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a b s t r a c t 

COVID-19 virus has encountered people in the world with numerous problems. Given the negative im- 

pacts of COVID-19 on all aspects of people’s lives, especially health and economy, accurately forecasting 

the number of cases infected with this virus can help governments to make accurate decisions on the in- 

terventions that must be taken. In this study, we propose three hybrid approaches for forecasting COVID- 

19 time series methods based on combining three deep learning models such as multi-head attention, 

long short-term memory (LSTM), and convolutional neural network (CNN) with the Bayesian optimiza- 

tion algorithm. All models are designed based on the multiple-output forecasting strategy, which allows 

the forecasting of the multiple time points. The Bayesian optimization method automatically selects the 

best hyperparameters for each model and enhances forecasting performance. Using the publicly available 

epidemical data acquired from Johns Hopkins University’s Coronavirus Resource Center, we conducted 

our experiments and evaluated the proposed models against the benchmark model. The results of experi- 

ments exhibit the superiority of the deep learning models over the benchmark model both for short-term 

forecasting and long-horizon forecasting. In particular, the mean SMAPE of the best deep learning model 

is 0.25 for the short-term forecasting (10 days ahead). Also, for long-horizon forecasting, the best deep 

learning model obtains the mean SMAPE of 2.59. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronavirus 2019 (COVID-19) pandemic [1] has spread from 

uhan, China to other countries in the world. It has high viral in- 

ectivity and a rapid rate of spread compared to prior infectious 

iseases which makes its control hard [2] . Since its emergence, 

OVID-19 disease has encountered people in the world with many 

roblems. It has more negative impacts on people’s health and in- 

errupted the economy. As a result, many countries have imple- 

ented strong interventions to control the spread of the epidemic 

nd to reduce the negative effects of COVID-19 disease [3] . Al- 

hough the interventions vary between countries, the commonly 

dopted interventions are social distancing, border closure, school 

losure, lockdown, travel banning, and public events banning [4] . 

he effectiveness of interventions across 11 European countries 

as been investigated in Flaxman, Mishra [4] concluding that the 

dopted interventions were effective in reducing the rate of trans- 

ission of COVID-19 epidemic. 

To evaluate the success of controlling COVID-19 epidemic, it is 

ital to accurately monitor and reveal the data about the number 
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f cases infected with it [2] . Making public the data of confirmed 

ases of countries in the world allow academics to conduct mod- 

ling on data in order to gain useful knowledge about the trend of 

he disease. Johns Hopkins University’s Corona Virus Resource Cen- 

er [5] has collected and published the data about the COVID-19 

onfirmed cases which are used by scholars to model the spread 

f the disease and perform data analysis. 

Given the negative impacts of COVID-19, accurately forecasting 

he number of cases infected with this virus is a vital task to re- 

eal the trend of the disease and thereby to help governments 

o take preventive measures [6] . Previous researches on COVID- 

9 time series forecasting have adopted mathematical and compu- 

ational intelligence models to forecast the number of confirmed 

ases. In [7] the adaptive neuro-fuzzy inference system (ANFIS) 

as employed to forecast the number of infected cases in China. 

n [3] mathematical and computational models such as Logistic, 

ompertz, and ANN were applied to model the number of cases 

n Mexico. Castillo and Melin [8] proposed a new combined ap- 

roach with fuzzy fractal and fuzzy logic to predict the number 

f confirmed cases of COVID-19 in 10 countries. Also, in [9] , a new

nsemble approach based on ANNs and fuzzy aggregation was pro- 

osed and its performance was evaluated on COVID-19 time series 

f Mexico and its 12 states which showed significant improvement 

https://doi.org/10.1016/j.chaos.2020.110511
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110511&domain=pdf
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Table 1 

Summary of studies on COVID-19 infection forecasting. 

Reference Modeling techniques Country Date 

[7] ANFIS China 21 January, 2020 to 18 February, 2020 

[19] Logistic model, Bertalanffy model and 

Gompertz model 

China 15 January, 2020 to 4 April 2020 

[20] Gompertz and Logistic China, South Korea, Italy, and Singapore Until 27 March, 2020 

[3] Gompertz, Logistic Artificial Neural Networks Mexico February 27, 2020 to May 8, 2020 

[6] ANN, ARIMA Iran Trainset:19 February, 2020 to 24 

March, 2020 

Test set: 25 March, 2020 to 31 March, 2020 

[8] Fuzzy Fractal Ten countries: US, United Kingdom, Turkey, 

Spain, Mexico, Italy, Iran, Germany, France, 

and Belgium 

July 22, 2020 to 7 August, 2020 

[9] An ensemble of neural network models with 

fuzzy aggregation 

Mexico and 12 states in Mexico Not available 

[2] ARIMA, nonlinear autoregression neural 

network (NARNN), and LSTM 

Denmark, Belgium, Germany, France, United 

Kingdom, Finland, Switzerland and Turkey 

Until 3 May, 2020 

[10] Bi-directional LSTM, India (32 Indian states) March 14, 2020- May 14, 2020 

Stacked LSTM, and 

Convolutional LSTM 

[11] ARIMA, support vector regression (SVR), 

LSTM, GRU, and Bi-LSTM 

Ten countries: Brazil, China, Germany, India, 

Israel, Italy, Russia, Spain, UK, USA 

Until June 27, 2020 

[12] LSTM Russia, Peru and Iran Until July 7, 2020 
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han single ANN. In recent studies [ 2 , 10–12 ], deep learning meth-

ds such as LSTM and bidirectional LSTM (BiLSTM) have been uti- 

ized for COVID-19 time series forecasting . The results indicated 

hat LSTM and its variants have good performance in predicting 

he COVID-19 time series. In the literature review section, we will 

ive a comprehensive review of studies related to COVID-19 time 

eries forecasting. 

Although LSTM was recently applied for COVID-19 infection 

orecasting, the predictive power of other deep learning methods 

hat are suitable for sequence processing problems has not been 

xplored in COVID-19 forecasting context. Therefore, in this pa- 

er, in addition to LSTM [13] , we focus on the other deep learning

odels including the multi-head attention [14] , and CNNs [15] to 

orecast the number of cases of COVID-19. Furthermore, the per- 

ormance of deep learning methods mainly influenced by hyperpa- 

ameter tuning [16] . There are several hyperparameters that must 

e specified when employing a deep learning model. The previous 

tudies on COVID-19 forecasting using the LSTM method have not 

xploited an optimization method to identify the optimal hyperpa- 

ameters. Most of those studies (e.g. [ 2 , 10 , 12 ]) have implemented

odels using hand-tuned hyperparameters. As another contribu- 

ion, in this study, we utilize the Bayesian Optimization method 

17] in order to optimize the hyperparameters of Multi-head at- 

ention, LSTM, and CNN. Besides, the design of proposed methods 

s based on the multiple output approach that allows forecasting 

f the number of cases for multiple next days. 

Overall, the main contributions of this study are as follows: 

1 Adopting the deep learning models to predict the number of 

daily infected cases with COVID-19. 

2 Exploiting the Bayesian Optimization for optimal parameter se- 

lection. 

3 Adopting a multiple-output modeling approach: The models are 

designed to be multi-output to predict the next few days. The 

usual approach to multi-step-ahead prediction is iterated one- 

step-ahead forecasting in which the forecasting of the n next 

steps performed as a n single step-ahead forecasting. Multi- 

output forecasting is an effective choice for long-horizon fore- 

casting [18] . 

The deep learning models are applied on COVID-19 data of the 

op 10 countries with the highest number of infections. To evaluate 

he performance of the proposed models, we perform two sets of 

xperiments. The first set of experiments explores the effectiveness 
2 
f the proposed models in short-term forecasting and compares 

heir performance with the results of the fuzzy fractal model pre- 

ented in [8] . The results indicated the deep models achieve better 

erformance than the fuzzy fractal across all countries. Also, the 

econd set of experiments are conducted to investigate the predic- 

ion power of the devised models in a wider forecasting window. 

he results can help governments in long-term decision making to 

ontrol the pandemic. 

The rest of this paper is organized as follows. In Section 2 , we

rovide a comprehensive literature review on models and meth- 

ds proposed for COVID-19 time series forecasting. Section 3 de- 

cribes the structure of the proposed models. In Section 4 , we de- 

cribe the data and provide the detailed results of the proposed 

odels and compare their performance to the benchmark model. 

ection 5 concludes the paper and outlines future work. 

. COVID-19 time series forecasting 

In this section, we summarize the previous studies in the con- 

ext of COVID-19 time series prediction. Since the publicly avail- 

ble data of COVID-19 contains daily statistics of the confirmed 

ases, so it is considered as a time series data and the time se- 

ies forecasting techniques can be exploited to this data. Table 1 

llustrates the researches on COVID-19 time series forecasting. The 

able highlights the modeling techniques, the countries, and the 

ime period of the utilized data in each study. As Table 1 indi- 

ates, various types of methods including mathematical, statistical, 

achine and deep learning, and fuzzy logic-based techniques have 

een employed for COVID-19 time series forecasting. From math- 

matical models, the Gompertz model and logistic models have 

een used in several studies (i.e. [ 3 , 19 , 20 ]). Also, from statistical

ethods, the Auto-Regressive Integrated Moving Average (ARIMA) 

pproach has been employed in some studies such as [ 2 , 6 , 11 ]. Be-

ides, the machine and deep learning techniques such as ANN and 

STM have exhibited improvements in COVID-19 time series fore- 

asting studies (e.g. [ 2 , 10 , 12 ]). Also, some methods based on fuzzy

ogic have been proposed in the literature(e.g. [ 7 , 8 ]). As the litera-

ure review indicates, the exploitation of deep learning models has 

ed to improvements in the prediction of COVID-19 cases [ 2 , 10–

2 ]. Since the COVID-19 time series forecasting task is a kind of 

equence processing, other deep learning models can be adopted 

o forecast the COVID-19 time series [12] . The remarkable charac- 

eristic of the machine and deep learning methods is their ability 
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Fig. 1. The general procedure of the proposed models. 

Fig. 2. The proposed attention-based model (ATT_BO). 
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o capture nonlinear patterns [21] , which makes them suitable for 

odeling complex time series. 

In the recent years, in addition to the LSTM model, other types 

f deep learning models such as methods based on the atten- 

ion mechanisms and convolutional neural networks have demon- 

trated promising results in many areas of applications such as 

atural language processing (NLP) [22] , stock market price fore- 

asting [21] and so on. Investigating the literature on COVID-19 

orecasting reveals that attention mechanism and the convolutional 

eural network have not been employed for COVID-19 prediction. 

herefore, this study aims to propose deep learning models based 

n these methods to evaluate their effectiveness in forecasting 

OVID-19 infected cases. 

. The proposed models 

In this study, we consider three different deep learning 

ethods to predict the cumulative number of cases. The three 

roposed methods are the multi-head attention-based method 

ATT_BO), CNN-based method (CNN_BO), and LSTM-based method 

LSTM_BO). As illustrated in Fig. 1 , all proposed methods are com- 

ined with the Bayesian optimization algorithm to select the op- 

imal values of hyperparameters. In Fig. 1 , the Bayesian optimizer 

23] accomplishes the task of identifying the optimal hyperparam- 

ters. A common alternative to Bayesian optimization is the grid 

earch which is a time-consuming method. The reason for choos- 

ng Bayesian optimization are: (1) the superiority of Bayesian op- 

imization over grid search has been proved in previous studies 

24] (2) unlike grid search, Bayesian optimization can efficiently 

nd the optimal hyperparameters with fewer iterations [25] . In the 

ollowing subsections, we describe the structure of the proposed 

odels. 
3 
.1. ATT_BO 

Recently attention mechanisms have been employed success- 

ully in the sequence processing tasks and especially in natural 

anguage processing applications [ 21 , 22 ]. The study of Vaswani, 

hazeer [26] demonstrated the effectiveness of the attention mech- 

nism for processing sequence data. In this study, we propose a 

ulti-head attention-based model for COVID-19 forecasting using 

he multi-head attention mechanism developed in [26] ( Fig. 2 ). An 

ttention function takes a query Qand a set of keys and values 

 K, V > to get the output O . This procedure is often called Scaled

ot-Product Attention. Multi-head attention is a set of multiple 

eads that jointly learn different representations at every position 

n the sequence [14] . The proposed attention method (ATT_BO) has 

hree main parts including the multi-head attention layer, the flat- 

en layer, and the fully connected layer. After preprocessing the in- 

ut data and creating the instances, the multi-head attention layer 

omputes a new representation of the input data which are more 

nformative than the input data. The output of the multi-head at- 

ention layer is reshaped using the flatten layer and finally, the 

utputs are produced using the fully connected layer. The supe- 

iority of the proposed model is attributed to the multi-head at- 

ention layer which has the ability to capture the most important 

nput features and gives higher weights to them. 

.2. LSTM_BO 

Deep learning methods such as RNNs are suitable for sequence 

rocessing as they consider the temporal behavior of a given time 

eries [21] . But, the main shortcoming of RNNs is the vanish- 

ng/exploding gradient problem that makes their training a difficult 

ask [27] . To overcome this problem, LSTM which is a kind of gated 

NNs are often employed [28] . The structure of an LSTM block is 
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Fig. 3. The structure of the LSTM [27] . 
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epicted in Fig. 3 . Each LSTM block consists of a memory cell along

ith three gates including an input gate i (t) , the forget gate f (t) 

nd the output gate o(t) which regulate the flow of information to 

ts cell state c(t) : 

Each of the three gates accomplishes a different operation [29] : 

• The forget gate determines which information is discarded. 
• The input gate decides which information is input to the cell 

state. 
• The output gate regulates the outgoing information of the LSTM 

cell. 

The architecture of the proposed LSTM-based (LSTM_BO) is ar- 

iculated in Fig. 4 . This method consists of three main parts, in- 

luding the LSTM layer, the flatten layer, and the fully connected 

ayer. The input time series is firstly preprocessed and then is fed 

nto the LSTM layer, which learns a new representation of data 

onsidering the dependency among data. Afterward, the output of 

he LSTM layer is reshaped into a suitable format using a flatten 

ayer and then is fed into a fully connected layer. Finally, the fully 

onnected layer produces multiple outputs. 

.3. Convolutional model 

CNNs are quite successful in processing machine vision prob- 

ems [15] . In this study, we implement CNN for COVID-19 time se- 

ies forecasting. The convolutional layers in CNNs take input data 

nd apply convolution operation on data using convolution kernels 

o extract new features. The convolution kernel is a small win- 

ow that slides over the input data and performs convolutional 

perations to extract new features [30] . The derived features us- 

ng the convolution operation are usually more discriminative than 

he raw input data, therefore, improving the forecasting. The archi- 

ecture of the proposed CNN-based model (CNN_BO) is described 

n Fig. 5 . CNN_BO contains three main parts: the convolution layer, 

he flatten layer, and the fully connected layer. After preprocess- 

ng of the input data, features are extracted from the input time 
Fig. 4. The Proposed LS

4 
eries using the convolution layer, and then the flatten layer re- 

hapes data into a format that can be used by the fully connected 

ayer and the fully connected layer generates the multiple outputs. 

. Empirical study and analysis 

.1. Data 

The data utilized in this study was obtained from the Human- 

tarian Data Exchange (HDX) [31] . In this study, we perform two 

ets of experiments using two different datasets, including Dataset 

 and Dataset 2 that are described in Table 2 . The first set of ex-

eriments examine the usefulness of the proposed deep learning 

odel in a shorter 10 days window. To perform the first set of ex- 

eriments, we utilize Dataset 1 which contains the data used in 

8] . To compare the results of the proposed methods, we choose 

he fuzzy fractal method proposed by Castillo and Melin [8] as the 

enchmark. 

Also, to evaluate the performance of the three proposed models 

n long-horizon forecasting, we use Dataset 2 that includes the up- 

ated data of COVID-19 cases until 3 August. Similar to Dataset 1, 

ataset 2 contains data for ten countries with the highest number 

f cases. In selecting the top ten countries of Dataset 2, we firstly 

ggregate the data of all cities for each country. 

.2. Evaluation measures 

To evaluate the effectiveness of the proposed methods on 

OVID-19 time series forecasting, we employ three primary 

easures including symmetric mean absolute percentage error 

SMAPE), mean absolute percentage error (MAPE), and root mean 

quare error (RMSE), as well as the following aggregate mea- 

ures, which are based on the primary measures including mean of 

MAPEs (Mean SMAPE), mean of the SMAPE ranks (Rank SMAPE), 

ean of MAPEs (Mean MAPE), mean of the MAPE ranks(Rank 

APE), mean of RMSEs (Mean RMSE) and the mean of RMSE ranks 

Rank RMSE). 

The definitions of SMAPE, MAPE, and RMSE are given by 

qs. (1) –(3) respectively: 

MAP E = 

1 

n 

n ∑ 

t=1 

∣∣ ˆ y t − y t 
∣∣

| ̂ y t | + | y t | 
2 

× 100 (1) 

AP E = 

1 

n 

n ∑ 

t=1 

∣∣ ˆ y t − y t 
∣∣

| y t | × 100 (2) 

MSE = 

√ 

1 

n 

n ∑ 

t=1 

(
y t − ˆ y t 

)2 
(3) 

here ˆ y t and y t are the predicted and actual value at time point t . 
TM-based model. 
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Fig. 5. The proposed CNN-based model. 

Table 2 

The description of data. 

Dataset Countries Time period 

Dataset 1 US, United Kingdom, Turkey, Spain, Mexico, Italy, Iran, Germany, France, Belgium January 20, 2020–August 1, 2020 

Dataset 2 US, Brazil, India, Russia, South Africa, Mexico, Peru, Chile, Colombia, Iran January 20, 2020- August 3, 2020 

Fig. 6. The Process of instance generation. 

4

i

c

r

s

o

c

i

d

p

s

p

e

t

(

4

B

r

i

m

Table 3 

The range of hyperparameters used in the Bayesian opti- 

mization process. 

Model Hyperparameter range 

ATT_BO Activation function: (ReLU, Linear) 

LSTM_BO Activation function: (ReLU, Linear, Tanh) 

Dropout rate: (0.0,0.1,0.2,0.3,0.4,0.50) 

Number of neurons: (32,64,128,256) 

CNN_BO Size of kernel: (2,3,4,5,6) 

Stride: (1,2) 

Number of neurons: (32,64,128,256) 

n

w
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e

s
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.3. Preprocessing of data 

In this study, as the architectures of the three proposed models 

ndicate, we design the models following the multi-output fore- 

asting strategy, which allows forecasting of multiple time steps 

ather than a single time step that is applied in the single-output 

trategy. 

The proposed models require the input to be instances (data 

bjects) of input-output format. So, the input time series must be 

onverted into the input-output format. Therefore, considering the 

nput size, L (Lag), which refers to the length of the input win- 

ow, and the output size, O, which denotes the length of the out- 

ut window, subsequences of length L + O are extracted from the 

eries. The first L points of a sequence are considered as the in- 

ut, and the last O points are considered as the output values. For 

xample, as depicted in Fig. 6 , the process of the construction of 

he instances iteratively generates the instances using the input = 3 

L = 3) and the output size O = 2. 

.4. Experiment setup 

In this study, we combine the proposed methods with the 

ayesian optimization algorithm to identify the optimal hyperpa- 

ameter value. The proposed methods the proposed method are 

mplemented using Keras library in python [32] . To prevent all 

ethods from overfitting and improving their generalization to 
5 
ew data, we use early stopping [33] . To employ early stopping, 

e set the epoch limit to 500. 

.4.1. Hyperparameter selection 

To utilize the Bayesian optimizer, the range of the hyperparam- 

ters should be specified. One important hyperparameter which 

ignificantly impacts time series forecasting accuracy is the size 

f the input window (Lag). The range of Lag is set to (10, 11, 12,

3, 14,15) for all proposed methods. Table 3 provides the range 

f hyperparameters utilized throughout the experiments. As the 

ully connected and output layers have been incorporated after the 

ain layer of the proposed methods; for all deep learning models, 

e set the range of hyperparameters corresponding to these layers 

dentical. To limit the search space of the Bayesian optimization 

lgorithm, for these layers, we include their activation functions 
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Table 4 

The performance of the proposed methods in terms of SMAPE on 

Dataset 1. 

Country ATT_BO LSTM_BO CNN_BO Fuzzy fractal 

US 0.4082 0.5325 0.2776 1.0755 

UK 0.0464 0.056 0.0504 1.0147 

Turkey 0.0412 0.0475 0.0984 0.0085 

Spain 0.6536 0.62 0.6119 0.3572 

Mexico 0.5171 0.5668 0.5684 0.693 

Italy 0.0438 0.1117 0.0626 1.5343 

Iran 0.0685 0.1313 0.0577 1.5343 

Germany 0.1562 0.2321 0.1823 0.1174 

France 0.3956 0.3169 0.313 0.2894 

Belgium 0.2754 0.4366 0.2519 0.4281 

Table 5 

The performance of the proposed methods in terms of MAPE on 

Dataset 1. 

Country ATT_BO LSTM_BO CNN_BO Fuzzy fractal 

US 0.317 0.5314 0.276 1.0691 

UK 0.0402 0.0542 0.0456 1.0214 

Turkey 0.0412 0.0182 0.0984 0.0085 

Spain 0.4977 0.5947 0.6025 0.3581 

Mexico 0.4389 0.5355 0.5187 0.6901 

Italy 0.0409 0.1114 0.0624 0.0551 

Iran 0.0538 0.1269 0.0428 1.5196 

Germany 0.1461 0.2128 0.1804 0.1173 

France 0.3208 0.3033 0.3088 0.2893 

Belgium 0.2609 0.39432 0.2491 0.4287 

Table 6 

The performance of the proposed methods in terms of RMSE on 

Dataset 1. 

Country ATT_BO LSTM_BO CNN_BO Fuzzy fractal 

US 20023.27 26415.24 15181.05 27609.68 

UK 164.8403 193.7 180.567 3494.91 

Turkey 99.43 115.42 240.66 27.303 

Spain 2320.7 2273.54 2269.22 1398.52 

Mexico 2511.54 2825.99 2781.7 3069.18 

Italy 126.71 298.89 173.7 168.08 

Iran 243.015 417.944 198.11 5135.7 

Germany 395.75 537.7 436.9 333.42 

France 1035.42 910.24 894.56 782.001 

Belgium 230.52 369.39 208.2 312.61 
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Table 7 

The performance of all methods in terms of Mean SMAPE, Mean MAPE, 

Mean RMSE, Rank SMAPE, Rank MAPE, rank RMSE (the best results are 

marked bold) on Dataset 1. 

Method ATT_BO LSTM_BO CNN_BO Fuzzy fractal 

Mean SMAPE 0.2606 0.3051 0.2474 0.7052 

Mean MAPE 0.2157 0.2883 0.2385 0.5557 

Mean RMSE 2715.12 3435.80 2256.47 4233.14 

Rank SMAPE 2.1 3 2.2 2.7 

Rank MAPE 2 3 2.4 2.6 

Rank RMSE 2 3.3 2.1 2.6 
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n the hyperparameter selection process. For both layers, “ReLU”

nd “Linear” activation functions [15] are utilized. Also, the range 

f learning rate parameter for all models is set to (0.0 0 01, 0.0 0 05,

.0 01, 0.0 05, 0.01, 0.05). 

.5. Results and analysis 

In this section, we give the results of the experiments con- 

ucted based on the two datasets. In the analysis of the first set 

f experiments, we consider the results of the fuzzy fractal model 

roposed in [8] . The main reason behind choosing the fuzzy frac- 

al method as the benchmark is that this method was compre- 

ensively evaluated in the recent study conducted by Castillo and 

elin [8] using Dataset 1. Besides, on the second set of experi- 

ents, we explore the performance of our developed models on a 

ider forecasting window by adopting a multi-output forecasting 

trategy. 

.5.1. Results of the first set of experiments on Dataset 1 

To make the forecasting comparable with the results of the 

uzzy fractal model [8] , for Dataset 1, we consider the last 10 days

s the test points .The results of the proposed models as well as 

he benchmark model on Dataset 1 are illustrated in Tables 4–6 . As 
6 
he results indicate, in terms of SMAPE ( Table 4 ), ATT_BO achieves 

etter performance compared to the Fuzzy fractal in 6 countries 

ut of 10 countries such as the US, UK, Mexico, Italy, Iran, and Bel- 

ium. Furthermore, CNN_BO obtains better performance in terms 

f SMAPE in comparison with the Fuzzy fractal method in 6 coun- 

ries including the US, UK, Mexico, Italy, Iran, and Belgium. Also, 

he results of LSTM_BO indicate that it has similar performance 

o the Fuzzy fractal method. While LSTM_BO performs better than 

nd fuzzy fractal for the US, UK, Mexico, Italy, and Iran, fuzzy frac- 

al achieves a lower SMAPE than LSTM_BO for the remaining five 

ountries. Overall, the results indicate that ATT_BO and CNN_BO 

chieve better results compared to the fuzzy fractal model. The 

ean SMAPE and Rank SMAPE values over the ten countries are 

iven in Table 7 . The Mean SMAPEs of the three deep learning 

odels are significantly lower than the fuzzy fractal’s one (Mean 

MAPE = 0.7052) (as seen in Table 7 ). Furthermore, the ATT_BO and 

NN_BO models outperform the fuzzy fractal model in terms of 

ank SMAPE. 

Table 5 illustrates the results of all models in terms of MAPE. 

he best result for each country is denoted using the boldface. 

eep learning models achieve the best results for 6 countries com- 

ared to the fuzzy fractal model that obtains the best results in 4 

ountries. In terms of MAPE, ATT_BO model outperforms the fuzzy 

ractal model in 6 countries. Compared to the fuzzy fractal model, 

NN and LSTM archives better results in 5 and 4 countries, re- 

pectively. Also, in terms of Mean MAPE as seen in Table 7 , all

eep learning methods outperform the fuzzy fractal method. Be- 

ides, ATT_BO reaches the first Rank MAPE. 

Looking at the results in terms of RMSE, as illustrated in 

able 5 it is seen that the ATT_BO model performs better than 

he fuzzy fractal method in 6 cases out of 10 countries including 

S, UK, Mexico, Italy, Iran, and Belgium. Also, CNN_BO model has 

imilar performance to the fuzzy fractal as both methods give bet- 

er results in 5 countries. Furthermore, LSTM_BO reaches a lower 

MSE in 4 countries compared to the fuzzy fractal. The Mean RMSE 

nd Rank RMSE measures are provided in Table 7 . We see that all

eep learning models outperform the fuzzy fractal model in terms 

f Mean RMSE. Besides, the ATT_BO obtains the first Rank RMSE. 

The overall results provided in Table 7 indicate that all pro- 

osed models perform significantly better in terms of Mean 

MAPE, Mean MAPE, and Mean RMSE. The results demonstrate the 

erformance of deep learning methods for COVID-19 forecasting. 

he better forecasting performance of the deep learning methods 

ainly attributed to their inherent characteristics in handling se- 

uence data. 

To illustrate the performance of methods, in Figs. 7 –16 , we also 

isualize the forecasted and actual cases for each country with the 

est models achieved from the deep learning models as well as the 

uzzy fractal method. In all of the following figures, the black line 

ndicates the real values, the green line corresponds to the fore- 

asted cases using the best deep learning model, and the red line 

lot the forecasted cases with the fuzzy fractal. 

Fig. 7 shows the forecast of confirmed cases for US, where the 

ifference between the deep learning model (the green line) and 
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Fig. 7. The actual and predicted number of cases for 10 days (22 Jul to 1 August) for US. 

Fig. 8. The actual and predicted number of cases for 10 days (22 Jul to 1 August) for UK. 
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he fuzzy fractal method (the red line) is clear. The forecasted cases 

ith the deep learning model are very close to the real values. 

ig. 8 shows the forecasted values for UK, where the difference 

etween the deep learning model and the benchmarking model is 

pparent. Fig. 9 illustrates similarly the predicted values for Turkey, 

here the forecasted values using both the deep learning model 

nd the benchmarking model are very close to the real values. 
7 
ig. 10 plots the forecasted values for Spain, where the bench- 

ark model slightly predicts better than the deep learning model. 

igs. 11 –13 show the predicted values for Mexico, Iran, and Italy 

espectively, where the forecasted values using the deep learning 

ethod are very close to the actual ones. The plots for Germany 

nd France are illustrated in Figs. 14 and 15 , respectively, which 

ndicate the fuzzy fractal model predicted slightly better than the 
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Fig. 9. The actual and predicted number of cases for 10 days (22 Jul to 1 August) 

for Turkey. 

Fig. 10. The actual and predicted number of cases for 10 days (22 Jul to 1 August) 

for Spain. 

Fig. 11. The actual and predicted number of cases for 10 days (22 Jul to 1 August) 

for Mexico. 

Fig. 12. The actual and predicted number of cases for 10 days (22 Jul to 1 August) 

for Italy. 

Fig. 13. The actual and predicted number of cases for 10 days (22 Jul to 1 August) 

for Iran. 

Fig. 14. The actual and predicted number of cases for 10 days (22 Jul to 1 August) 

for Germany. 
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Fig. 15. The actual and predicted number of cases for 10 days (22 Jul to 1 August) 

for France. 

Fig. 16. The actual and predicted number of cases for 10 days (22 Jul to 1 August) 

for Belguim. 
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Table 8 

The performance of the proposed methods in terms 

of SMAPE on Dataset 2 (The best results are marked 

bold). 

Country ATT_BO LSTM_BO CNN_BO 

US 0.6914 0.8117 0.9946 

Brazil 4.1811 3.4828 3.0081 

India 0.8735 0.7711 1.1117 

Russia 0.7723 0.4747 1.7461 

South Africa 8.0334 8.1889 9.4018 

Mexico 1.1996 1.1139 1.5866 

Peru 4.3358 3.5406 3.5637 

Chile 1.87 2.4096 3.2176 

Colombia 4.8034 4.233 4.2347 

Iran 1.0407 0.8953 1.4831 

Table 9 

The performance of the proposed methods in terms 

of MAPE on Dataset 2 (the best results are marked 

bold). 

Country ATT_BO LSTM_BO CNN_BO 

US 0.6901 0.8105 0.9883 

Brazil 4.2974 3.5924 3.0692 

India 0.878 0.7748 1.08 

Russia 0.7681 0.4732 1.7688 

South Africa 8.6522 8.8127 10.2508 

Mexico 1.1919 1.1055 1.5692 

Peru 4.21 3.4325 3.4734 

Chile 1.8376 2.3693 3.147 

Colombia 4.9383 4.3337 4.3363 

Iran 1.0485 0.9017 1.4977 
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eep learning model. Fig. 16 illustrates the forecasted values for 

elgium, where our proposed method predicts values as close as 

he actual value. 

Analyzing the figures indicates that for the majority of coun- 

ries, the best deep learning model archives better performance 

han the fuzzy fractal model. For all countries, it is apparent that 

he fuzzy fractal model fits a linear model to predict the con- 

rmed cases. Analyzing the figures indicates that for the majority 

f countries, the best deep learning model archives better perfor- 

ance than the fuzzy fractal model. For all countries, it is apparent 

hat the fuzzy fractal model fits a linear model to predict the con- 

rmed cases. Also, as the figures display, the deep learning model 

as able to capture both linear and nonlinear patterns, which en- 

ances its accuracy. The results confirm the suitability of the pro- 

osed model for COVID-19 time series forecasting. 

.5.2. Results of the second set of experiments on Dataset 2 

After validating the effectiveness of the deep learning-based 

odel on a shorter-window forecasting task, in this section, we 

erform the second set of experiments on Dataset 2 to examine 
9 
he performance of the proposed models in longer-horizon fore- 

asting. Longer-horizon forecasting reveals the trend of the pan- 

emic in the long term and thus help governments to make appro- 

riate decisions. To conduct experiments on Dataset 2, we adopt 

he hold-out method and split each COVID-19 time series into two 

arts: train set (80%) and test set (out-of-sample (20%)). The model 

uilding process is accomplished on the train set. The test set is 

sed for evaluating the obtained models throughout the experi- 

ents. Also, for each time series, 20% of the train set is consid- 

red as the validation set data that is used in the hyperparame- 

er identification process. As mentioned before, we adopt a multi- 

utput forecasting strategy, so we set the output size = 7. Therefore, 

he proposed model can forecast the number of cases for 7 next 

ays. 

The results of experiments in terms of SMAPE are provided in 

able 8 . For Dataset 2, ATT_BO achieves the best SMAPE for US, 

outh Africa, and Chile. Also, LSTM_BO exhibits a significant per- 

ormance and obtains the best SMAPE for 6 countries including In- 

ia, Russia, Mexico, Peru, Columbia and Iran. CNN performs worse 

mong these three methods and obtains the best performance only 

or Brazil. 

Table 9 shows the results of experiments with respect to the 

APE measure. Similar to the results given in Table 8 , LSTM_BO, 

TT_BO, and CNN_BO achieve the best performance in 6, 3, and 1 

ountries, respectively. 

The results of models in terms of RMSE are given in Table 10 .

e observe that regarding RMSE, LSTM_BO achieves the lowest 

MSE in 5 cases. Also, the second-best performing method is the 

TT_BO, which obtains the lowest RMSE in 3 countries. CNN_BO 

btains the best forecasting only for Brazil. 

To gain a more understanding of the overall performance of the 

roposed methods and their rank across all countries, we calcu- 

ate Mean SMAPE, Mean MAPE, Mean RMSE, Rank SMAPE, Rank 

APE, Rank RMSE over all 10 countries data (as seen in Table 11 ).
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Fig. 17. The actual and predicted number of cases for test set-US. 

Fig. 18. The actual and predicted number of cases for test set-Brazil. 

Table 10 

The performance of the proposed methods in terms of 

RMSE on Dataset 2 (the best results are marked bold). 

Country ATT_BO LSTM_BO CNN_BO 

US 31661.82 36223.39 43230.38 

Brazil 110229.9 98053.65 75718.32 

India 13834.01 13194 16290.89 

Russia 7054.7 4275.18 15662.22 

South Africa 55269.28 55611.48 65740.78 

Mexico 5360.93 4935.58 7080.47 

Peru 20003.09 17376.54 16049.06 

Chile 7438.9 9388.29 13168.58 

Colombia 12356.65 10721.77 10936.55 

Iran 3279.91 3143.49 4802.84 

Table 11 

The performance of all methods in terms of Mean SMAPE, 

Mean MAPE, Mean RMSE, Rank SMAPE, Rank MAPE, rank 

RMSE on Dataset 2 (the best results are marked bold). 

Method ATT_BO LSTM_BO CNN_BO 

Mean SMAPE 2.7801 2.5922 3.0348 

Mean MAPE 2.8512 2.6606 3.1181 

Mean RMSE 26648.92 25292.337 26868.01 

Rank SMAPE 2 1.4 2.6 

Rank MAPE 2 1.4 2.6 

Rank RMSE 2 1.5 2.5 
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10 
he results demonstrate that the LSTM_BO method outperforms 

TT_BO and CNN_BO in terms of all overall performance mea- 

ures and is a suitable choice for a longer horizon forecasting 

ask. 

To further illustrate the forecasting power of the deep learning- 

ased methods on dataset 2, in Figs. 17 –26 , we also visualize the 

ctual and predicted cases for each country with the results of the 

est model obtained from the deep learning models. In Figs. 17 –

6 , the red line indicates the actual values, and the green line 

orresponds to the forecasted cases using the best deep learn- 

ng model. As Figs. 17 , 19 , 20 , 22 , and 26 show, the forecasted

ases for countries including US, India, Russia, Mexico, and Iran 

re very close to the actual values. Besides, for these countries, 

n most of the time points, the forecasted values overlap the ac- 

ual ones. The results confirm the power of deep learning mod- 

ls in COVID-19 time series forecasting. Moreover, for countries 

uch as Brazil, South Africa, Peru, Chile, and Columbia as shown 

n Figs. 18 , 21 , 23 , 24 , and 25 , respectively, the differences be-

ween the actual and predicted number of cases are not signifi- 

ant and at some points, the actual and predicted values are very 

lose. 
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Fig. 19. The actual and predicted number of cases for test set-India. 

Fig. 20. The actual and predicted number of cases for test set-Russia. 

Fig. 21. The actual and predicted number of cases for test set- South Africa. 

11 
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Fig. 22. The actual and predicted number of cases for test set-Mexico. 

Fig. 23. The actual and predicted number of cases for test set-Peru. 

Fig. 24. The actual and predicted number of cases for test set-Chile. 

12 
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Fig. 25. The actual and predicted number of cases for test set-Colombia. 

Fig. 26. The actual and predicted number of cases for test set-Iran. 
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. Conclusion 

In this study, three methods based on combining the deep 

earning models such as multi-head attention, CNN, and LSTM 

ith the Bayesian optimization algorithm were developed to fore- 

ast COVID-19 time-series data. The main advantage of the pro- 

osed methods is their ability in processing the sequence data. 

lso, as another advantage, the design of the devised models is 

ased on the multi-output forecasting strategy that allows fore- 

asting multiple next days. The proposed methods were applied on 

he COVID-19 time series data considering two settings, the short- 

erm forecasting, and the long horizon forecasting. For short-term 

orecasting, we adopted the fuzzy fractal method as the bench- 

arking model. the best deep learning model outperforms the 

uzzy fractal model in 6 countries out of 10 countries. The signif- 

cant result is that in terms of all overall measures such as Mean 

MAPE, Rank SMAPE, Mean MAPE, Rank MAPE, Mean RMSE, and 

ank RMSE, the three proposed methods perform significantly bet- 

er than the benchmark model. Also, as the long-horizon forecast- 

ng is beneficial for long-term decision making on COVID-19 in- 

erventions, we explored the ability of the proposed methods on 

 longer horizon forecasting. The results of experiments indicated 

hat among the three proposed models, the LSTM_BO achieves 

he best SMAPE in 6 countries. Besides, in terms of the perfor- 

ance measures computed across all countries, LSTM_BO outper- 
13 
ormed ATT_BO and CNN_BO. Moreover, visualizing the actual and 

orecasted values demonstrated the effectiveness of the proposed 

ethods in COVID-19 time series forecasting. As future work, we 

im to extend the proposed methods by extracting the informative 

eatures from time series and incorporating them into the deep 

earning models. 
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