Table 5.
Methods | Channels | Overall Performances | |||||
---|---|---|---|---|---|---|---|
Reference | Feature | Classifier | Refinement | Acc | MF1 | Kappa | |
Sleep-EDFx | |||||||
Supratak et al. [17] | CNN & RNN | FC | - | 1 | 82.0 | 76.9 | 0.76 |
Tsinalis et al. [36] | Handcraft | AE | - | 1 | 78.9 | 73.7 | - |
Yu et al. [37] | ACNN | FC | - | 1 | 82.8 | 77.8 | - |
Phan et al. [20] | ARNN | SVM | - | 1 | 82.5 | 72.0 | 0.76 |
Mousavi et al. [38] | CNN & ARNN | FC | - | 1 | 84.3 | 79.7 | 0.79 |
Zhang et al. [24] | MB-CNN | FC | Expert Rules | 4 | 83.6 | 78.1 | 0.77 |
Proposed | MB-CNN | FC | FC | 4 | 85.8 | 81.2 | 0.80 |
UCDDB | |||||||
Shi et al. [19] | Handcraft | RF | - | 2 | 81.1 | - | - |
Martin et al. [39] | Handcraft | DBN | HMM | 3 | 72.2 | 70.5 | 0.64 |
Yuan et al. [40] | MB-CNN | FC | - | 4 | 74.2 | 68.2 | - |
Cen et al. [41] | CNN | FC | HMM | 4 | 69.7 | - | - |
Proposed | MB-CNN | FC | FC | 4 | 79.4 | 78.8 | 0.73 |
ACNN: attentional CNN, ARNN: attentional RNN, AE: auto encoder, DBN: deep brief nets.