Skip to main content
. 2020 Nov 18;20(22):6592. doi: 10.3390/s20226592

Table 5.

Performance of different methods on the Sleep-EDFx and UCDDB datasets.

Methods Channels Overall Performances
Reference Feature Classifier Refinement Acc MF1 Kappa
Sleep-EDFx
Supratak et al. [17] CNN & RNN FC - 1 82.0 76.9 0.76
Tsinalis et al. [36] Handcraft AE - 1 78.9 73.7 -
Yu et al. [37] ACNN FC - 1 82.8 77.8 -
Phan et al. [20] ARNN SVM - 1 82.5 72.0 0.76
Mousavi et al. [38] CNN & ARNN FC - 1 84.3 79.7 0.79
Zhang et al. [24] MB-CNN FC Expert Rules 4 83.6 78.1 0.77
Proposed MB-CNN FC FC 4 85.8 81.2 0.80
UCDDB
Shi et al. [19] Handcraft RF - 2 81.1 - -
Martin et al. [39] Handcraft DBN HMM 3 72.2 70.5 0.64
Yuan et al. [40] MB-CNN FC - 4 74.2 68.2 -
Cen et al. [41] CNN FC HMM 4 69.7 - -
Proposed MB-CNN FC FC 4 79.4 78.8 0.73

ACNN: attentional CNN, ARNN: attentional RNN, AE: auto encoder, DBN: deep brief nets.