Skip to main content
. 2020 Nov 13;20(22):6487. doi: 10.3390/s20226487
Algorithm 1 Multi-Vehicle Cooperative Target Tracking
Initialization:x^1|1, P1|1,{α1|1,t,β1|1,t}t=1m2
Time outer loop
For k=2,3,
Prediction:
x^k|k1=Fkx^k1|k1
Pk|k1=FkPk1|k1FkT+Q
αk|k1,t=ραk1|k1,t  t=1,2,,m2
βk|k1,t=ρβk1|k1,t  t=1,2,,m2
Correction:
JHk=h(x)x|x=x^k|k1
H¯k=[JHk,H]T
yk=[yk1,yk2]T
αk|k,t0=αk|k1,t
βk|k,t0=βk|k1,t
Variational inner loop
 For i=0,1,2,
  Σk2i+1=diag(βk|k,1iαk|k,1i,,βk|k,m2iαk|k,m2i)
  Σki+1=diag(Σk1,Σk2i+1)
  Ski+1=H¯kPk|k1H¯kT+Σki+1
  Kki+1=Pk|k1H¯kT(Ski+1)1
  x^k|ki+1=x^k|k1+Kki+1(ykH¯kx^k|k1)
  Pk|ki+1=(IKki+1H¯k)Pk|k1
  αk|k,ti+1=αk|k1,t+12  t=1,2,,m2
  βk|k,ti+1=βk|k1,t+12(HPk|ki+1HT+(yk2Hx^k|ki+1)(yk2Hx^k|ki+1)T)tt  t=1,2,,m2
  Convergence judgment
  Condition 1: x^k|ki+1x^k|ki2x^k|ki2<ε
  Condition 2: i>c
End the inner loop
x^k|k=x^k|kI+1,Pk|k=Pk|kI+1, I is the number of VB iteration
End the outer loop
Outputs: {x^k|k,Pk|k}k=2,3,,