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ABSTRACT

COVID-19 virus has encountered people in the world with numerous problems. Given the negative im-
pacts of COVID-19 on all aspects of people’s lives, especially health and economy, accurately forecasting
the number of cases infected with this virus can help governments to make accurate decisions on the in-
terventions that must be taken. In this study, we propose three hybrid approaches for forecasting COVID-
19 time series methods based on combining three deep learning models such as multi-head attention,
long short-term memory (LSTM), and convolutional neural network (CNN) with the Bayesian optimiza-
tion algorithm. All models are designed based on the multiple-output forecasting strategy, which allows
the forecasting of the multiple time points. The Bayesian optimization method automatically selects the
best hyperparameters for each model and enhances forecasting performance. Using the publicly available
epidemical data acquired from Johns Hopkins University’s Coronavirus Resource Center, we conducted
our experiments and evaluated the proposed models against the benchmark model. The results of experi-
ments exhibit the superiority of the deep learning models over the benchmark model both for short-term
forecasting and long-horizon forecasting. In particular, the mean SMAPE of the best deep learning model
is 0.25 for the short-term forecasting (10 days ahead). Also, for long-horizon forecasting, the best deep

learning model obtains the mean SMAPE of 2.59.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Coronavirus 2019 (COVID-19) pandemic [1] has spread from
Wuhan, China to other countries in the world. It has high viral in-
fectivity and a rapid rate of spread compared to prior infectious
diseases which makes its control hard [2]. Since its emergence,
COVID-19 disease has encountered people in the world with many
problems. It has more negative impacts on people’s health and in-
terrupted the economy. As a result, many countries have imple-
mented strong interventions to control the spread of the epidemic
and to reduce the negative effects of COVID-19 disease [3]. Al-
though the interventions vary between countries, the commonly
adopted interventions are social distancing, border closure, school
closure, lockdown, travel banning, and public events banning [4].
The effectiveness of interventions across 11 European countries
has been investigated in Flaxman, Mishra [4] concluding that the
adopted interventions were effective in reducing the rate of trans-
mission of COVID-19 epidemic.

To evaluate the success of controlling COVID-19 epidemic, it is
vital to accurately monitor and reveal the data about the number
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of cases infected with it [2]. Making public the data of confirmed
cases of countries in the world allow academics to conduct mod-
eling on data in order to gain useful knowledge about the trend of
the disease. Johns Hopkins University’s Corona Virus Resource Cen-
ter [5] has collected and published the data about the COVID-19
confirmed cases which are used by scholars to model the spread
of the disease and perform data analysis.

Given the negative impacts of COVID-19, accurately forecasting
the number of cases infected with this virus is a vital task to re-
veal the trend of the disease and thereby to help governments
to take preventive measures [6]. Previous researches on COVID-
19 time series forecasting have adopted mathematical and compu-
tational intelligence models to forecast the number of confirmed
cases. In [7] the adaptive neuro-fuzzy inference system (ANFIS)
was employed to forecast the number of infected cases in China.
In [3] mathematical and computational models such as Logistic,
Gompertz, and ANN were applied to model the number of cases
in Mexico. Castillo and Melin [8] proposed a new combined ap-
proach with fuzzy fractal and fuzzy logic to predict the number
of confirmed cases of COVID-19 in 10 countries. Also, in [9], a new
ensemble approach based on ANNs and fuzzy aggregation was pro-
posed and its performance was evaluated on COVID-19 time series
of Mexico and its 12 states which showed significant improvement
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Table 1
Summary of studies on COVID-19 infection forecasting.
Reference Modeling techniques Country Date
[7] ANFIS China 21 January, 2020 to 18 February, 2020
[19] Logistic model, Bertalanffy model and China 15 January, 2020 to 4 April 2020
Gompertz model
[20] Gompertz and Logistic China, South Korea, Italy, and Singapore Until 27 March, 2020
[3] Gompertz, Logistic Artificial Neural Networks Mexico February 27, 2020 to May 8, 2020
[6] ANN, ARIMA Iran Trainset:19 February, 2020 to 24
March, 2020
Test set: 25 March, 2020 to 31 March, 2020
[8] Fuzzy Fractal Ten countries: US, United Kingdom, Turkey, July 22, 2020 to 7 August, 2020
Spain, Mexico, Italy, Iran, Germany, France,
and Belgium
[9] An ensemble of neural network models with Mexico and 12 states in Mexico Not available
fuzzy aggregation
[2] ARIMA, nonlinear autoregression neural Denmark, Belgium, Germany, France, United Until 3 May, 2020
network (NARNN), and LSTM Kingdom, Finland, Switzerland and Turkey
[10] Bi-directional LSTM, India (32 Indian states) March 14, 2020- May 14, 2020
Stacked LSTM, and
Convolutional LSTM
[11] ARIMA, support vector regression (SVR), Ten countries: Brazil, China, Germany, India, Until June 27, 2020
LSTM, GRU, and Bi-LSTM Israel, Italy, Russia, Spain, UK, USA
[12] LSTM Russia, Peru and Iran Until July 7, 2020

than single ANN. In recent studies [2,10-12], deep learning meth-
ods such as LSTM and bidirectional LSTM (BiLSTM) have been uti-
lized for COVID-19 time series forecasting . The results indicated
that LSTM and its variants have good performance in predicting
the COVID-19 time series. In the literature review section, we will
give a comprehensive review of studies related to COVID-19 time
series forecasting.

Although LSTM was recently applied for COVID-19 infection
forecasting, the predictive power of other deep learning methods
that are suitable for sequence processing problems has not been
explored in COVID-19 forecasting context. Therefore, in this pa-
per, in addition to LSTM [13], we focus on the other deep learning
models including the multi-head attention [14], and CNNs [15] to
forecast the number of cases of COVID-19. Furthermore, the per-
formance of deep learning methods mainly influenced by hyperpa-
rameter tuning [16]. There are several hyperparameters that must
be specified when employing a deep learning model. The previous
studies on COVID-19 forecasting using the LSTM method have not
exploited an optimization method to identify the optimal hyperpa-
rameters. Most of those studies (e.g. [2,10,12]) have implemented
models using hand-tuned hyperparameters. As another contribu-
tion, in this study, we utilize the Bayesian Optimization method
[17] in order to optimize the hyperparameters of Multi-head at-
tention, LSTM, and CNN. Besides, the design of proposed methods
is based on the multiple output approach that allows forecasting
of the number of cases for multiple next days.

Overall, the main contributions of this study are as follows:

1 Adopting the deep learning models to predict the number of
daily infected cases with COVID-19.

2 Exploiting the Bayesian Optimization for optimal parameter se-
lection.

3 Adopting a multiple-output modeling approach: The models are
designed to be multi-output to predict the next few days. The
usual approach to multi-step-ahead prediction is iterated one-
step-ahead forecasting in which the forecasting of the n next
steps performed as a n single step-ahead forecasting. Multi-
output forecasting is an effective choice for long-horizon fore-
casting [18].

The deep learning models are applied on COVID-19 data of the
top 10 countries with the highest number of infections. To evaluate
the performance of the proposed models, we perform two sets of
experiments. The first set of experiments explores the effectiveness

of the proposed models in short-term forecasting and compares
their performance with the results of the fuzzy fractal model pre-
sented in [8]. The results indicated the deep models achieve better
performance than the fuzzy fractal across all countries. Also, the
second set of experiments are conducted to investigate the predic-
tion power of the devised models in a wider forecasting window.
The results can help governments in long-term decision making to
control the pandemic.

The rest of this paper is organized as follows. In Section 2, we
provide a comprehensive literature review on models and meth-
ods proposed for COVID-19 time series forecasting. Section 3 de-
scribes the structure of the proposed models. In Section 4, we de-
scribe the data and provide the detailed results of the proposed
models and compare their performance to the benchmark model.
Section 5 concludes the paper and outlines future work.

2. COVID-19 time series forecasting

In this section, we summarize the previous studies in the con-
text of COVID-19 time series prediction. Since the publicly avail-
able data of COVID-19 contains daily statistics of the confirmed
cases, so it is considered as a time series data and the time se-
ries forecasting techniques can be exploited to this data. Table 1
illustrates the researches on COVID-19 time series forecasting. The
table highlights the modeling techniques, the countries, and the
time period of the utilized data in each study. As Table 1 indi-
cates, various types of methods including mathematical, statistical,
machine and deep learning, and fuzzy logic-based techniques have
been employed for COVID-19 time series forecasting. From math-
ematical models, the Gompertz model and logistic models have
been used in several studies (i.e. [3,19,20]). Also, from statistical
methods, the Auto-Regressive Integrated Moving Average (ARIMA)
approach has been employed in some studies such as [2,6,11]. Be-
sides, the machine and deep learning techniques such as ANN and
LSTM have exhibited improvements in COVID-19 time series fore-
casting studies (e.g. [2,10,12]). Also, some methods based on fuzzy
logic have been proposed in the literature(e.g. [7,8]). As the litera-
ture review indicates, the exploitation of deep learning models has
led to improvements in the prediction of COVID-19 cases [2,10-
12]. Since the COVID-19 time series forecasting task is a kind of
sequence processing, other deep learning models can be adopted
to forecast the COVID-19 time series [12]. The remarkable charac-
teristic of the machine and deep learning methods is their ability
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to capture nonlinear patterns [21], which makes them suitable for
modeling complex time series.

In the recent years, in addition to the LSTM model, other types
of deep learning models such as methods based on the atten-
tion mechanisms and convolutional neural networks have demon-
strated promising results in many areas of applications such as
natural language processing (NLP) [22], stock market price fore-
casting [21] and so on. Investigating the literature on COVID-19
forecasting reveals that attention mechanism and the convolutional
neural network have not been employed for COVID-19 prediction.
Therefore, this study aims to propose deep learning models based
on these methods to evaluate their effectiveness in forecasting
COVID-19 infected cases.

3. The proposed models

In this study, we consider three different deep learning
methods to predict the cumulative number of cases. The three
proposed methods are the multi-head attention-based method
(ATT_BO), CNN-based method (CNN_BO), and LSTM-based method
(LSTM_BO). As illustrated in Fig. 1, all proposed methods are com-
bined with the Bayesian optimization algorithm to select the op-
timal values of hyperparameters. In Fig. 1, the Bayesian optimizer
[23] accomplishes the task of identifying the optimal hyperparam-
eters. A common alternative to Bayesian optimization is the grid
search which is a time-consuming method. The reason for choos-
ing Bayesian optimization are: (1) the superiority of Bayesian op-
timization over grid search has been proved in previous studies
[24] (2) unlike grid search, Bayesian optimization can efficiently
find the optimal hyperparameters with fewer iterations [25]. In the
following subsections, we describe the structure of the proposed
models.

3.1. ATT_BO

Recently attention mechanisms have been employed success-
fully in the sequence processing tasks and especially in natural
language processing applications [21,22]. The study of Vaswani,
Shazeer [26] demonstrated the effectiveness of the attention mech-
anism for processing sequence data. In this study, we propose a
multi-head attention-based model for COVID-19 forecasting using
the multi-head attention mechanism developed in [26] (Fig. 2). An
attention function takes a query Qand a set of keys and values
<K,V > to get the output O. This procedure is often called Scaled
Dot-Product Attention. Multi-head attention is a set of multiple
heads that jointly learn different representations at every position
in the sequence [14]. The proposed attention method (ATT_BO) has
three main parts including the multi-head attention layer, the flat-
ten layer, and the fully connected layer. After preprocessing the in-
put data and creating the instances, the multi-head attention layer
computes a new representation of the input data which are more
informative than the input data. The output of the multi-head at-
tention layer is reshaped using the flatten layer and finally, the
outputs are produced using the fully connected layer. The supe-
riority of the proposed model is attributed to the multi-head at-
tention layer which has the ability to capture the most important
input features and gives higher weights to them.

3.2. LSTM_BO

Deep learning methods such as RNNs are suitable for sequence
processing as they consider the temporal behavior of a given time
series [21]. But, the main shortcoming of RNNs is the vanish-
ing/exploding gradient problem that makes their training a difficult
task [27]. To overcome this problem, LSTM which is a kind of gated
RNNs are often employed [28]. The structure of an LSTM block is
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depicted in Fig. 3. Each LSTM block consists of a memory cell along
with three gates including an input gate i(t), the forget gate f(t)
and the output gate o(t) which regulate the flow of information to
its cell state c(t):

Each of the three gates accomplishes a different operation [29]:

o The forget gate determines which information is discarded.

e The input gate decides which information is input to the cell
state.

o The output gate regulates the outgoing information of the LSTM
cell.

The architecture of the proposed LSTM-based (LSTM_BO) is ar-
ticulated in Fig. 4. This method consists of three main parts, in-
cluding the LSTM layer, the flatten layer, and the fully connected
layer. The input time series is firstly preprocessed and then is fed
into the LSTM layer, which learns a new representation of data
considering the dependency among data. Afterward, the output of
the LSTM layer is reshaped into a suitable format using a flatten
layer and then is fed into a fully connected layer. Finally, the fully
connected layer produces multiple outputs.

3.3. Convolutional model

CNNs are quite successful in processing machine vision prob-
lems [15]. In this study, we implement CNN for COVID-19 time se-
ries forecasting. The convolutional layers in CNNs take input data
and apply convolution operation on data using convolution kernels
to extract new features. The convolution kernel is a small win-
dow that slides over the input data and performs convolutional
operations to extract new features [30]. The derived features us-
ing the convolution operation are usually more discriminative than
the raw input data, therefore, improving the forecasting. The archi-
tecture of the proposed CNN-based model (CNN_BO) is described
in Fig. 5. CNN_BO contains three main parts: the convolution layer,
the flatten layer, and the fully connected layer. After preprocess-
ing of the input data, features are extracted from the input time
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series using the convolution layer, and then the flatten layer re-
shapes data into a format that can be used by the fully connected
layer and the fully connected layer generates the multiple outputs.

4. Empirical study and analysis
4.1. Data

The data utilized in this study was obtained from the Human-
itarian Data Exchange (HDX) [31]. In this study, we perform two
sets of experiments using two different datasets, including Dataset
1 and Dataset 2 that are described in Table 2. The first set of ex-
periments examine the usefulness of the proposed deep learning
model in a shorter 10 days window. To perform the first set of ex-
periments, we utilize Dataset 1 which contains the data used in
[8]. To compare the results of the proposed methods, we choose
the fuzzy fractal method proposed by Castillo and Melin [8] as the
benchmark.

Also, to evaluate the performance of the three proposed models
in long-horizon forecasting, we use Dataset 2 that includes the up-
dated data of COVID-19 cases until 3 August. Similar to Dataset 1,
Dataset 2 contains data for ten countries with the highest number
of cases. In selecting the top ten countries of Dataset 2, we firstly
aggregate the data of all cities for each country.

4.2. Evaluation measures

To evaluate the effectiveness of the proposed methods on
COVID-19 time series forecasting, we employ three primary
measures including symmetric mean absolute percentage error
(SMAPE), mean absolute percentage error (MAPE), and root mean
square error (RMSE), as well as the following aggregate mea-
sures, which are based on the primary measures including mean of
SMAPEs (Mean SMAPE), mean of the SMAPE ranks (Rank SMAPE),
mean of MAPEs (Mean MAPE), mean of the MAPE ranks(Rank
MAPE), mean of RMSEs (Mean RMSE) and the mean of RMSE ranks
(Rank RMSE).

The definitions of SMAPE, MAPE, and RMSE are given by
Egs. (1)-(3) respectively:

SMAPE = = Z ||y Ey v| x 100 (1)

MAPE = - Z |yr| Y v « 100 2)

24
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Fig. 4. The Proposed LSTM-based model.
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Table 2
The description of data.
Dataset Countries Time period
Dataset 1 US, United Kingdom, Turkey, Spain, Mexico, Italy, Iran, Germany, France, Belgium  January 20, 2020-August 1, 2020
Dataset 2 US, Brazil, India, Russia, South Africa, Mexico, Peru, Chile, Colombia, Iran January 20, 2020- August 3, 2020

Time series | t | t, I t; ty | ts I ts siod | th-2 | th-1 | t, |
Instance 1 . A )
L=3 0=2
Instance 2 - v ~ /
Instance 3 : b - v g

Fig. 6. The Process of instance generation.

4.3. Preprocessing of data

In this study, as the architectures of the three proposed models
indicate, we design the models following the multi-output fore-
casting strategy, which allows forecasting of multiple time steps
rather than a single time step that is applied in the single-output
strategy.

The proposed models require the input to be instances (data
objects) of input-output format. So, the input time series must be
converted into the input-output format. Therefore, considering the
input size, L (Lag), which refers to the length of the input win-
dow, and the output size, O, which denotes the length of the out-
put window, subsequences of length L+ O are extracted from the
series. The first L points of a sequence are considered as the in-
put, and the last O points are considered as the output values. For
example, as depicted in Fig. 6, the process of the construction of
the instances iteratively generates the instances using the input=3
(L=3) and the output size 0=2.

4.4. Experiment setup

In this study, we combine the proposed methods with the
Bayesian optimization algorithm to identify the optimal hyperpa-
rameter value. The proposed methods the proposed method are
implemented using Keras library in python [32]. To prevent all
methods from overfitting and improving their generalization to

Table 3
The range of hyperparameters used in the Bayesian opti-
mization process.

Model Hyperparameter range

ATT_BO Activation function: (ReLU, Linear)

LSTM_BO Activation function: (ReLU, Linear, Tanh)
Dropout rate: (0.0,0.1,0.2,0.3,0.4,0.50)
Number of neurons: (32,64,128,256)

CNN_BO Size of kernel: (2,3,4,5,6)

Stride: (1,2)
Number of neurons: (32,64,128,256)

new data, we use early stopping [33]. To employ early stopping,
we set the epoch limit to 500.

4.4.1. Hyperparameter selection

To utilize the Bayesian optimizer, the range of the hyperparam-
eters should be specified. One important hyperparameter which
significantly impacts time series forecasting accuracy is the size
of the input window (Lag). The range of Lag is set to (10, 11, 12,
13, 14,15) for all proposed methods. Table 3 provides the range
of hyperparameters utilized throughout the experiments. As the
fully connected and output layers have been incorporated after the
main layer of the proposed methods; for all deep learning models,
we set the range of hyperparameters corresponding to these layers
identical. To limit the search space of the Bayesian optimization
algorithm, for these layers, we include their activation functions
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Table 4
The performance of the proposed methods in terms of SMAPE on
Dataset 1.
Country ATT_BO  LSTM_BO CNN_BO  Fuzzy fractal
us 0.4082 0.5325 0.2776 1.0755
UK 0.0464 0.056 0.0504 1.0147
Turkey 0.0412 0.0475 0.0984 0.0085
Spain 0.6536 0.62 0.6119 0.3572
Mexico 0.5171 0.5668 0.5684 0.693
Italy 0.0438 0.1117 0.0626 1.5343
Iran 0.0685 0.1313 0.0577 1.5343
Germany 0.1562 0.2321 0.1823 0.1174
France 0.3956 0.3169 0.313 0.2894
Belgium 0.2754 0.4366 0.2519 0.4281
Table 5
The performance of the proposed methods in terms of MAPE on
Dataset 1.
Country ATT_BO LSTM_BO CNN_BO  Fuzzy fractal
us 0.317 0.5314 0.276 1.0691
UK 0.0402 0.0542 0.0456 1.0214
Turkey 0.0412 0.0182 0.0984 0.0085
Spain 0.4977 0.5947 0.6025 0.3581
Mexico 0.4389 0.5355 0.5187 0.6901
Italy 0.0409 0.1114 0.0624 0.0551
Iran 0.0538 0.1269 0.0428 1.5196
Germany  0.1461 0.2128 0.1804 0.1173
France 0.3208 0.3033 0.3088 0.2893
Belgium 0.2609 0.39432 0.2491 0.4287
Table 6
The performance of the proposed methods in terms of RMSE on
Dataset 1.
Country ATT_BO LSTM_BO CNN_BO Fuzzy fractal
us 20023.27 2641524 15181.05  27609.68
UK 164.8403 193.7 180.567 349491
Turkey 99.43 115.42 240.66 27.303
Spain 2320.7 2273.54 2269.22 1398.52
Mexico 2511.54 2825.99 2781.7 3069.18
Italy 126.71 298.89 173.7 168.08
Iran 243.015 417.944 198.11 5135.7
Germany  395.75 537.7 436.9 333.42
France 1035.42 910.24 894.56 782.001
Belgium 230.52 369.39 208.2 312.61

in the hyperparameter selection process. For both layers, “ReLU”
and “Linear” activation functions [15] are utilized. Also, the range
of learning rate parameter for all models is set to (0.0001, 0.0005,
0.001, 0.005, 0.01, 0.05).

4.5. Results and analysis

In this section, we give the results of the experiments con-
ducted based on the two datasets. In the analysis of the first set
of experiments, we consider the results of the fuzzy fractal model
proposed in [8]. The main reason behind choosing the fuzzy frac-
tal method as the benchmark is that this method was compre-
hensively evaluated in the recent study conducted by Castillo and
Melin [8] using Dataset 1. Besides, on the second set of experi-
ments, we explore the performance of our developed models on a
wider forecasting window by adopting a multi-output forecasting
strategy.

4.5.1. Results of the first set of experiments on Dataset 1

To make the forecasting comparable with the results of the
fuzzy fractal model [8], for Dataset 1, we consider the last 10 days
as the test points .The results of the proposed models as well as
the benchmark model on Dataset 1 are illustrated in Tables 4-6. As
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Table 7

The performance of all methods in terms of Mean SMAPE, Mean MAPE,
Mean RMSE, Rank SMAPE, Rank MAPE, rank RMSE (the best results are
marked bold) on Dataset 1.

Method ATT_BO LSTM_BO  CNN_BO  Fuzzy fractal
Mean SMAPE 0.2606 0.3051 0.2474 0.7052
Mean MAPE 0.2157 0.2883 0.2385 0.5557
Mean RMSE 271512 3435.80 2256.47 4233.14
Rank SMAPE 2.1 3 2.2 2.7

Rank MAPE 2 3 2.4 2.6

Rank RMSE 2 33 2.1 2.6

the results indicate, in terms of SMAPE (Table 4), ATT_BO achieves
better performance compared to the Fuzzy fractal in 6 countries
out of 10 countries such as the US, UK, Mexico, Italy, Iran, and Bel-
gium. Furthermore, CNN_BO obtains better performance in terms
of SMAPE in comparison with the Fuzzy fractal method in 6 coun-
tries including the US, UK, Mexico, Italy, Iran, and Belgium. Also,
the results of LSTM_BO indicate that it has similar performance
to the Fuzzy fractal method. While LSTM_BO performs better than
and fuzzy fractal for the US, UK, Mexico, Italy, and Iran, fuzzy frac-
tal achieves a lower SMAPE than LSTM_BO for the remaining five
countries. Overall, the results indicate that ATT_BO and CNN_BO
achieve better results compared to the fuzzy fractal model. The
Mean SMAPE and Rank SMAPE values over the ten countries are
given in Table 7. The Mean SMAPEs of the three deep learning
models are significantly lower than the fuzzy fractal’s one (Mean
SMAPE=0.7052) (as seen in Table 7). Furthermore, the ATT_BO and
CNN_BO models outperform the fuzzy fractal model in terms of
Rank SMAPE.

Table 5 illustrates the results of all models in terms of MAPE.
The best result for each country is denoted using the boldface.
Deep learning models achieve the best results for 6 countries com-
pared to the fuzzy fractal model that obtains the best results in 4
countries. In terms of MAPE, ATT_BO model outperforms the fuzzy
fractal model in 6 countries. Compared to the fuzzy fractal model,
CNN and LSTM archives better results in 5 and 4 countries, re-
spectively. Also, in terms of Mean MAPE as seen in Table 7, all
deep learning methods outperform the fuzzy fractal method. Be-
sides, ATT_BO reaches the first Rank MAPE.

Looking at the results in terms of RMSE, as illustrated in
Table 5 it is seen that the ATT_BO model performs better than
the fuzzy fractal method in 6 cases out of 10 countries including
US, UK, Mexico, Italy, Iran, and Belgium. Also, CNN_BO model has
similar performance to the fuzzy fractal as both methods give bet-
ter results in 5 countries. Furthermore, LSTM_BO reaches a lower
RMSE in 4 countries compared to the fuzzy fractal. The Mean RMSE
and Rank RMSE measures are provided in Table 7. We see that all
deep learning models outperform the fuzzy fractal model in terms
of Mean RMSE. Besides, the ATT_BO obtains the first Rank RMSE.

The overall results provided in Table 7 indicate that all pro-
posed models perform significantly better in terms of Mean
SMAPE, Mean MAPE, and Mean RMSE. The results demonstrate the
performance of deep learning methods for COVID-19 forecasting.
The better forecasting performance of the deep learning methods
mainly attributed to their inherent characteristics in handling se-
quence data.

To illustrate the performance of methods, in Figs. 7-16, we also
visualize the forecasted and actual cases for each country with the
best models achieved from the deep learning models as well as the
fuzzy fractal method. In all of the following figures, the black line
indicates the real values, the green line corresponds to the fore-
casted cases using the best deep learning model, and the red line
plot the forecasted cases with the fuzzy fractal.

Fig. 7 shows the forecast of confirmed cases for US, where the
difference between the deep learning model (the green line) and
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Fig. 8. The actual and predicted number of cases for 10 days (22 Jul to 1 August) for UK.

the fuzzy fractal method (the red line) is clear. The forecasted cases
with the deep learning model are very close to the real values.
Fig. 8 shows the forecasted values for UK, where the difference
between the deep learning model and the benchmarking model is
apparent. Fig. 9 illustrates similarly the predicted values for Turkey,
where the forecasted values using both the deep learning model
and the benchmarking model are very close to the real values.

Fig. 10 plots the forecasted values for Spain, where the bench-
mark model slightly predicts better than the deep learning model.
Figs. 11-13 show the predicted values for Mexico, Iran, and Italy
respectively, where the forecasted values using the deep learning
method are very close to the actual ones. The plots for Germany
and France are illustrated in Figs. 14 and 15, respectively, which
indicate the fuzzy fractal model predicted slightly better than the
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deep learning model. Fig. 16 illustrates the forecasted values for
Belgium, where our proposed method predicts values as close as
the actual value.

Analyzing the figures indicates that for the majority of coun-
tries, the best deep learning model archives better performance
than the fuzzy fractal model. For all countries, it is apparent that
the fuzzy fractal model fits a linear model to predict the con-
firmed cases. Analyzing the figures indicates that for the majority
of countries, the best deep learning model archives better perfor-
mance than the fuzzy fractal model. For all countries, it is apparent
that the fuzzy fractal model fits a linear model to predict the con-
firmed cases. Also, as the figures display, the deep learning model
was able to capture both linear and nonlinear patterns, which en-
hances its accuracy. The results confirm the suitability of the pro-
posed model for COVID-19 time series forecasting.

4.5.2. Results of the second set of experiments on Dataset 2

After validating the effectiveness of the deep learning-based
model on a shorter-window forecasting task, in this section, we
perform the second set of experiments on Dataset 2 to examine

Chaos, Solitons and Fractals 142 (2021) 110511

Table 8
The performance of the proposed methods in terms
of SMAPE on Dataset 2 (The best results are marked

bold).
Country ATT_BO  LSTM_BO  CNN_BO
us 0.6914 0.8117 0.9946
Brazil 4.1811 3.4828 3.0081
India 0.8735 0.7711 1.1117
Russia 0.7723 0.4747 1.7461
South Africa  8.0334 8.1889 9.4018
Mexico 1.1996 1.1139 1.5866
Peru 4.3358 3.5406 3.5637
Chile 1.87 2.4096 3.2176
Colombia 4.8034 4.233 4.2347
Iran 1.0407 0.8953 1.4831

Table 9

The performance of the proposed methods in terms
of MAPE on Dataset 2 (the best results are marked

bold).
Country ATT.BO  LSTM_BO  CNN_BO
Us 0.6901  0.8105 0.9883
Brazil 42974  3.5924 3.0692
India 0.878 0.7748 1.08
Russia 07681  0.4732 1.7688
South Africa  8.6522  8.8127 10.2508
Mexico 11919 1.1055 1.5692
Peru 421 3.4325 3.4734
Chile 1.8376  2.3693 3.147
Colombia 49383 43337 43363
Iran 1.0485  0.9017 1.4977

the performance of the proposed models in longer-horizon fore-
casting. Longer-horizon forecasting reveals the trend of the pan-
demic in the long term and thus help governments to make appro-
priate decisions. To conduct experiments on Dataset 2, we adopt
the hold-out method and split each COVID-19 time series into two
parts: train set (80%) and test set (out-of-sample (20%)). The model
building process is accomplished on the train set. The test set is
used for evaluating the obtained models throughout the experi-
ments. Also, for each time series, 20% of the train set is consid-
ered as the validation set data that is used in the hyperparame-
ter identification process. As mentioned before, we adopt a multi-
output forecasting strategy, so we set the output size=7. Therefore,
the proposed model can forecast the number of cases for 7 next
days.

The results of experiments in terms of SMAPE are provided in
Table 8. For Dataset 2, ATT_BO achieves the best SMAPE for US,
South Africa, and Chile. Also, LSTM_BO exhibits a significant per-
formance and obtains the best SMAPE for 6 countries including In-
dia, Russia, Mexico, Peru, Columbia and Iran. CNN performs worse
among these three methods and obtains the best performance only
for Brazil.

Table 9 shows the results of experiments with respect to the
MAPE measure. Similar to the results given in Table 8, LSTM_BO,
ATT_BO, and CNN_BO achieve the best performance in 6, 3, and 1
countries, respectively.

The results of models in terms of RMSE are given in Table 10.
We observe that regarding RMSE, LSTM_BO achieves the lowest
RMSE in 5 cases. Also, the second-best performing method is the
ATT_BO, which obtains the lowest RMSE in 3 countries. CNN_BO
obtains the best forecasting only for Brazil.

To gain a more understanding of the overall performance of the
proposed methods and their rank across all countries, we calcu-
late Mean SMAPE, Mean MAPE, Mean RMSE, Rank SMAPE, Rank
MAPE, Rank RMSE over all 10 countries data (as seen in Table 11).
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Table 10

The performance of the proposed methods in terms of
RMSE on Dataset 2 (the best results are marked bold).
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Fig. 18. The actual and predicted number of cases for test set-Brazil.
The results demonstrate that the LSTM_BO method outperforms

ATT_BO and CNN_BO in terms of all overall performance mea-
sures and is a suitable choice for a longer horizon forecasting

Country ATT_BO LSTM_BO ~ CNN_BO task.
us 31661.82 3622339 4323038 To further illustrate the forecasting power of the deep learning-
Brazil 110229.9  98053.65  75718.32 based methods on dataset 2, in Figs. 17-26, we also visualize the
India 13834.01 13194 16290.89 actual and predicted cases for each country with the results of the
Russia 7054.7 4275.18 15662.22 . : .
South Africa  55269.28 5561148 6574078 best model oIAJtam.ed.from the deep learning models. In Figs. 1‘7
Mexico 536093 493558 708047 26, the red line indicates the actual ve}lues, and the green line
Peru 20003.09 1737654  16049.06 corresponds to the forecasted cases using the best deep learn-
Chile 7438.9 9388.29 13168.58 ing model. As Figs. 17, 19, 20, 22, and 26 show, the forecasted
Colombia 12356.65  10721.77  10936.55 cases for countries including US, India, Russia, Mexico, and Iran
Iran 3279.91 314349  4802.84 . .
are very close to the actual values. Besides, for these countries,
in most of the time points, the forecasted values overlap the ac-
Table 11 tual ones. The results confirm the power of deep learning mod-
The performance of all methods in terms of Mean SMAPE, . . . . X 5
Mean MAPE, Mean RMSE, Rank SMAPE, Rank MAPE, rank els in COVID-19 time series forecasting. Moreover, for countries
RMSE on Dataset 2 (the best results are marked bold). such as Brazil, South Africa, Peru, Chile, and Columbia as shown
Method ATT_BO LSTM_BO CNN_BO in Figs. 18, 21, 23, 24, and 25, respectively, the differences be-

Mean SMAPE  2.7801
Mean MAPE 2.8512
Mean RMSE 26648.92
Rank SMAPE 2

Rank MAPE 2

Rank RMSE 2

tween the actual and predicted number of cases are not signifi-

;'23(2)2 g'(ﬁg? cant and at some points, the actual and predicted values are very
25292337  26868.01 close.

14 2.6

14 2.6

1.5 2.5

10
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Fig. 19. The actual and predicted number of cases for test set-India.
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Fig. 20. The actual and predicted number of cases for test set-Russia.
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Fig. 21. The actual and predicted number of cases for test set- South Africa.
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Fig. 22. The actual and predicted number of cases for test set-Mexico.
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Fig. 23. The actual and predicted number of cases for test set-Peru.
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Fig. 24. The actual and predicted number of cases for test set-Chile.
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Fig. 25. The actual and predicted number of cases for test set-Colombia.
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Fig. 26. The actual and predicted number of cases for test set-Iran.

5. Conclusion

In this study, three methods based on combining the deep
learning models such as multi-head attention, CNN, and LSTM
with the Bayesian optimization algorithm were developed to fore-
cast COVID-19 time-series data. The main advantage of the pro-
posed methods is their ability in processing the sequence data.
Also, as another advantage, the design of the devised models is
based on the multi-output forecasting strategy that allows fore-
casting multiple next days. The proposed methods were applied on
the COVID-19 time series data considering two settings, the short-
term forecasting, and the long horizon forecasting. For short-term
forecasting, we adopted the fuzzy fractal method as the bench-
marking model. the best deep learning model outperforms the
fuzzy fractal model in 6 countries out of 10 countries. The signif-
icant result is that in terms of all overall measures such as Mean
SMAPE, Rank SMAPE, Mean MAPE, Rank MAPE, Mean RMSE, and
Rank RMSE, the three proposed methods perform significantly bet-
ter than the benchmark model. Also, as the long-horizon forecast-
ing is beneficial for long-term decision making on COVID-19 in-
terventions, we explored the ability of the proposed methods on
a longer horizon forecasting. The results of experiments indicated
that among the three proposed models, the LSTM_BO achieves
the best SMAPE in 6 countries. Besides, in terms of the perfor-
mance measures computed across all countries, LSTM_BO outper-

13

formed ATT_BO and CNN_BO. Moreover, visualizing the actual and
forecasted values demonstrated the effectiveness of the proposed
methods in COVID-19 time series forecasting. As future work, we
aim to extend the proposed methods by extracting the informative
features from time series and incorporating them into the deep
learning models.
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