Skip to main content
. 2020 Nov 14;20(22):6512. doi: 10.3390/s20226512

Table 9.

Performance analysis of the proposed diagnosis methodology for COPD and pneumonia identification with current techniques on lung pathologies.

Classes Method Results (%)
Crackles, Crackles+ Wheeze,
Normal, Wheeze [5]
STFT, WT, SVM ACC: 49.86
Normal, Pneumonia [6] SA ACC: 91.98 SEN:92.06 SPE: 90.68
Pneumonia and Asthma [7] NN SEN: 89, SPE:100
Normal, Pneumonia [12] WT, LR
ANN
SEN: 94
SPE:63
Normal, Pneumonia [18] EMD, KNN ACC: 99.7
Normal, COPD and Pneumonia [20] SA -
Normal Asthma and COPD [22] ANN ACC:60.33
SEN: 65
SPE:54.2
Normal, Asthma, Bronchitis [24] EMD, KNN ACC: 99.3
COPD [25] KT ACC: 85.1
COPD [26] KG, ML ACC:95.1
COPD, Healthy, Pneumonia,
Asthma, Bronchiectasis, Bronchiolitis [29]
CNN SEN: 98.8
SPE:98.6
Crackles, Crackles+ Wheeze,
Normal, Wheeze [28]
CNN ACC i: 65.5
ii: 63.09
Normal, COPD, Pneumonia
(This Method)
EMD, WT, QD ACC: 99.8%

Knowledge graph: KG, Short-time Fourier Transform: STFT, Linear regression: LR, Statistical analysis: SA, Neural network: NN, Knowledge transfer: KT, ACC: Mean accuracy. SEN: Sensitivity, SPE: Specificity.