Table 9.
Performance analysis of the proposed diagnosis methodology for COPD and pneumonia identification with current techniques on lung pathologies.
| Classes | Method | Results (%) |
|---|---|---|
| Crackles, Crackles+ Wheeze, Normal, Wheeze [5] |
STFT, WT, SVM | ACC: 49.86 |
| Normal, Pneumonia [6] | SA | ACC: 91.98 SEN:92.06 SPE: 90.68 |
| Pneumonia and Asthma [7] | NN | SEN: 89, SPE:100 |
| Normal, Pneumonia [12] | WT, LR ANN |
SEN: 94 SPE:63 |
| Normal, Pneumonia [18] | EMD, KNN | ACC: 99.7 |
| Normal, COPD and Pneumonia [20] | SA | - |
| Normal Asthma and COPD [22] | ANN | ACC:60.33 SEN: 65 SPE:54.2 |
| Normal, Asthma, Bronchitis [24] | EMD, KNN | ACC: 99.3 |
| COPD [25] | KT | ACC: 85.1 |
| COPD [26] | KG, ML | ACC:95.1 |
| COPD, Healthy, Pneumonia, Asthma, Bronchiectasis, Bronchiolitis [29] |
CNN | SEN: 98.8 SPE:98.6 |
| Crackles, Crackles+ Wheeze, Normal, Wheeze [28] |
CNN | ACC i: 65.5 ii: 63.09 |
| Normal, COPD, Pneumonia (This Method) |
EMD, WT, QD | ACC: 99.8% |
Knowledge graph: KG, Short-time Fourier Transform: STFT, Linear regression: LR, Statistical analysis: SA, Neural network: NN, Knowledge transfer: KT, ACC: Mean accuracy. SEN: Sensitivity, SPE: Specificity.