incubated for 5 min at 100 ◦C. Protein lysates were
run in 6% polyacrylamide gel and transferred to 0.45 µm nitrocellulose membrane. Membranes were
blocked with 5% milk in PBS with 0.05% Tween-20 (PBS-T) (Sigma Aldrich, St. Louis, MO, USA) for
30 min and incubated with an anti-FLNC primary antibody (NBP1-89300, Novus Biologicals, Littleton,
CO, USA) or anti-β-actin primary antibodies (AC-15, ab6276, Abcam, Cambridge, UK) for 16 h.
Membranes were washed 3 times in PBS-T and incubated with secondary antibodies (Immun-Star
Goat Anti-Rabbit/Mouse (GAR/GAM) HRP Conjugate, Bio-Rad Hercules, CA, USA), 1:10000 dilution
in 5% milk for 1 h. Chemiluminescence was detected after application of SuperSignal West Femto
substrate (Thermo Fisher Scientific, Waltham, MA, USA). Images were analyzed using ImageJ software
(NIH, Bethesda, MD, USA).

2.4. Immunofluorescence

Prior to staining, cells were fixed in 4% paraformaldehyde (Sigma Aldrich, USA) for 10 min.
Cell membrane was permeabilized with 0.5% Triton X-100 for 5 min and cells were blocked with
15% FBS for 1 h. Cells were incubated with MyHC primary antibodies (MAB4470, R&D Systems,
Minneapolis, MN, USA) diluted 1:200 in 15% FBS for 1 h at RT and washed three times with PBS
for 5 min. Incubation with Goat anti-Mouse Secondary Antibodies, Alexa Fluor 488 (Cat # A-11001,
Thermo Fisher Scientific, USA) diluted 1:1000 in PBS was performed for 45 min at RT. For staining nuclei
4′,6-diamidino-2-phenylindole (DAPI, Thermo Fisher Scientific, USA) was used at a concentration of
0.1 µg/mL. Fusion index was determined as the ratio of nuclei within each MyHC-positive myotubes
to the total number of nuclei. A minimum of 2 nuclei per myotube was required for inclusion in the
quantification. Analysis was performed for 10 separate fields. F-actin staining was performed using
Rhodamine Phalloidin probe (Thermo Fisher Scientific, USA), according to manufacturer’s instructions.

2.5. Gene Expression Analysis

Cells were lysed in ExtractRNA reagent (Evrogen, Russia). Total RNA was extracted according
to manufacturer’s instructions. After extraction, RNA was quantified using NanoDrop 3300
(ThermoFisher, USA). Complementary DNA (cDNA) was generated using random primers and
MMLV reverse transcription kit (Evrogen, Russia). Quantitative measurement of gene expression
was performed using qPCR with qPCR mix-HS SYBR+ROX (Evrogen, Russia). Sequences for qPCR
primers are listed in Supplementary Table S1. Gene expression was normalized to Gapdh mRNA level.
In differentiation experiments data for each cell line was normalized to undifferentiated condition
(day 0).

2.6. Plasmid Construction and Flnc Overexpression

The pCS2FLNC plasmid was generated as described previously [6]. For FLNC overexpression in
C2C12 myoblasts, cells were transfected with Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA)
according to manufacturer’s instructions. GFP-positive signal and, therefore, FLNC were detected 24 h
after transfection.
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2.7. Scratch Assay

Cells were seeded at a high density in 24-well plates. The following day a vertical scratch was
applied using a yellow 200-µL pipette tip and growth media was replaced to serum free DMEM,
supplemented with 2 mM L-glutamine, 50 IU/mL penicillin and 50 µg/mL streptomycin, this time point
was established as “0 h”. Pictures were taken every two hours until the 12-h time point. Percentage of
scratch healing was quantified as (scratch area0 h—scratch areaX hours)/scratch area0 h·100.

2.8. Proliferation and Migration Analyses

Proliferation and migration analyses were performed using a xCELLigence Real-Time Cell
Analyzer (RTCA) (ACEA Biosciences, San Diego, CA, USA). For measurement of proliferation
dynamics, cells were seeded in 200 µL of growth media at a density of 5000 cells/well into an E-plate
16 (ACEA Biosciences, USA). Proliferation curves were evaluated over the course of 72 h with
measurements taken every 15 min. Doubling time was analyzed from 8 to 43 h using RTCA software
2.1.0 (ACEA Biosciences, USA). For measurement of migration dynamics, 15,000 cells/mL density
were seeded in 100 µL of serum-free media in upper chambers of CIM-plates 16 (ACEA Biosciences).
The lower chamber was filled with 160 µL of growth media as a chemoattractant. Cell migration was
evaluated over the course of 24 h with measurements taken every of 15 min. Slopes of migration
curves were analyzed from 15 to 23 h using RTCA software 2.1.0 (ACEA Biosciences, USA).

2.9. Luciferase Assay

For evaluation of Hippo-pathway activity, cells were seeded to 96-well white microplates and
co-transfected with HOP-flash plasmid (#83467, Addgene) and pGL4.73 [hRluc/SV40] (Promega,
Madison, WI, USA) plasmids using Lipofectamine 3000. For undifferentiated cells, assay was
conducted 24 h after transfection. For differentiation experiments, myogenic differentiation was
induced 24 h after transfection. Cell lysates preparation and substrate application was performed using
the Dual-Glo Luciferase Assay System (Promega, USA). Luminescence was measured using Synergy2
spectrophotometer (BioTek, Winooski, VT, USA). Firefly luciferase activity was normalized to Renilla
luciferase activity. As a negative control, cells were transfected with HIP-flash (#83466, Addgene) and
hRLuc/SV40 plasmids.

2.10. Statistical Analysis

Statistically significant differences between groups were determined by parametric Student’s
t-tests (two-tailed, unpaired) using GraphPad Prism software. p-value < 0.05 was considered significant.

3. Results

3.1. Generation and Characterization of FlncKO Cell Line

A Flnc knock-out C2C12 murine myoblast cell line (FlncKO) was generated using CRISPR/Cas9
technique by targeting the first exon of the mouse Flnc gene (Figure S1A). The control cell line was
generated by scramble CRISPR-editing of C2C12 cells. Flnc first exon sequencing and subsequent
sequencing of separate alleles cloned into TA-vectors confirmed the presence of two deletions in both
alleles (Figure S1B). These deletions led to the stable loss of protein expression in undifferentiated C2C12
cells. Notably, upon differentiation, a weak expression of Flnc was induced in FlncKO cells, potentially
due to use of an alternative start codon (Figure S1C). Nevertheless, the FLNC levels in FlncKO
undifferentiated myoblasts was more than 1000-fold lower compared to scramble control myoblasts
(Figure S1C). Thereafter, we characterized mRNA expression level of other filamin isoforms—Flna
and Flnb. Levels of Flna and Flnb expression decrease during myogenic differentiation in control cell
line as well as in FlncKO cell line, notably, with the similar fold changes (Figure S1D, upper graphs).
Compared to control scramble cell line, expression of Flna in FlncKO cells is elevated in basal conditions
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(not differentiated) as well as at the late point of differentiation (Figure S1D, lower graphs). At the same
time, Flnb expression remains unaltered when compared with the scramble control. For cytoskeleton
characterization we evaluated actin filaments distribution in Flnc knock-out cells using phalloidin
staining. When compared with the scramble control, FlncKO cells do not reveal drastic changes of
actin filaments scaffold (Figure S1E); however, numbers of filopodia are slightly increased (Figure S1F).
Therefore generated FlncKO C2C12 cell line could be applied as a model of stable loss of FLNC with
moderate cytoskeleton rearrangements.

3.2. FlncKO Myoblasts Exhibit Increased Proliferation Dynamic and Reduced Migration Ability

To assess the proliferation dynamics of FlncKO C2C12 cells, the real-time migration analysis
(RTCA) system was used. Proliferation curves indicated that control cells achieved the maximal density
and switched to the plateau phase after 43 h after start of assay (Figure 1A). In contrast, FlncKO cells
did not reach a plateau phase and continued to proliferate. Analysis of proliferation curves revealed a
significantly shorter doubling time of FlncKO cells compared to scramble control, indicating an increase
in proliferation rate (Figure 1B).
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Figure 1. Reinforced proliferation and impairment of migration ability of FlncKO line. (A) Proliferation
dynamics was obtained by xCELLigence Real-Time Cell Analyzer (RTCA), normalized cell index (CI)
curves are presented. (B) Quantification of doubling time in 15 to 43 hours’ time range revealed an
increase of proliferation rate in FlncKO cell line (n = 15 for each cell line). (C) Scratch assay shows
a decrease of migration capacity from FlncKO cell line compared to scramble control; cell migration
was recorded from 2 to 12 h. Representative images are shown for 12 hours’ time point. Dashed lines
indicate area for quantification. (D) Reduction in cell migration was significant from 6 hours’ time
point until 12 hours’ time point (n = 4 for each cell line and time points). (E) Validation of migration
results performed by RTCA analysis. Migration curves represent cell index in each time point. (F).
Quantification analysis of migration curves slopes was performed between 15 to 23 h after cell seeding.
Scale bar 200 µM. For all * p < 0.05.
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Cellular migration was investigated using scratch assay in serum-free conditions to avoid the
impact of proliferation. Already 6 h after the initial scratch, FlncKO cells started to demonstrate
decreased migration dynamic compared to control cells (Figure 1C,D). These experiments were further
validated using an RTCA migration assay. For both cell lines, the slopes of migration curves were
analyzed within 8 h (starting at 15 h after plating)—the time points considered to be optimal in between
positive migration signals and achieving the plateau stage (Figure 1E). As shown in Figure 1F, the rate
of migration was significantly lower in FlncKO cells, as compared to scramble control cells, based on
calculated slopes reflecting the cell index curves. Overall, FlncKO murine myoblasts display higher
proliferation dynamics and impaired migration, as compared to scramble control myoblasts.

3.3. FlncKO Cells are Characterized by Reduced Ability of Myogenic Differentiation

Skeletal muscle differentiation was induced in scramble control and FLNC-deficient C2C12
myoblasts by changing the growth medium to differentiation medium. Five days after induction of
myogenic differentiation, cells were investigated by immunofluorescence analysis using an anti-Myosin
Heavy Chain (MyHC) antibody. While control myoblasts extensively formed multinucleated myotubes,
FLNC-deficient cells displayed poor fusion capacity, a significantly lower fusion index and only rarely
demonstrated positivity for MyHC staining (Figure 2A,B).

Genes 2020, 11, x FOR PEER REVIEW 6 of 12 

 

revealed an increase of proliferation rate in FlncKO cell line (n = 15 for each cell line). (C) Scratch assay 
shows a decrease of migration capacity from FlncKO cell line compared to scramble control; cell 
migration was recorded from 2 to 12 h. Representative images are shown for 12 hours’ time point. 
Dashed lines indicate area for quantification. (D) Reduction in cell migration was significant from 6 
hours’ time point until 12 hours’ time point (n = 4 for each cell line and time points). (E) Validation of 
migration results performed by RTCA analysis. Migration curves represent cell index in each time 
point. (F). Quantification analysis of migration curves slopes was performed between 15 to 23 h after 
cell seeding. Scale bar 200 μM. For all * p < 0.05. 

3.3. FlncKO Cells are Characterized by Reduced Ability of Myogenic Differentiation 

Skeletal muscle differentiation was induced in scramble control and FLNC-deficient C2C12 
myoblasts by changing the growth medium to differentiation medium. Five days after induction of 
myogenic differentiation, cells were investigated by immunofluorescence analysis using an anti-
Myosin Heavy Chain (MyHC) antibody. While control myoblasts extensively formed multinucleated 
myotubes, FLNC-deficient cells displayed poor fusion capacity, a significantly lower fusion index 
and only rarely demonstrated positivity for MyHC staining (Figure 2A,B). 

 

Figure 2. Diminished myogenic differentiation in FLNC-deficient C2C12 myoblasts. (A) FLNC 
deficiency dramatically reduces myoblast differentiation with complete inability to develop mature 
multinucleated myotubes 5 days after induction of myogenic differentiation in serum-depleted 
conditions. Only a small fraction FlncKO cells express MyHC, detected by immunofluorescence. (B) 
FlncKO cells shows a reduced fusion index, calculated after immunofluorescent staining of MyHC 5 

Figure 2. Diminished myogenic differentiation in FLNC-deficient C2C12 myoblasts. (A) FLNC
deficiency dramatically reduces myoblast differentiation with complete inability to develop mature
multinucleated myotubes 5 days after induction of myogenic differentiation in serum-depleted
conditions. Only a small fraction FlncKO cells express MyHC, detected by immunofluorescence.
(B) FlncKO cells shows a reduced fusion index, calculated after immunofluorescent staining of MyHC
5 days after induction of myogenic differentiation; n = 10 individual fields, in which fusion index
analysis was performed. (C) Expression dynamics of muscle-specific markers are altered in FlncKO
cells. Relative mRNA level of Myh1, Myh4, Mymk and Myog in FlncKO cells compared to scramble
control both two and five days after muscle differentiation induction. Scale bar 50 µM. For all * p < 0.05.
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We further confirmed reduced differentiation capacity by revealing reduced expression of the
late stage myogenic markers such as Myh1 and Myh4 and muscle-specific fusion factor Myomaker
(Mymk) (Figure 2C). Expression of Mymk and other genes involved in muscle development is
maintained under control of myogenic regulatory factors (MRFs), such as Myog [23]. While control cells
demonstrated a decline of Myog mRNA level upon differentiation completion, Myog remained elevated
in FlncKO during the late stages of differentiation (Figure 2C). In summary, FlncKO cells display a
deficient differentiation capacity and altered expression of analyzed myogenic differentiation markers.

3.4. Downregulation of FLNC in Myoblasts Promotes TEAD-YAP/TAZ Activation

In various cell types, including myoblasts, proliferation is maintained under control of the
Hippo-signaling pathway and is associated with pro-proliferative gene expression activation.
We monitored the Hippo pathway activity in FlncKO myoblasts, performing a luciferase
TEAD-YAP/TAZ activity reporter assay. At low cell density, Hippo pathway activity was maintained at
a low level both in control and FlncKO myoblasts, while at high cell density, Hippo became activated.
However, FlncKO myoblasts demonstrated significantly stronger activation compared to the scramble
control cell line (Figure 3A). Myogenic differentiation leads to a decrease in activity of Hippo-signaling
2 days after induction both in control and FlncKO myoblasts. Notably, this decrease was significantly
less in FlncKO myoblasts than in control cells (2-fold compared to 5-fold) reflecting the inability of
FLNC-deficient myoblasts to effectively downregulate Hippo signaling activity upon differentiation.
Thus, in FlncKO myoblasts Hippo signaling remains activated on day 2 of myogenic differentiation
compared to control the scramble control cell line. This observation was further supported by
expression level of Hippo-dependent genes Ctgf (Ccn1) and CyR61 (Ccn2). The decline of Ctgf mRNA
level upon differentiation was 10-fold in control and only 2-fold in FlncKO cells. Similarly, we observed
inefficient downregulation of CyR61 (Ccn2) mRNA in FlncKO myoblasts compared to scramble control
cells (Figure 3B). Thus, FlncKO myoblasts demonstrate an increased Hippo activity in proliferating
cells and an inability to downregulate Hippo activity upon differentiation.Genes 2020, 11, x FOR PEER REVIEW 8 of 12 
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Figure 3. Loss of FLNC affects TEAD-YAP/TAZ activity in myoblasts during differentiation.
(A) HOP-flash luciferase assay was performed in both under proliferating condition and during
differentiation. In low density conditions no differences of TEAD-YAP/TAZ activity were obtained,
whereas in high density FlncKO cells exhibit significantly greater increase of TEAD-YAP/TAZ activation.
48 h after changing of the growth media to differentiation media in both FlncKO and scramble cell
line we observed significant decrease of TEAD-YAP/TAZ activity. (B) Expression of downstream
YAP/TAZ-targeted genes were evaluated using qPCR. In scramble cell line mRNA expression of Ctgf
and Cyr61 become reduced 48 h after myogenic differentiation induction, when FlncKO cells exhibit
weaker reduction of Ctgf and Cyr61 expression under the same differentiation conditions. (C) Hippo
pathway activity was restored in FlncKO cell line 24 h after add-back of FLNC using transfection with
pCS2FLNC plasmid, when myoblasts were cultivated in growth media, and 48 h after induction of
myogenic differentiation. For all * p < 0.05.

To further confirm the interconnection between Flnc expression and Hippo activity we
performed rescue experiments using plasmid DNA (pCS2FLNC) encoding for human FLNC
transcript. TEAD-YAP/TAZ activity reporter assay was assessed in scramble, FlncKO and restored
FlncKO + pCS2FLNC proliferating and differentiating myoblasts. After FLNC rescue, TEAD-YAP/TAZ
activity was significantly reduced compared to untransfected FlncKO myoblasts both in proliferating
and in differentiated cells, thus confirming the dependence of Hippo-pathway activity on FLNC levels
(Figure 3C).
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4. Discussion

FLNC is an actin-binding protein which belongs to the filamin family and plays various structural
and signaling roles in myocytes [1,2]. Being implicated in a broad range of neuromuscular and cardiac
disorders, FLNC came into the scope of detailed cellular and molecular research. In the present report,
we focused on FLNC functions in basic myocytes properties using a Flnc knock-out model generated
by CRISPR/Cas9. Surprisingly, we did not observe critical changes of F-actin network in myoblast
cells. Our data are in line with previously published data that loss of another filamin family protein,
FLNA, in variety of cell lines is also not associated with F-actin defects [24]. We demonstrated that loss
of FLNC leads to enhanced myoblast proliferation dynamics, and impairs key processes involved in
myogenesis and functional muscle maturation. In contrast to the data obtained, Flnc knock down in
cancer cells has been reported to lead to proliferation impairment, and high expression of FLNC is
considered as predictive for tumorigenesis outcome [17,25]. This discrepancy could be explained by
different roles of FLNC in contractile muscle cells and non-contractile cancer cells. The filamin proteins
are also known for their ability to regulate cell motility and cell migration processes. Particularly, FLNC
is considered as a sensor of cell-cell contact-dependent signaling due to its interaction with integrins
and other proteins of the mechanosensory systems [26]. Here, we identified a reduced migration
capacity in FlncKO myoblasts. Interestingly, the opposite phenomenon has been reported in cancer
research with Flnc knock-down linked to increased migration and invasion in cancer cells [25,27].
The mechanism of FLNC effect on cell adhesion and migration could be more complex in muscle
cells due to interaction of FLNC not only with sarcolemma integrin systems, but also with sarcomeric
Z-disk structures, and thereby providing participation in mechanotransduction processes [28]. Loss of
FLNC in mouse myocardium lead to upregulation of several adhesion proteins including b1D-integrin,
Talin1, Kindlin2, Focal Adhesion Kinase, Vinculin and Integrin-Linked Kinase (ILK) [29]. Similarly,
RNA-sequencing of cardiac samples of ARVC patients with FLNC loss of function variants revealed
differential expression of genes, involved in cell adhesion, especially highlighting the importance of
ILK signaling [30]. This link between structural sarcomeric gene mutations and cell adhesion proteins
was also suggested in our previous study using a bioinformatic approach [31]. Together, these reports
underscore the putative role of FLNC in migration and proliferation processes, possibly, through
modulating the function of adhesion complexes in muscle cells.

The transition from a proliferative state to activation of differentiation pathways in muscle cells
is under the control of several signaling cascades with the Hippo pathway being one of the major
regulators of proliferation-differentiation switch [32,33]. In the present report, we demonstrated
increased TEAD/YAP-TAZ activity in proliferating conditions of FLNC-deficient cells and the
inability to downregulate its activity upon differentiation to the level similar to that of control
cells. Rescue experiments support the fact, that Flnc expression level is tightly associated with Hippo
signaling activity in myoblasts. In skeletal muscle, the Hippo pathway is a critical signaling pathway
regulating cell proliferation and growth programs and its transcriptional co-factor Yes-associated
protein (YAP) was shown to inhibit myogenic differentiation at a high dose [34]. In our established
FLNC-deficient model myogenesis was completely interrupted, which is consistent with previous data
acquired on Flnc knocked-down myoblasts derived using siRNA technique [14]. Both in wild-type
and FlncKO myoblasts we observed substantial reduction of expression of two other filamin genes
(Flna and Flnb) upon myogenic differentiation. Notably, we observed the increased expression of
Flna in Flnc knocked-down myoblasts after differentiation, possibly, aimed on compensation of the
lack of Flnc expression. The differentiation impairment was confirmed not only by morphological
analysis but also by evaluation of transcriptional level of myogenic transcriptional factors Notably,
besides the impaired upregulation of myotubes maturation markers Myh1 and Myh4 and fusion
marker Mymk, we determined an abnormal expression dynamics of the transcriptional factor Myog,
highlighting a dysregulation of the muscle differentiation program. This inability of FLNC-deficient
cells to differentiate was associated with weak inactivation of Hippo during the myogenesis induction.
Together, overall elevated Hippo activity in FlncKO cells and not completely suppressed expression of
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Hippo-targeted pro-proliferative genes give the reason to suggest sustained proliferative state even
after differentiation induction. This supports earlier reports that in C2C12 cells Yap inhibition is
essential for promoting the terminal differentiation from myoblasts to myotubes [35]. Thus, the role
of FLNC in muscle maturation can be mediated through Hippo pathway activity. It is well known
that in cardiomyocytes, disturbance of actin cross-linking and polymerization can be regulated by
TEAD-YAP/TAZ activity and vice versa [20,36]. Whether or not downregulation of Flnc influences the
Hippo pathway activity through modulation of actin cytoskeleton needs to be further elucidated.

FLNC still attracts high research interest due to new loss-of-function pathogenic isoforms identified
in patients with severe form of myopathies and cardiomyopathies. Our data expand on the functions
of FLNC in muscle cells towards its effect on migration, proliferation and differentiation. It uncovers
the direct impact of FLNC absence on the Hippo pathway activity in proliferating and differentiating
muscle cells. We confirmed the essential role of FLNC in the myogenic program implementation and
highlighted a tight link between FLNC levels and activity of Hippo signaling.
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