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Abstract: This review summarizes data from several laboratories that have demonstrated a role
of the Na/K-ATPase, specifically its α1 subunit, in the generation of reactive oxygen species (ROS)
via the negative regulator of Src. Together with Src and other signaling proteins, the Na/K-ATPase
forms an oxidant amplification loop (NKAL), amplifies ROS, and participates in cytokines storm
in obesity. The development of a peptide fragment of the α1 subunit, NaKtide, has been shown to
negatively regulate Src. Several groups showed that the systemic administration of the cell permeable
modification of NaKtide (pNaKtide) or its selective delivery to fat tissue—adipocyte specific expression
of NaKtide—ameliorate the systemic elevation of inflammatory cytokines seen in chronic obesity.
Severe acute respiratory syndrome – coronavirus 2 (SARS-CoV-2), the RNA Coronavirus responsible
for the COVID-19 global pandemic, invades cells via the angiotensin converting enzyme 2 (ACE-2)
receptor (ACE2R) that is appended in inflamed fat tissue and exacerbates the formation of the cytokines
storm. Both obesity and heart and renal failure are well known risks for adverse outcomes in patients
infected with COVID-19. White adipocytes express ACE-2 receptors in high concentration, especially
in obese patients. Once the virus invades the white adipocyte cell, it creates a COVID19–porphyrin
complex which degrades and produces free porphyrin and iron and increases ROS. The increased
formation of ROS and activation of the NKAL results in a further potentiated formation of ROS
production, and ultimately, adipocyte generation of more inflammatory mediators, leading to systemic
cytokines storm and heart failure. Moreover, chronic obesity also results in the reduction of antioxidant
genes such as heme oxygenase-1 (HO-1), increasing adipocyte susceptibility to ROS and cytokines. It is
the systemic inflammation and cytokine storm which is responsible for many of the adverse outcomes
seen with COVID-19 infections in obese subjects, leading to heart failure and death. This review will
also describe the potential antioxidant drugs and role of NaKtide and their demonstrated antioxidant
effect used as a major strategy for improving obesity and epicardial fat mediated heart failure in the
context of the COVID pandemic.
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1. Introduction

1.1. COVID Infection and Obesity

SARS-CoV-2, the virus responsible for COVID-19, is causing a worldwide pandemic that has
currently infected over 16 million people with more than 600,000 deaths. In some individuals,
SARS-CoV-2 infection induces a severe inflammatory cytokine storm, resulting in high rates of
morbidity and mortality. Common symptoms of COVID-19 include dry cough, fever, myalgia, difficulty
breathing, fatigue, and milder symptoms, including nausea, vomiting, headaches, and loss of taste and
smell [1]. Certain underlying conditions have been shown to increase the risk of COVID-19 infection
and the severity of its adverse effects. These conditions include respiratory problems, heart disease,
immunocompromised states, severe obesity (body mass index (BMI) of 40 or higher), diabetes, chronic
kidney disease, and liver disease [2]. SARS-CoV-2 is an RNA beta coronavirus that is a subgenus of
the SARs virus family. The SARS-CoV-2 virus enters cells that express ACE2R on their surface [3–6].
During the entry process, the virus binds not only ACE2 receptor, but also porphyrin by means of the so
called spike protein on the virus capside [7]. This leads to increased levels of free heme and a reduction
in functional hemoprotein, with a resultant increase in inflammatory reactions. During COVID-19
infection oxidation-induced carbonylation of the Na/K-ATPase α1 subunit, which desensitizes the
Na/K-ATPase signaling, results in increased ROS and inflammation which can further promote
the inflammatory cytokine storm that characterizes the course of complicated COVID-19 infection.
Since the α1 subunit is a negative regulator of Src, its carbonylation leads to increased Src activity
and ROS formation [8–10]. Blocking the adipocyte Na/K-ATPase oxidant amplification loop using
adipocyte-specific NaKtide expression has been shown to improve uremia, reduce oxidant stress,
reduce local elevation of inflammatory cytokines, and alleviate uremic cardiomyopathy [11].

COVID-19 has been shown to affect cells with both high and low ACE2R concentrations. However,
significantly worse effects are seen in patients with high expression levels of ACE2 receptor [12].
Notably, obesity results in a higher number of white adipocytes compared to brown adipocytes,
resulting in mitochondrial dysfunction, increased inflammation, and an increase in the ACE2 receptor
levels. The signs and symptoms seen in patients with the novel coronavirus have been predominantly
shown on organs such as the lungs, kidneys, and the heart, which all express ACE2R. Importantly,
the redox state of adipocytes has been shown to regulate the progression of uremic cardiomyopathy in
partially nephrectomized mice. This means that oxidative stress, caused by increased carbonylation
of the Na/K-ATPase α1 subunit and the subsequent increased activity of Src, may contribute to renal
failure and subsequent renal-cardiac syndrome [11].

Both COVID-19 and obesity have deep, adverse effects on cardiac function. Excess pericardial fat
found in obesity increases inflammatory cytokines near the heart, similar to the inflammatory cytokine
storm seen in COVID-19 infection [13–15]. Additionally, obese patients are susceptible to heart failure
following COVID-19 infection due to the increase in inflammatory cytokines. COVID-19 morbidity
and mortality are indeed higher in obese patients. Since white adipocytes have an upregulation of
ACE2 receptor, obese patients provide an ideal scenario for higher COVID-19 entry into their cells.
Through exploring the pathophysiological process in COVID-19, novel treatment options might be
found while waiting for a viable vaccine.

Increased ROS and levels of inflammatory cytokines have also been implicated in the ebola virus
(EBOV) [16,17]. Obesity and increased levels of circulating interleukin-6 (IL-6) have been associated
to the morbidity and mortality seen in Human immunodeficiency virus (HIV) [18,19]. Inducing of
antioxidant genes such HO-1 expression had similar effects in patients with HIV. Administration of
Anti-HIV drug; AZT-Heme arginine increases antioxidant levels and inhibits viral RNA replication
enzyme [20–22]. Additionally, like COVID-19, SARS/MERS infections have been associated with
massive inflammatory cytokine storms [23,24]. A possible association, albeit a weak one, has also been
suggested between decreased HO-1 expression and epidemics [25].
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SARS-CoV-2 patients are known to have a severe systemic inflammatory reaction which includes
degradation of heme to porphyrin and iron. The increased iron levels can overwhelm the cytoprotective
capacity of HO-1, resulting in the formation of reactive oxygen species (ROS) [26] and augmented
carbonylation of the Na/K-ATPase α1 subunit.

1.2. Obesity and Its Global Importance

Obesity is a major risk factor for non-communicable diseases including cardiovascular disease,
diabetes, renal pathologies, musculoskeletal disorders, and some cancers [27]. Obesity can be measured
using the BMI scale which measures the weight to height ratio (kg/m2). Although BMI does not directly
measure body fat, research has shown that BMI correlates with other direct fat measurements, such as
underwater weighing, dual energy x-ray absorptiometry, bioelectrical impedance, as well as skinfold
thickness measurements [28–30]. A BMI greater than 25 is considered overweight, while that greater
than 30 is considered obese. According to the World Health Organization, worldwide obesity has
almost tripled since 1975 and more than 1.9 billion adults (18 years and older) in 2016 were considered
overweight, of which 650 million were obese.

1.3. The Interplay between Obesity and the Na/K-ATPase Pump Can Provide an Inflammatory Platform That
Exacerbates COVID-19 Infection

Obesity is a major risk factor for insulin resistance, vascular dysfunction, hypertension,
and diabetes [26,31–33] and is also characterized for an increased level of circulating and tissue
resident inflammatory cytokines and adipokines that have adverse effects on organ function and
vasculature [34–36]. Adipose tissue in humans is located around internal organs (visceral fat), beneath
the skin (subcutaneous fat), in bone marrow (yellow bone marrow), in breast tissue, and intramuscularly
(muscular system), and it can be characterized as white, beige, or brown adipose tissue. Brown adipose
tissue has high thermogenic activity due to higher number of mitochondria expressing uncoupling
protein 1 (UCP-1). White adipose tissue consists of mature adipocytes that store fat resulting in further
hyperplasia and hypertrophy. Generally, the white fat cell dysfunction in obesity is assumed to be a
consequence of the pathogenesis of obesity, but studies have shown that the adipocyte plays a key role
in the pathogenesis of obesity, creating the conditions for increased oxidative stress, leptin and insulin
resistance, and promoting renal and cardiovascular disease [37]. White fat cells have lower density of
insulin receptors and actively release tumor necrosis factor α (TNFα), IL-6, and adiponectin [34,38].

Interventions that diminish fatty acid accumulation, such as the arachidonic acid metabolite
EET [39,40] or inducers of the antioxidant gene HO-1, e.g., cobalt compounds such as cobalt chloride
(CoCl2) and cobalt protoporphyrin (CoPP) IX dichloride, are associated with increased insulin sensitivity,
vascular function, improve cardiac function in heart failure patients, decreased levels of NOV, IL6 and
TNF and the conversion of white adipocytes to brown adipocytes [32,41–43]. When administered to
obese mice, herbal medicines with the ability to lower ROS, e.g., pomegranate seed oil or Thymoquinone
present in black seed oil, reduce obesity-induced ROS Inflammation, NOV, and are accompanied with
the conversion of white adipocytes to beige fat [44,45]. In obesity the white adipocyte phenotype can be
induced by mitochondrial dysfunction, augmented ROS production, systemic oxidative stress, and an
increase in inflammation [7,32,45–47]. However, it has been shown in a number of tissues and organs,
including the kidney, adipose tissue, and heart, that Na/K-ATPase can exert the so-called oxidant
amplification loop pathway (NKAL) [11,48–51]. This mechanism, initiated by ROS, results in further
production of ROS downstream the NKAL pathway, where the activated Na/K-ATPase functions as a
scaffolding protein [52,53]. Typically, the Na/K-ATPase α1 subunit negatively regulates Src activity;
however, when an increased oxidant environment causes carbonylation of the α1 subunit of the pump,
the pump becomes inactivated, allowing Src to promote additional ROS production [54,55].

White adipocytes have increased carbonylation of the α1 subunit of Na/K-ATPase. There has been
research showing that using an adipocyte-specific NaKtide, driven by the adiponectin promoter in a
lentiviral vector, inhibits pathological Na/K-ATPase signaling and Src activation that results from α1
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carbonylation [11,56]. In fact, synthetic pNaKtide has been shown to be effective in reducing obesity,
oxidative stress, and cardiovascular disease [48]. Since obesity results in the increase in ROS and
increase in inflammatory markers, this may have a negative effect on COVID-19 and the cytokine
storm associated with it. It appears that using pNaKtide as a Src antagonist may reduce ROS and
potentially ameliorate negative effects of COVID-19 (Figure 1). In this article, we will further discuss
the ramifications of increased ROS due to the interplay between obesity and COVID-19 and how that
can result in renal dysfunction and cardiomyopathy. We will discuss the use of NaKtide as potential
therapeutic agents to ameliorate the adverse effects on the kidneys and heart in infected subjects
with COVID-19.
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Figure 1. Adipocytes, NaKtide, and COVID-19 inflammation.

In COVID-19, the viral spike protein binds weakly to the ACE2R but with strong affinity to
the porphyrin ring [7]. Heme is made of porphyrin, thus allowing COVID-19 to access the cells via
the ACE2 receptor and bind functional hemoprotein. The subsequently increased free heme levels,
and decreased levels of functional hemoprotein and increased in NaKATPase can heavily contribute to
COVID-19-induced systemic inflammation.

Recent research suggests that altered iron homeostasis plays a role in COVID-19 pathogenesis [57].
COVID-porphyrin complexes release free iron producing increased ferritin synthesis. Additionally,
the cytokine storm seen in COVID-19 also stimulates further ferritin synthesis [7]. This increase in
ferritin causes an interaction between oxygen and free generating ROS [57]. Iron enters the cells through
the regulator hepcidin reacting with ferroproteins [58]. Iron dysmetabolism may occur with ferroptosis
and hyperserotonemia in hepcidin-like activity of COVID-19 [59]. This iron metabolism dysfunction
can impair the transport of O2 contributing to the difficulty in breathing seen in COVID-19 infection [60].
Viruses have also been shown to depend on iron to replicate in host cells [61]. This increase in iron can
further induce SARS-CoV-2 infection and reproduction in patients. Free iron has also shown damaging
effects by iron toxicity in increasing ROS resulting in negative outcomes for the kidneys, liver, and heart.
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A lack of antioxidants such as NaKtide results in free heme and iron, causing inflammation from the
bound COVID–porphyrin complex, as shown in Figure 2.Antioxidants 2020, 9, x FOR PEER REVIEW 5 of 21 
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1.4. White Adipocyte vs Brown Adipocyte: Negative Implications in COVID-19

Obese individuals carry a higher amount of white adipose tissue when compared to lean
individuals, who have a higher number of brown adipocytes. Additionally, white adipocytes,
which are proinflammatory, have fewer mitochondria compared to brown fat cells. Brown adipocytes
have increased intracellular droplets and UCP-1 that allow for non-shivering thermogenesis during
cold stress. In contrast, white adipose tissue is unilocular, stores energy, and secretes adipokines [62],
as shown in Figure 3. White adipocytes also present with mitochondrial dysfunction which can be
ameliorated by increasing levels of peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC1α), a regulator of mitochondrial biogenesis and adaptive thermogenesis. Additionally,
increased levels of mitochondrial fusin proteins mitofusin 1 and 2 (MFN1 and MFN2) and Sirtuin
1 (SIRT1) are all responsible for the improvement of mitochondrial function and “browning” of
white adipocytes [63]. Mitochondria levels are important as they produce a significant amount
of ROS during the electron transport chain (ETC) [64]. During oxidative phosphorylation in the
production of adenosine triphosphate (ATP), some electrons leak through complex I and III back
into the mitochondrial matrix, binding to oxygen, forming superoxide anion or hydrogen peroxide.
This superoxide anion may result in further formation of free radicals. In brown fat, UCP can exert a
neutralization of the harmful ROS through the uncoupling of mitochondrial respiration, which causes
protons to leak through the membrane, producing heat from the electrochemical energy. UCP can
also be induced by carbon monoxide. Obese individuals have decreased brown fat and therefore
decreased uncoupling and thermogenesis resulting in increased ROS. When diabetes and obesity
co-exist, there are even more white adipocytes than brown adipocytes, and thus fewer mitochondria to
perform thermogenesis.
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It has been shown that the treatment of obese mice with adipocyte-specific NaKtide stimulates
mesenchymal stem cells within adipose tissue and the committed pre-adipocyte progresses towards
brown adipocyte linages. Mesenchymal stem cells serve as a reservoir in the formation of brown
adipocyte by adipocyte specific NaKtide, not only ensuring sustained production of brown adipocytes
but also the browning of other adipocytes and decreasing M1-like macrophage infiltration, reduced
level of inflammatory molecules, and weight loss. Notably, the reduction of epicardial fat in humans
and mice increases left ventricle function and prevents heart failure [13]. In the particular case of
obese patients with COVID-19 infection, the effects of NaKtide on reducing cytokine storm represent a
potential therapeutic benefit that could help to expedite the recovery of obese patients coursing with
COVID-19, while we await more efficient antivirals and/or effective vaccines. Finally, the NaKtide
targeting of adipose tissue, whether with tissue specific lentiviral vectors or through brown stem cell
strategies, is also a promising strategy for the treatment of metabolic syndrome.

Cells expressing high levels of ACE2 receptor may have an increased intake of the novel
SARS-CoV-2, resulting in a more severe infection and inflammation. White adipocytes express more
ACE2 receptors than their counterparts, namely the beige and brown fat cells. This is in line with
the more severe cases of COVID-19 infection and inflammation in obese patients, likely due to the
upregulation of the ACE2 receptor on the white adipocyte cells.

1.5. Obesity and Oxidative Stress

Obesity has been shown to increase inflammatory cytokines and ROS, and vascular dysfunction
and insulin resistance are increased [31,34,65,66]. It has been shown that mice fed a HFD have increased
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inflammatory cytokines IL-1, IL-6, and TNFα [13,32,67–69]. The activation of the angiotensin II system
(Ang II) and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) in obesity results
in cardiovascular disease, hypertension, and diabetes [70,71]. These results are due to an increase
in ROS induced by the RAS system which results in hypertrophy of adipocytes [72]. Additionally,
obesity and diabetes play a role in the development of hyperglycemia resulting in high levels of ROS
and heme, which work collectively to cause adipocyte and vascular dysfunction while suppressing
HO-1 [73–77]. This activation of Ang II and NADPH oxidase in obesity, resulting in increased ROS,
could also further exacerbate COVID-19 cytokine storm.

It is well established that obesity greatly increases cardiovascular disease with clear negative effects
on hypertension and atherosclerosis. Notably, non-alcoholic fatty liver disease (NAFLD) and its more
advanced form, non-alcoholic steatohepatitis (NASH), are now recognized as independent factors in the
development and progression of atherosclerosis, the main cause of coronary heart disease, and stroke.
It is thus not surprising that the increased NADPH oxidase activity, heme levels, and mitochondrial
dysfunction, together with increases in NaKATPase that are seen in obese individuals, strongly correlate
with the vascular pathology observed in these patients [73], as illustrated in Figure 4. It is thus possible
that the increased NADPH oxidase activity and suppression of antioxidants that takes place in obesity
can further aggravate COVID-19 infection and some of its associated vascular complications.
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Figure 4. Obesity’s effect on cardiovascular disease, Fatty Liver, Cardiomyopathy and Diabetes
exacerbating COVID-19.

Patients with obesity and diabetes have a high baseline proinflammatory state which can worsen
outcomes during SARS-CoV-2 infection. This proinflammatory state is a result of increased IL-6
from leptin and insulin resistance that takes place in obesity [78]. The resultant increased appetite
further perpetuates the leptin and insulin resistance and IL-6 mediated inflammation. Obesity is
also proinflammatory due to the increased levels of oxidized high-density lipoprotein (OX-HDL).
Specifically, OX-HDL, a form of ROS, plays a role in adiposity and vascular dysfunction and further
increases IL-1, IL-6, TNFα, and Ang II, potentiating the release of inflammatory cytokines by acting
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directly on mesenchymal stem cells. OX-HDL is also associated with an increase in the vasoconstrictor
20-HETE and correlates strongly with obesity-induced oxidative stress and endothelial dysfunction [79].
Therefore, OX-HDL can also further amplify the negative effects of COVID-19 increasing oxidative stress
and further inducing a severe cytokine storm. Figure 5. A cytokine storm is a physiological reaction in
which the innate immune system causes an uncontrolled release of signaling proinflammatory cytokine
molecules [80]. During COVID-19 infection, this cytokine storm can result in multiple organ failure
and mortality. Signs and symptoms of a cytokine storm include inflammation, nausea, fatigue, and a
high fever.
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The cytokine storm is known to nitric oxide synthetase (iNOS)-dependent production of
peroxynitrite, a potent oxidant, from superoxide anions. Peroxynitrite exerts toxic effects on vascular
endothelium. (Reviewed in [26,73]) Since iNOS and peroxynitrite levels are higher in obese patients,
this can also make them more susceptible to the life-threatening effects of the cytokine storm that
takes place during COVID-19 infection. This can be exacerbated by the accompanying increase in
Src-induced ROS formation subsequent to carbonylation of the α1 subunit of Na/K-ATPase.

The increased oxidative stress seen in obesity and diabetes appears to play a role in the development
of uremic cardiomyopathy [11]. Blocking adipocyte NKAL using adipocyte-specific NaKtide expression
has been shown to reduce uremia, oxidant stress, the local elevation of inflammatory cytokines, and to
ameliorate uremic cardiomyopathy [11]. Therefore, we speculate that using adipocyte-specific NaKtide
and HO-1 inducers should have a beneficial effect in COVID-19 patients by ameliorating oxidative
stress, especially in those at higher risk due to increased baseline inflammation, such as diabetic and/or
obese patients.
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1.6. pNaKtide as a Therapeutic Tool for Renal-Cardiomyopathy and Heart Failure

A significant amount of experimental evidence supports the existence of a cardio-renal axis
(Figure 6). Clinically, patients with renal dysfunction consistently course with cardiovascular
dysfunction. This dysfunction has been termed uremic cardiomyopathy, which includes left ventricular
diastolic dysfunction, left ventricular hypertrophy, and left ventricular systolic dysfunction [81].
Chronic kidney disease (CKD) is strongly associated with coronary artery disease, congestive heart
failure, and cardiac arrest. Interestingly, CKD and CVD are both associated with inflammation and
increased oxidative stress due to increased ROS [82]. Increased oxidative stress and mitochondrial
dysfunction are both documented in patients with uremic cardiomyopathy [83].Antioxidants 2020, 9, x FOR PEER REVIEW 9 of 21 
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As we mentioned previously, the inflammatory cytokine storm reported in COVID-19 is the
result of increased levels of free heme and iron that cause the formation of ROS. The increased ROS
induces carbonylation of the Na/K-ATPase α1 subunit exacerbating ROS production, mostly via Src,
and inflammation, leading to NKAL in adipocytes. In obese patients who have increased levels of
adipocytes with high ACE2 receptor concentrations, this can lead to severe inflammatory reactions
and a positive, vicious feedback loop that results in further oxidative damage and inflammation.

In addition to the adverse effects of α1 carbonylation seen in adipocytes, Na/K-ATPase activity in
the renal proximal tubule (RPT) is extremely susceptible to oxidative stress. Indeed, carbonylation of
the Na/K-ATPase α1 subunit in the RPT has been shown to adversely affect the handling of sodium [84].
Specifically, α1 carbonylation results in pathological increase in urinary sodium excretion and has a
desensitizing effect on Na/K-ATPase signaling and ultimately, salt sensitivity [85]. Notably, the redox
state of adipocytes has been shown to regulate progression of uremic cardiomyopathy mice. Thus,
oxidative stress caused by carbonylation of the Na/K-ATPase α1 subunit and the subsequent increased
activity of Src may cause renal failure and subsequent renal-cardiac syndrome [11]. pNaKtide, a Src
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inhibitor, has been shown to effectively block the Na/K-ATPase oxidant amplification loop, improving
the outcome and decreasing risk of a number of diseases associated to oxidative stress such as obesity,
steatohepatitis, atherosclerosis, and cancer. pNaKtide has also been shown to improve outcomes
in ischemia-reperfusion related heart disease and ameliorate pathological changes seen in uremic
cardiomyopathy [49,86]. These positive effects were shown to increase with the dosage of pNaKtide.
Studies demonstrated that treating HFD fed mice with pNaKtide resulted in less body weight gain
decreased oxidative and inflammatory stress and increased insulin sensitivity, showing an effective
amelioration and even reversion of the HFD effects. Thus, selective pNaKtide-mediated inhibition of
the Na/K-ATPase oxidant amplification loop in fat tissue has been suggested as a possible therapy
to treat and prevent obesity, insulin resistance, and metabolic syndrome [48]. Other investigators
have shown that targeting fat tissue with antioxidant genes or inducer of antioxidants ameliorates
renal dysfunction, improves mitochondrial function, and alleviates heart failure [87–89]. In mice fed a
Western diet, adipocyte-specific NaKtide improves mitochondrial dysfunction by increasing levels of
PGC1α which regulates mitochondrial biogenesis and adaptive thermogenesis. Adipocyte-specific
expression of NaKtide also increased the levels of MFN1, MFN2, and SIRT1, all of which are responsible
for improved mitochondrial function and the “browning” of fat [11,56]. These beneficial effects were
positively correlated with a decrease in the α1 carbonylation of the Na/K-ATPase upon NaKtide
treatment [90]. In the context of COVID-19 infection, this can result in further oxidative insult that
contributes to heart failure in these patients.

1.7. NaKtide as Therapeutic Targets for Epicardial Fat and Heart Failure

As discussed previously, COVID-19 induces a cytokine storm due to increased inflammatory
cytokines and ROS, as well as reduced cytoprotection due to carbonylation of Na/K-ATPase and HO-1
deficiency. The virus invades cells via ACE2R and also binds porphyrin to form a COVID-porphyrin
complex that releases free heme and iron contributing to the inflammatory response. This is particularly
important in in organs displaying high levels of ACE2 receptor, such as the heart and kidneys.
Additionally, the virus seems to have more severe effects on patients with obesity who already
have higher baseline levels of inflammation. Obesity has more ACE2R on high amounts of white
adipocytes, resulting in an increased susceptibility to COVID-19 infection. Excess pericardial fat found
in obesity increases inflammatory cytokines near the heart, in a similar manner to the inflammatory
cytokine storm seen in COVID-19 infection. This results in a greater incidence of cardiomyopathy and
subsequent heart failure in obese patients following COVID-19 infection, as represented in Figure 7.
Obesity is associated with increased risk for cardiovascular disease and heart failure and this risk is
further exacerbated by COVID-19 infection. Heart failure is a state of impaired cardiac function that is
secondary to many etiologies.

1.8. Heart Failure and the Significance of Pericardial Adipose Tissue Proximity to the Heart

The American Heart Association (AHA) classified cardiomyopathy as a disease of the myocardium
associated with mechanical or electrical dysfunction that often progresses to heart failure [91].
Cardiomyopathy includes dilated, hypertrophic, and restrictive patterns [92] that can range from minor
impairment of cardiac myocytes to complete heart failure [92]. According to the AHA, heart failure is
defined as “a complex clinical syndrome that results from any structural or functional impairment
of ventricular filling or ejection of blood” [93]. A wide range of factors can result in HF including
coronary artery disease (CAD), hypertension, cardiomyopathy, atrial fibrillation, or HF due to obesity.
Obesity alone is an independent risk factor for hypertension, CAD, and increased risk for HF, as well as
increased morbidity and mortality [94–96]. Animal studies have shown that obesity-induced alterations
in myocardial lipid metabolism lead to the accumulation of various lipid intermediates that are closely
linked to the development of ventricular dysfunction [97]. These pathophysiological changes result in
oxidative stress, fibrosis, diastolic dysfunction, and subsequent systolic heart failure [98]. Additionally,
obesity and an increased in BMI is associated with increased oxidative stress and LV remodeling [99].
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Adipose tissue in general is known to play a significant role in the pathophysiology of patients with
heart failure [13,79,100–102].

COVID-19

High ACE-R on dysfunctional 
epicardial adipose tissue 

found in obesity Porphyrin
|

Hemoprotein

Weak Affinity

COVID-19
|

Porphyrin Complex

ROS and Inflammatory Cytokines → Inflammation
Decreased Cytoprotection → Inflammation

Cardiomyopathy and 
Heart Failure

Unbound
COVID-19

 High
 Affinity

Figure 7. Schematic of increased ACE2R on white adipocytes in pericardial fat. There is increased
baseline inflammation in obesity which is exacerbated due to COVID-19 infection. This can lead to
subsequent cardiomyopathy and heart failure.

Several studies addressed the significance of epicardial fat and co-morbidities including heart
failure with preserved or reduced ejection fraction [36,103]. The adverse effects seen in the presence of
excess pericardial fat in obesity are further exacerbated by COVID-19 infection (reviewed in [7]). Studies
show that heart failure patients had higher levels of epicardial fat, an indication of cardiovascular
risk [13,36,103,104], further confirming the correlation between pericardial fat and heart failure in
humans and mice [13]. Pericardial fat increases the onset of cardiovascular disease and may be the
cause of increased triglycerides in patients with coronary artery diseases [36,103,105]. Studies showed
that pericardial thickness was found to be much greater in patients with chronic atrial fibrillation has
on the heart [106]. Further indicating that pericardial fat and the increase expression of inflammatory
cytokines adjacent to the heart will impair heart function and intervention with antioxidants attenuated
effects of inflammatory cytokines [13,100,107,108]. Excess pericardial may be associated with impaired
lung function. Although the mechanism is not entirely understood, pericardial fat was independently
associated with restrictive lung patterns in middle-aged adults [109]. The pathway linking pericardial
and pulmonary anomalies may also play a role in the detrimental effects that are seen in both the heart
and lungs following COVID-19 infection. As previously discussed, COVID-19 invades organs which
express high levels of ACE-2 receptor such as the heart, lungs, and liver. Obesity is strongly associated
with increased cardiovascular risk and mortality. This increased risk is due to the hyperplasia and
hypertrophy of white adipocytes [110].

Cardiovascular risk is not only linked to the overall quantity of adipose tissue, but also to
the location of the adipose tissue near the heart [36]. Adipocytes are found in various locations in
the human body, including epicardial, paracardial, and pericardial fat which surrounds the heart
Figure 8 [111]. Epicardial adipose tissue is essentially the fat depot located directly on the heart
and is associated with alterations to cardiac function [106]. Patients with increased visceral adipose
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tissue have increased epicardial fat volume [112]. Pericardial fat is found directly adjacent to the
myocardium with no barrier of fascia separating the two tissues [111]. Under normal states of low
oxidative stress, pericardial fat serves an anti-inflammatory function [113]. Pericardial fat secretes
factors that regulate physiologic processes in the heart [114]. In patients who are more susceptible to
heart failure, such as obese patients, the systemic inflammation that results from COVID-19 infection
may further increase the risk for heart failure. As discussed previously, NaKtide, which targets the
NAKL may be useful targets to reduce the inflammatory cytokine storm seen in COVID-19 infection.
Targeting these cytokines may be an important target for therapy to reduce inflammation in COVID 19
and subsequent effects on the heart. Moreover, increased epicardial adipose tissue alone may be an
indicator of increased cardiovascular risk in females [104,115]. All the above observations indicate that
pericardial fat conveys the adverse effects of systemic inflammation directly to the heart and sensitivity
to COVID. Thus, targeting pericardial fat for treatment options to reduce the risk of heart failure needs
to be explored further. It appears that induction of anti-inflammatory and antioxidative agents such as
NaKtide may ameliorate the cytokine storm and improve the adverse effects on the myocardium that
are exacerbated by COVID-19 infection.

Paracardial 
Adipose Tissue 
(PAT) Epicardial 

Adipose Tissue 
(EAT)

Parietal 
Pericardium

Figure 8. Figures show proximity of Pericardial fat adipose tissue to the heart. Figure also identifies
paracardial adipose tissue. Paracardial adipose tissue includes both Pericardial fat and Paracardial
adipose tissue.

1.9. White Adipocytes Increase Inflammation Near the Heart

Obesity is associated with adverse remodeling of adipose tissue [116]. Development of heart failure
seems to be caused by increased proinflammatory cytokines and reduced cytoprotective autacoids [106].
Excess epicardial and paracardial fat found in obesity are major sources of inflammation which can
lead to adverse cardiac remodeling [104]. Dysfunctional adipose tissue releases proinflammatory
adipokines that have negative effects on the cardiovascular system [117]. The inflammatory cytokines
associated with pericardial fat and obesity include NOV, TNFα, IL-4, and IL-6 [13,67,68]. NOV is
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associated with increased inflammation and tissue damage and reduction in ejection fraction [13,68,118]
and reduction of NOV by increased levels of PGC1-HO-1 contribute to a reversal of heart failure
in obesity-Induced diabetic cardiomyopathy [67,68,119]. NOV, in obesity, may potentiate adipocyte
hyperplasia, further increasing inflammation Figure 9. Reduction of NOV decreases fat mass and
proinflammatory cytokines in adipose tissue of obese mice and ablation of HO-1 increase NOV [120].
A strong association exists between inflammation and NOV in pericardial fat compared visceral fat
(Figure 9) and decreases infraction shortening [87,89,121]. Thus, NaKtide with antioxidants ability
may represent a therapeutic target to treat the cytokine storm in COVID-19 patients.
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Figure 9. NOV mRNA expression in pericardial fat vs. visceral fat. NOV expression is increased in
pericardial fat.

1.10. White Adipocytes Have Fewer Mitochondria and Reduced Cytoprotection

Obesity increases the volume of pericardial fat followed by inflammation that converts brown
fat to white fat along with mitochondrial destruction. This negatively affects cardiovascular risk
in obesity. White fat is proinflammatory and has lower levels of mitochondria compared to brown
fat. Brown fat can prevent ROS formation through uncoupling mechanisms in the mitochondria
by thermogenesis. This allows for the degradation of the electrochemical gradient generated in the
mitochondria during oxidative phosphorylation. This process occurs in brown fat and reduces ROS
formation. This uncoupling process does not occur in obesity because there is a greater number of
white adipocytes which contain fewer mitochondria. The result is greater ROS in obese patients.
Similarly, the expression of uncoupling gene UCP1 and mitochondrial dynamics-related mitofusin
gene MFN2 are reduced in epicardial fat compared with visceral fat [13].

Morbid obesity causes increased pericardial thickness which has a direct association with increased
left ventricular mass and decreased left ventricular function [99,101]. This increased pericardial
thickness is also associated with impaired fractional shortening [101,104]. Cardiac function measured
with echocardiography was found to be impaired in obese mice compared to lean mice. This reduced
function was determined by analyzing left ventricular fractional shortening [13]. Pericardial fat is
associated with cardiomyopathy and cardiac remodeling [14,122]. Figure 10 represents fat accumulation
and inflammation adjacent to the epicardium, resulting in increased ROS with adverse effects on
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cardiac structure and function [123]. Increased ROS can cause cell death and release highly reactive
free radicals that induce adverse cardiac remodeling [124,125].
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As shown on Figure 10, NaKtide is a potential target for attenuation of left ventricular dysfunction
caused by obesity. Naktides increased PGC1α that is critical for restoring left ventricular function [13].
Increases in PGC1α are associated with a reduction in fat deposition, which results in a reduction
of adipose-mediated increases major inflammatory adipokines and NOV expression [13,68,119].
This decrease in NOV is associated with a reduction of other inflammatory adipokines and may
have a direct effect on left ventricular fractional shortening via increase of brown stem cells [126,127].
The importance of brown adipocyte level in adipose tissue stems from the key role these cells have in
maintenance of mitochondrial function, anti-inflammation and anti-obesity, thermogenesis [128] and
production and release of signaling molecules. Gao et al.l [129] and others [130] demonstrated that high
fat diet (HFD) intake led to the reduction of AMPK, UCP1, PGC1, and Foxp1 [131] with a concomitant
decrease in the number of brown adipocytes. In contrast, an increase in SIRT3 [131] and PGC1 augment
the number of brown adipocytes and improve heart function [13,132] Additionally, expansion of white
adipocytes increases infiltration of inflammatory cells such as M1-like macrophages and CD8+ cells,
with impairment of the molecular network that participates in reprograming white adipocytes to
the brown phenotype. Levels of brown adipocytes can be influenced by caloric restriction, or intake
of agriculture-derived Chinese medicine Jinlida granulate and Cinnamam cassia extract [133,134]
and nutrients such as pomegranates, Milk thistle, Cumen, and black seed oil [44,45,135], all via an
increase in mitochondrial function and the signaling network involving PGC1, SIRT1, and fibroblast
growth factor 21 (FGF21), as well as energy expenditure. Targeting adipose tissue with NaKtide will
result in a sustained number of brown-like adipocytes that allow to combat obesity by increased
thermogenesis, fat burning and amelioration of the cytokine storm. These factors suggested that
NaKtide administration may reduce the severe inflammation that is seen in obese patients following
COVID-19 infection. This may assist with restoring left ventricular function.

2. Conclusions

This review summarizes findings supporting the notion that chronic obesity results in a state
of systemic inflammation that has many downstream effects on distal organ function. These effects
include increased ROS production, low baseline levels of cytoprotective autocoids, uncoupling of
mitochondrial enzymes, and increased Src activity due to carbonylation of the Na/K-ATPase α1 subunit
with cytokines storm and heart failure. These effects are further exacerbated by SARS-CoV-2 which
induces a cytokine storm. Thus, there is an increased risk of renal dysfunction and subsequent heart
failure in COVID-19 patients with obesity. Until a vaccine for COVID-19 is found, we suggest that
a combination of natural antioxidants and pNaKtide can block NKAL-derived can sever ROS and
ultimately ameliorate the production of the cytokine storm and heart failure.
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