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Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced cardiac 

channelopathy that has a high mortality in untreated patients. Our understanding has grown 

tremendously since CPVT was first described as a clinical syndrome in 1995. It is now established 

that the deadly arrhythmias are caused by unregulated ‘pathological’ calcium release from the 

sarcoplasmic reticulum (SR), the major calcium storage organelle in striated muscle. Important 

questions remain regarding the molecular mechanisms that are responsible for the pathological 

calcium release, regarding the tissue origin of the arrhythmic beats that initiate ventricular 

tachycardia, and regarding optimal therapeutic approaches. At present, mutations in six genes 

involved in SR calcium release have been identified as the genetic cause of CPVT: RYR2 
(encoding ryanodine receptor calcium release channel), CASQ2 (encoding cardiac calsequestrin), 

TRDN (encoding triadin), CALM1, CALM2 and CALM3 (encoding identical calmodulin 

protein). Here, we review each CPVT subtype and how CPVT mutations alter protein function, 

RyR2 calcium release channel regulation, and cellular calcium handling. We then discuss research 

and hypotheses surrounding the tissue mechanisms underlying CPVT, such as the 

pathophysiological role of sinus node dysfunction in CPVT, and whether the arrhythmogenic beats 

originate from the conduction system or the ventricular working myocardium. Finally, we review 

the treatments that are available for patients with CPVT, their efficacy, and how therapy could be 

improved in the future.
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Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a cardiac arrhythmia 

characterized by the presence of ventricular tachycardia in response to β-adrenergic receptor 

stimulation. Here, we describe the mechanistic progression from β-adrenergic stimulation to the 

formation of mono/polymorphic ventricular tachycardia. The goal of this review is to highlight the 

current molecular mechanisms that lead to CPVT followed by a discussion of the current 

hypotheses and research around the cellular/tissue origin of the arrhythmias.
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Introduction

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal, stress-induced 

cardiac channelopathy. First described in 1995, CPVT is characterized by polymorphic 

ventricular arrhythmias that are triggered by catecholamines released during exercise, stress 

or sudden emotion in individuals with structurally normal hearts (Leenhardt et al. 1995). 

Symptoms range from palpitations to cardiac arrest, with mortality rates between 30 and 

50% in untreated individuals by age 40 (Pérez-Riera et al. 2018). Patients are normally 

diagnosed during early childhood but initial symptoms can occur in patients as old as 40 

years of age (Pérez-Riera et al. 2018). CPVT is rare, with an estimated prevalence of 1:5000 

to 1:10,000 depending on the population studied (Modell et al. 2012; Pérez-Riera et al. 
2018). The true prevalence of CPVT is likely higher, since CPVT cases are frequently 

missed as most patients present with a normal resting electrocardiogram and structurally 

normal heart on cardiac workup (Imberti et al. 2016).

Human genetic studies have established that CPVT is caused by mutations in genes that 

encode proteins of the sarcoplasmic reticulum (SR) calcium release complex depicted in Fig. 

1 (Swan et al. 1999; Lahat et al. 2001a,b). Supported mostly by experimental studies in 

mouse CPVT models (Cerrone et al. 2005; Knollmann et al. 2006; Rizzi et al. 2008; 

Uchinoumi et al. 2010), the current understanding of cellular CPVT pathophysiology is that 

catecholamines released during stress or exercise activate β-adrenergic receptor signalling, 

leading to a cellular chain reaction that culminates in pathological calcium release during 

diastole and calcium-triggered action potentials as described in Fig. 2.

Open questions remain as to how exactly mutations in CPVT genes cause functional 

alterations in the SR calcium release machinery that leads to pathological calcium release 

during diastole (molecular mechanisms). Even less well understood is how the altered 
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cellular function causes CPVT at the whole-heart and in vivo level. It remains to be 

determined if and to what extent the dysfunction of the sinus node, the cardiac conduction 

system and the ventricular working myocardium contribute mechanistically to CPVT (tissue 

mechanisms). Here, we review the current understanding of the molecular and tissue 

mechanisms of CPVT to help consolidate the information and shed light on the areas where 

more work is needed. Our goal is to help advance our understanding of CPVT 

pathophysiology and its treatment.

Molecular mechanisms of CPVT

As of 2019, six different CPVT disease genes have been identified, which account for 60–

75% of CPVT cases. The genetic cause of the remaining clinical CPVT cases is not yet 

known (Pérez-Riera et al. 2018; Roston et al. 2018b). All six CPVT genes (RYR2, CASQ2, 
TRDN, CALM1, CALM2, CALM3) encode proteins that are directly involved in regulating 

SR calcium release during excitation-contraction (EC) coupling (Fig. 1). Intheheart, 

electrical activation couples to mechanical force via the secondary messenger calcium (Bers, 

2002). Membrane depolarization during the cardiac action potential opens L-type calcium 

channels (Fig. 1), which bring calcium into the cell. Calcium binds to and opens RyR2 

located in the terminal cisternae of the SR, the junctional SR (Fig. 1), a process known as 

calcium-induced calcium release (CICR) (Fabiato, 1985). During systole, cytosolic calcium 

initiates myofilament contraction before being taken back up into the SR or pumped out into 

extracellular space during diastole. Proteins regulating SR calcium release can be 

categorized based on function and location. Proteins that are located within the SR lumen 

(e.g. calsequestrin, histidine-rich calcium-binding protein) affect the levels of free calcium 

present in the SR during the EC cycle. Proteins located within the junctional membrane of 

the SR (e.g. triadin, junctin) facilitate the interaction between calcium-handling proteins 

(e.g. calsequestrin and RyR2). Finally, there are a group of proteins that bind to the 

cytoplasmic surface of RyR2 (e.g. calmodulin, FK506 binding proteins) and regulate RyR2 

sensitivity to cytoplasmic and SR luminal calcium levels. The following section reviews the 

proteins of interest in CPVT, their physiological role, and how mutations lead to CPVT.

Ryanodine receptor type 2

Gain-of-function mutations in the RYR2 gene are found in about 95% of patients with a 

genetically confirmed diagnosis of CPVT (Pérez-Riera et al. 2018) and are designated as 

CPVT type 1 (CPVT1). CPVT1 is autosomal-dominant and was first described in 1999 

(Swan et al. 1999) before being mapped to RYR2 in 2001 (Priori et al. 2001). Since then, 

more than 200 gain-of-function variants in RYR2 have been discovered. Loss-of-function 

RYR2 variants also exist but are less common and associated with ventricular arrhythmia 

syndromes distinct from CPVT (Roston et al. 2017). RYR2 encodes the cardiac ryanodine 

receptor (RyR2), a 565 kD protein that forms a homotetrameric, high-conductance, cation-

selective channel that releases calcium from the SR (Fig. 1) (Seidel et al. 2015). RyR2 

interacts with many other proteins including calsequestrin 2 (Costello et al. 1986; Franzini-

Armstrong et al. 1987), triadin (Guo et al. 1996), junctin (Zhang et al. 1997), calmodulin 

(Yamaguchi et al. 2003, 2007), junctophilin, and the immunophilins FKBP 12 and FKBP 

12.6 (Jayaraman et al. 1992; Yano et al. 2009). FKBPs are thought to stabilize the closed 
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conformation of RyR2 and prevent diastolic release of calcium from the SR (Wehrens et al. 
2003). Currently, there are several hypotheses as to why mutations in RYR2 lead to CPVT, 

see Fig. 3 (Ikemoto & Yamamoto, 2002; Wehrens et al. 2003; Jiang et al. 2004; Liu et al. 
2009). One theory is that mutations in RYR2 affect the ability of FKBP 12.6 to interact with 

RyR2, leading to dissociation of FKBP 12.6 and the opening of RyR2 during diastole 

(Wehrens et al. 2003). However, others have challenged this hypothesis (Xiao et al. 2007), 

and at the present time it seems unlikely that loss of FKBP 12.6 is responsible for CPVT. 

Rather, FKBPs still bind to mutant RyR2 but fail to inhibit them (Zhang et al. 2016). The 

most widely held hypothesis states that CPVT mutations sensitize RyR2 channels to SR 

luminal calcium, causing them to open at a lower intra-SR calcium concentration, termed 

store overload-induced calcium release (SOICR) (Jiang et al. 2004). According to the 

SOICR hypothesis, mutations in RYR2 decrease the threshold of SR calcium that is required 

to activate RyR2, leading to an increased probability of calcium leak and diastolic SR 

calcium release. A third hypothesis focuses on the interactions within the structure of RyR2. 

Normally, intramolecular interactions occur between the N-terminal and central domain of 

RyR2 monomers, termed ‘zipping’, which are critical to stabilizing the protein. When RyR2 

is activated during the EC coupling cycle, the intramolecular interactions are weakened, 

‘unzipping’ the domains, opening the channel, and causing the release of calcium. Mutations 

in RYR2 that occur within the interaction domains have been shown to cause a similar 

unzipping, which results in calcium leak (Ikemoto & Yamamoto, 2002; George et al. 2006; 

Sumitomo, 2016). While it is still debated which hypothesis is correct, common to all of 

them is that CPVT-linked RYR2 mutations increase the likelihood of spontaneous RyR2 

openings and pathological calcium release during diastole.

Calsequestrin 2

The second most common cause of CPVT is mutations in the CASQ2 gene, termed CPVT2 

(Lahat et al. 2001a,b). Calsequestrin was first associated with CPVT when missense 

mutations were discovered in a family with autosomal recessive CPVT in 2001 and 

nonsense mutations in a similar family in 2002 (Postma et al. 2002). Calsequestrin-linked 

CPVT was thought to be an autosomal recessive disease only (Postma et al. 2002; de la 

Fuente et al. 2008; Kirchhefer et al. 2010), but in 2016 a report of a novel CASQ2 mutation 

(K180R) in a family with autosomal-dominant inheritance of CPVT was published (Gray et 
al. 2016). Calsequestrin is a calcium-binding protein located in the terminal cisternae that 

form the junctional SR (Fig. 1). Calsequestrin is a high-capacity, low-affinity calcium-

binding protein that binds 40–50 calcium ions through its 60–70 negatively charged amino 

acid residues (Yano & Zarain-Herzberg, 1994). While it is known that calsequestrin forms 

homo-polymers in a calcium-dependent manner (Park et al. 2003), not much is known about 

the structure of the polymers. A recent report utilized very low pH (3.5) conditions to 

crystalize a novel structure for the calsequestrin polymer filament (Fig. 4) (Titus et al. 2019). 

The filaments are an assembly of calsequestrin dimers that interact with one another to form 

three different thioredoxin helices that come together to form the filament (Fig. 4a). Two of 

the three domains form a double helix at the core of the filament, while the final domain 

creates an outer ‘collar’ and winds around the inner double helix (Fig. 4b). The new 

structure was then used to identify novel potential calcium-binding sites. The analysis found 

calcium-binding sites that bridged both intra- and inter-dimer interfaces of calsequestrin, 
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suggesting that calcium is involved in the ability for calsequestrin to form dimers and those 

dimers to form subsequent filaments (Titus et al. 2019). Functionally, calsequestrin regulates 

the amount of calcium released from the SR during EC coupling by buffering intra-SR 

calcium (Zhang et al. 1997; Bers, 2002).

To regulate calcium release, calsequestrin is anchored to RyR2 by two proteins, triadin and 

junctin. It has been suggested that the interaction between calsequestrin and RyR2 may 

contribute to the refractory period of calcium release that occurs after each physiological 

CICR, but the mechanism is still not well understood (Györke et al. 2009; Katz et al. 2009; 

Liu et al. 2009). Studies using skeletal calsequestrin (Casq1, not expressed in the heart) 

showed changes in diffusional mobility of Casq1 after depletion of SR calcium (Manno et al. 
2017). If cardiac calsequestrin (Casq2) acts in a similar manner in the heart, the findings 

from Casq1 would provide a plausible mechanism for how calsequestrin is regulating 

calcium release and termination. Hence, the simplest explanation of why mutations in 

calsequestrin cause CPVT is that they impair calsequestrin’s ability to buffer calcium in the 

SR, resulting in a much faster rise of intra-SR free calcium concentration close to RyR2 

release channels. Although intra-SR calcium kinetics have not yet been measured 

experimentally in calsequestrin CPVT models, there is extensive evidence that absence of 

calsequestrin in mice leads to hyperactive RyR2 channels, impaired calcium-release 

termination, a shortened calcium release refractory period, and enhanced spontaneous 

release of calcium (Knollmann et al. 2006; Chopra et al. 2007; Kryshtal et al. 2015). While 

impaired calcium buffering is the generally accepted mechanism for calsequestrin nonsense 

mutations that result in loss of calsequestrin, missense mutations (e.g. R33Q) may alter 

calsequestrin interaction with RyR2 in addition to reducing calcium buffering (Terentyev et 
al. 2006). For autosomal-dominant CPVT2, the current hypothesis is that calsequestrin 

mutations affect the ability for polymerization to occur. Two autosomal-dominant mutations 

(K180R and S173I) were unable to form polymers in a turbidity assay. Interestingly, the 

defect for the K180R mutation only occurred in the presence of magnesium. While the exact 

mechanism is unknown, magnesium may affect the ability of calsequestrin to form filaments 

and could be involved in the pathogenesis of the K180R mutation (Titus et al. 2019). More 

work is needed to understand the physiological role of calsequestrin in the EC coupling 

cycle, to determine the prevalence of autosomal-dominant calsequestrin mutations, and to 

understand how they cause CPVT.

Calmodulin

Three different genes - CALM1, CALM2, CALM3 - encode identical calmodulin proteins 

and are located on chromosomes 14q32, 2p21 and 19q13, respectively. Mutations in each of 

the three calmodulin genes have been linked to three distinct genetic arrhythmia disorders: 

CPVT (Nyegaard et al. 2012; Yin et al. 2014; Gomez-Hurtado et al. 2016), idiopathic 

ventricular fibrillation (Marsman et al. 2014), and long-QT syndrome (Jiménez-Jáimez et al. 
2016). Structurally, calmodulin has an alpha-helical structure and contains four classical 

calcium-binding EF hand motifs, two on each N- and C-terminal lobe. The motifs can bind 

to one calcium ion each with the N-terminal lobe having a lower affinity for calcium (Linse 

et al. 1991; VanScyoc et al. 2002). When calcium binds to calmodulin, the protein will 

undergo a conformational change that exposes the hydrophobic patches in each lobe. The 
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patches contain a large amount of methionine residue that utilizes a central linker between 

the two lobes to interact with a large number of protein targets (Yamniuk & Vogel, 2004). 

Within the EC coupling machinery, calmodulin binds to RyR2 and the L-type calcium 

channel (LTCC) (Fig. 1). The binding of calmodulin to RyR2 inhibits calcium release from 

the SR during diastole (Yamaguchi et al. 2003, 2007). Calcium binding to calmodulin 

inactivates LTCC channels (Peterson et al. 1999; Zühlke et al. 1999), a process termed 

calcium-dependent inactivation. In addition to RyR2 and LTCC, calmodulin regulates other 

membrane ion channels important for the cardiac action potential (e.g. Nav 1.5, KCNQ1). 

Mutations in the three CALM genes have a wide range of effects, which may explain the 

diverse arrhythmia phenotypes associated with calmodulin mutations. For example, 

calmodulin mutants linked to CPVT either fail to inhibit or even activate RyR2 (Hwang et 
al. 2014; Gomez-Hurtado et al. 2016). CPVT calmodulin mutants tend to bind to RyR2 with 

higher affinity than wild-type calmodulin (Hwang et al. 2014; Gomez-Hurtado et al. 2016), 

which can explain their autosomal-dominant mode of action. On the other hand, calmodulin 

mutants associated with LQTS do not affect RyR2, but rather impair LTCC inactivation, 

leading to a profound action potential lengthening and QT prolongation (Limpitikul et al. 
2014). Due to the many calmodulin targets within the cell, calmodulin mutations may also 

cause ventricular arrhythmias by other mechanisms, but so far none have been definitively 

confirmed.

Triadin

Triadin is a trans SR membrane protein that forms a complex with RyR2, calsequestrin and 

junctin to create the SR calcium release unit (Jones et al. 1995; Kobayashi & Jones, 1999). 

Triadin localizes to the junctional SR membrane in both cardiac and skeletal muscle (Fig. 1). 

Triadin has a single membrane-spanning domain, a short N-terminal segment located in the 

cytoplasm, a long C-terminal tail that projects intraluminally and is highly basic and 

charged, and a long run of charged amino acid residues called ‘KEKE’ association motifs 

that promote protein-protein interactions (Knudson et al. 1993; Jones et al. 1995; Guo et al. 
1996; Zhang et al. 1997). Triadin is thought to act mainly as a scaffolding protein to help 

anchor calsequestrin to RyR2 near the junctional SR membrane. The anchoring properties of 

triadin are important for maintaining the ultrastructure of the terminal cisterna. When triadin 

is knocked out in mice (Chopra et al. 2009), protein levels of RyR2, calsequestrin and 

junctin were all reduced despite normal RNA expression. Consistent with the role of triadin 

as the primary anchoring protein that retains calsequestrin in the terminal cisterna, 

calsequestrin can be detected in the free SR of triadin knockout myocytes (Chopra et al. 
2009). Loss of triadin also resulted in profound structural remodelling of the terminal 

cisterna, with an approximately 50% reduction of the junctional SR-t-tubule interface. As a 

result of the structural remodelling, coupling efficiency between LTCC and RyR2 was 

impaired and LTCC calcium-dependent inactivation reduced. Due to the impaired LTCC 

inactivation, triadin loss results in a gain-of-function effect on LTCC, increased calcium 

current and prolonged cardiac action potential. The ensuing cellular and SR calcium 

overload causes an increase in spontaneous calcium release events especially during 

catecholaminergic stimulation (Chopra et al. 2009). Other roles of triadin have been 

proposed, such as the ability of overexpressed triadin to enhance SR calcium release by 

directly affecting the RyR2 channel, but the work was conducted in cultured myocytes and 
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needs to be confirmed at the single channel level (Terentyev et al. 2005). The first triadin 

mutation linked to CPVT was discovered in 2012 and another was found in 2015 (Roux-

Buisson et al. 2012; Rooryck et al. 2015). Triadin mutations are thought to result in 

decreased levels of the protein. For example, the triadin-T59R mutation renders the triadin 

protein unstable and leads to enhanced degradation (Roux-Buisson et al. 2012). More 

recently, triadin mutations were also found in patients suffering from long-QT. The 

mutations caused a frameshift in the TRDN gene leading to a syndrome termed ‘triadin 

knockout syndrome’ (Altmann et al. 2015). Patients suffered from multiple episodes of 

exertion-induced syncope and cardiac arrest in early childhood. Other symptoms include 

mild to moderate muscle weakness. Further electrocardiographic workup demonstrated 

extensive T-wave inversion and QT prolongation. Normally, patients with similar findings 

would be classified as having long-QT syndrome. It has been proposed that patients with 

triadin mutations that decrease the levels of triadin should be diagnosed with ‘triadin 

knockout syndrome’ (Altmann et al. 2015), which is essentially an overlap syndrome with 

features of both CPVT and long-QT.

Other candidate genes for CPVT

Although not yet identified, mutations in other genes that are integral to SR calcium 

handling could potentially cause CPVT and should be screened for in patients carrying a 

clinical diagnosis of CPVT. Junctin, encoded by the gene aspartyl-beta-hydroxylase 

(ASPH), is a junctional SR protein (Fig. 1) that interacts with triadin and RyR2 (Jones et al. 
1995; Kobayashi & Jones, 1999). Like triadin, junctin functions as a scaffold for 

calsequestrin and is involved in the polymerization of calsequestrin as calcium increases in 

the SR (Lee et al. 2012). Other CPVT candidates are proteins that regulate RyR2 calcium 

sensitivity such as FKBP 12 and FKBP 12.6 (Fig. 1). Both proteins are expressed in cardiac 

myocytes and are thought to promote the closed state of the channel. FKBP 12 and 12.6 bind 

to the same region of RyR2 which suggests that the competition between them is important 

for the functional outcome of RyR2 (Gonano & Jones, 2017). Another candidate is histidine-

rich calcium (HRC) binding protein, a SR luminal calcium-binding buffering that is 

upregulated when calsequestrin is knocked out (Murphy et al. 2011). Increased HRC may 

activate RyR2 calcium release channels and contribute to CPVT (Liu et al. 2015).

Tissue mechanisms underlying CPVT

It is generally agreed upon that CPVT mutations render the RyR2 calcium release channels 

hyperactive, generating pathological calcium release during diastole. What remain unclear 

are the tissue mechanisms of CPVT. For example, a key question is the mechanistic 

contribution of low sinus heart rates, since sinus node dysfunction is a hallmark of CPVT in 

patients and animal models (Faggioni et al. 2014b; Miyata et al. 2018). Another key 

question is whether the arrhythmic trigger that causes the ventricular arrhythmias originates 

from ventricular cardiomyocytes in the working myocardium or from specialized cells of the 

cardiac conduction system, the Purkinje cells. Theoretical considerations and modelling 

studies favour the ventricular Purkinje network as the primary cellular source of CPVT (Xie 

et al. 2010) but conclusive experimental evidence is lacking.
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Pathophysiological role of sinus node dysfunction in CPVT

Sinus node dysfunction and bradycardia are well-documented phenotypes of CPVT in 

humans and in mouse models of CPVT (Faggioni et al. 2014b; Miyata et al. 2018). The 

mechanisms of how CPVT mutations cause sinus node dysfunction are thought to be 

multifactorial. For example, one theory is that the loss of calsequestrin causes a regional 

microfibrosis in the sinus node, which would alter the generation and propagation of an 

electrical impulse through the node (Glukhov et al. 2015). It is hypothesized that the 

microfibrosis could form from apoptosis and fibrogenesis due to an overload of diastolic 

calcium (Swaminathan et al. 2011). The increase in calcium levels could also trigger the 

activation of CaMKII, which has been shown to be involved in the upregulation of genes that 

could promote structural remodelling (Huke & Knollmann, 2011). Understanding how sinus 

node dysfunction originates is important as sinus node chronotropic incompetence has been 

shown to be a risk predictor for ventricular arrhythmia in children and young adults with 

CPVT (Franciosi et al. 2019). A likely explanation is that low sinus rates prolong the 

diastolic interval, allowing the spontaneous SR calcium release to occur before CICR during 

the next action potential can empty the SR and reset the SR calcium clock. Our group tested 

this hypothesis experimentally at the cellular level and in vivo using the Casq2 KO mouse 

CPVT model (Faggioni et al. 2013). We found that increasing the pacing rate reduced the 

likelihood of spontaneous calcium release and triggered beats in isolated cardiomyocytes. In 
vivo, artificially raising resting heart rates with atropine or by overdrive pacing prevented 

CPVT (Faggioni et al. 2013). To study the role of the cardiac conduction system in CPVT in 

more detail, our group recently developed two novel mouse models where the CASQ2 gene 

can be either inactivated (i.e. conditional KO) or activated (i.e. conditional rescue) by Cre-

mediated recombination (Flores et al. 2018). Thus, we were able to modulate CASQ2 gene 

expression in a tissue and temporal manner by crossing our new mouse models with mice 

that carry Cre controlled by tissue selective and/or inducible promotors. For example, using 

the HCN4KiT-Cre system (Hoesl et al. 2008), we were able to re-express Casq2 in the SA 

node of adult Casq2 KO mice, which accelerated sinus heart rates and prevented CPVT 

(Flores et al. 2018), as illustrated in Fig. 5. Hence, dysfunction of the sinoatrial node and the 

ensuing slow sinus heart rates may independently contribute to arrhythmia risk in CPVT.

Purkinje cells as the cellular source of CPVT

Theoretical considerations and modelling studies favour the ventricular Purkinje network as 

the primary cellular source of CPVT because of a favourable source-sink relationship (Xie et 
al. 2010). There are also key differences between Purkinje cells and ventricular myocytes 

that could explain why Purkinje cells are more likely to generate arrhythmias. Purkinje cells 

have a much lower number of T-tubules compared with ventricular cardiomyocytes and 

hence more corbular SR (Sommer & Johnson, 1968). The differences in organelle structure 

result in a calcium activation process that is unique to Purkinje cells, termed ‘reverse mode-

EC coupling’. The calcium release units within the centre of Purkinje fibres do not respond 

to voltage but instead are activated by calcium waves (Stuyvers et al. 2005). Experimental 

evidence to support the proposition that CPVT originates from the Purkinje system stems 

from a mouse model with a heterozygous mutation in RYR2(RYR2/RYR2R4496C) (Cerrone 

et al. 2005). Optical mapping of whole mouse hearts demonstrated that breakthrough 

patterns from ventricular tachycardias may originate from the His-Purkinje network in both 
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ventricles (Cerrone et al. 2007). To confirm that the arrhythmias were generated from the 

Purkinje fibres, chemical ablation (Lugol’s solution) of the right ventricular endocardial 

cavity was performed. Mice treated with Lugol’s had conversion of bi-directional VT into 

monomorphic VT, suggesting that endocardial Purkinje fibre ablation prevented the 

development of arrhythmias from the right ventricle (Cerrone et al. 2007). Follow-up studies 

in single cells found that RYR2/RYR2R4496C Purkinje cells developed spontaneous calcium 

release events and triggered beats at a significantly higher rate than ventricular myocytes 

(Herron et al. 2010; Kang et al. 2010).

The experimental studies in the RYR2/RYR2R4496C mice had suggested that alternating 

beats of bi-directional VT originated from the right and left bundle branches, but the 

mechanism by which the triggered activity generated an alternating pattern was not 

addressed (Cerrone et al. 2007). Using a simulated two-dimensional anatomic model of 

rabbit ventricles with a simplified His-Purkinje system, a computer modelling study 

attempted to gain a better understanding of the mechanism underlying bi-directional 

ventricular tachycardia, which is a hallmark of CPVT (Leenhardt et al. 1995). Based on the 

results of the modelling, the authors proposed that a ‘ping-pong’ mechanism, called 

reciprocating bigeminy, could account for the bi-directional VT pattern that was seen in 

CPVT (Baher et al. 2011). The ping-pong mechanism is based on the findings that above a 

certain threshold heart rate, a delayed afterdepolarization (DAD) triggers an action potential 

that initiates ventricular bigeminy, and that the threshold heart rate for bigeminy varies at 

different locations in the heart (Baher et al. 2011). The findings from the model suggested 

that DAD-triggered arrhythmias could cause ventricular bigeminy when a single site in the 

His-Purkinje system or the ventricular myocardium developed a DAD-triggered beat 

following a sinus beat. Bi-directional VT occurred when a second site developed ventricular 

bigeminy and reciprocally activated the first site by the ping-pong mechanism. Bi-directional 

VT could degenerate into polymorphic VT when the increase in heart rate recruited 

additional sites in the His-Purkinje to develop bigeminy (Baher et al. 2011). The data from 

the RYR2R4496C model suggests that the His-Purkinje system could serve as both the source 

of initiation and the propagation of ventricular arrhythmias.

While the above evidence suggests Purkinje cells in the conduction system as the source for 

CPVT, direct experimental evidence was lacking until recently, when Flores et al. (2018) 

tried to establish causation by knocking out calsequestrin only in the conduction system 

using the HCN4KiT-Cre recombinase system. Cre expression is driven by the promoter of 

the HCN4 gene, which is expressed in the sinus node and the cardiac conduction system but 

not in the ventricular working myocardium. Surprisingly, the deletion of calsequestrin in the 

Purkinje network did not produce a CPVT phenotype (Fig. 5) (Flores et al. 2018). Since 

deletion of calsequestrin is an established molecular mechanism of CPVT, the results of the 

study suggest that Purkinje cells in the conduction system may not be capable of generating 

CPVT on their own. Rather, ventricular myocytes may be the cellular culprit responsible for 

CPVT, which is discussed next.
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Ventricular cardiomyocytes as the cellular source of CPVT

Based on experimental studies of cells isolated from the ventricular myocardium of CPVT 

mouse models, ventricular cardiomyocytes are clearly capable of generating spontaneous 

calcium release, DADs, and spontaneous action potentials in response to catecholaminergic 

stimulation, making them candidates to be the origin of ventricular arrhythmias in CPVT 

(Knollmann et al. 2006; Liu et al. 2006; Cerrone et al. 2007). Other studies support this. For 

example, human cardiomyocyte models of CPVT generated from patient-specific induced 

pluripotent stem cells (iPSCs) also exhibit DADs and action potentials triggered by 

spontaneous calcium release (Novak et al. 2012, 2015). Drug efficacy in isolated ventricular 

cardiomyocytes can predict anti-arrhythmic efficacy in mouse models and in humans with 

CPVT (Knollmann, 2011; Batiste et al. 2019). Furthermore, CPVT patients frequently 

present with atrial tachycardia or atrial fibrillation that can occur prior to or during their 

ventricular tachycardia (Leenhardt et al. 1995). Up to 74% of patients with CPVT 

experience supraventricular tachycardias at slower heart rates than the ventricular 

arrhythmias (Sumitomo et al. 2007; Cerrone et al. 2009; Sy et al. 2011). Based on optical 

mapping data from a calsequestrin null mouse model, the atrial tachyarrhythmias are driven 

by spontaneous calcium release events in atrial myocardium that cause DADs and atrial 

triggered beats (Faggioni et al. 2014a), supporting the suggestion that that calcium-triggered 

tachyarrhythmias can originate outside the specialized conduction system. Finally, in clinical 

studies of CPVT patients, 60–70% of ventricular ectopy originated from the right and left 

ventricular outflow tracts (Sumitomo et al. 2003; Sy et al. 2011). Although there is no 

universal agreement on where to find Purkinje fibres in the human ventricle, researchers 

have suggested that the outflow tract has little or no Purkinje fibres present (Shimizu, 2009). 

However, a recent anatomical study of the human heart identified what appear to be 

specialized conducting cells in the right ventricular outflow tract. The specialized cells are 

thought to be the ramifications of the right bundle branch that do not extend past the 

pulmonary valves, but more studies are needed to understand the nature of these cells. Of 

note, some of the arrhythmia foci identified within the right ventricular outflow tract were at 

anatomical locations distinct from those of the specialized conduction cells (De Almeida et 
al. 2020). Together, the human data could indicate that ventricular cardiomyocytes are 

capable of triggering CPVT, at least in portions of the left or right outflow tract. More 

research with tissue-targeted genetic models such as those in Fig. 5 is needed to determine 

the tissue origin of CPVT, and to help understand how ventricular cardiomyocytes can 

overcome the sink–source mismatch to trigger CPVT.

Treatment of CPVT patients

For CPVT patients, there are several therapeutic options recommended by consensus 

guidelines (Priori et al. 2013). First-line therapy is beta-adrenergic receptor blockers (Class I 

recommendation). If patients on maximally tolerated beta-blocker therapy continue to have 

syncope or recurrent sustained VT, treatment should be intensified with combination 

medical therapy (e.g. adding flecainide, Class IIA) or left cardiac sympathetic denervation 

(Class IIB). There is no role for an implantable cardiac defibrillator (ICD) as standalone 

therapy, nor programmed electrical stimulation in CPVT (Class III).
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Beta-adrenergic receptor inhibitors (beta-blockers)

Beta-blockers are the first-line drug therapy to treat CPVT since CPVT is triggered by beta-

adrenergic stimulation. Based on clinical studies (Hayashi et al. 2009; Leren et al. 2016), the 

most effective beta-blocker is nadolol, although it is not known why nadolol is superior to 

other beta-blockers. Although beta-blockers are recommended as a first-line therapy, they 

are not completely protective: over 30% of patients experienced events during an eight-year 

follow-up period (van der Werf et al. 2012).

Flecainide and propafenone

The Class 1C anti-arrhythmic drugs flecainide and propafenone both prevent exercise-

induced VT in mice and humans with CPVT (Watanabe et al. 2009; Hwang et al. 2011). At 

the cellular level, their efficacy can be attributed to their dual inhibition of sodium and RyR2 

calcium release channels, resulting in a profound suppression of spontaneous calcium 

release and triggered beats. Since the initial report in 2009, five clinical studies including a 

randomized placebo-controlled trial (Kannankeril et al. 2017) have investigated flecainide 

therapy in CPVT patients that were experiencing exercise-induced ventricular arrhythmia 

despite therapy with beta-blockers. After the initiation of flecainide, approximately 80% of 

patients had either a partial or a complete suppression of exercise-induced VT (van der Werf 

et al. 2011; Khoury et al. 2013; Watanabe et al. 2013; Kannankeril et al. 2017; Wangüemert 

Pérez et al. 2018). Propafenone, another Class 1C anti-arrhythmic drug, has also been used 

to treat CPVT (Marx et al. 2019). Similar to flecainide, propafenone inhibits RyR2 single 

channels (Hwang et al. 2011) and inhibits arrhythmogenic calcium waves in CPVT 

cardiomyocytes (Savio-Galimberti & Knollmann, 2015). While both anti-arrhythmic drugs 

are effective clinically, additional studies are still needed to gain a better understanding of 

the role of sodium channel versus RyR2 inhibition, and the potential as a first-line therapy 

(Behere & Weindling, 2016).

Calcium channel blockers

Although effective in cell and animal models of CPVT (Katz et al. 2010; Alcalai et al. 
2011), clinically LTCC blockers by and large provide only transient or partial benefit in 

CPVT patients already treated with beta-blockers (Swan et al. 2005; Rosso et al. 2007; Katz 

et al. 2010). Both beta-blockers and flecainide are superior at preventing VT. Calcium 

channel blockers could be considered for patients that are unable to take flecainide or in 

refractory cases of CPVT.

Cardiac sympathetic denervation

Left or bilateral cardiac sympathetic denervation reduces catecholamine signalling in the 

heart by preventing the release of norepinephrine from sympathetic nerve terminals. It was 

first reported to be successful for CPVT in 2008 when three patients that were refractory to 

their medications became symptom free after the procedure (Wilde et al. 2008). A larger 

follow-up study found a reduction of major cardiac events from 86% to 21% (De Ferrari et 
al. 2015). The most recent guidelines recommend sympathetic denervation as an option for 

patients that are still experiencing symptoms on maximum beta-blocker therapy (Class IIB).
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Implantable cardiac defibrillator

The 2013 guidelines recommended (Class I) that a patient with CPVT has an ICD implanted 

if the patient has survived a cardiac arrest or if a patient has syncope/documented sustained 

VT despite optimal medical management and/or left cardiac sympathetic denervation(Al-

Khatib et al. 2018). A recent meta-analysis reviewed 53 studies containing 1429 CPVT 

patients, 35% of whom had an ICD implanted (Roston et al. 2018a). During follow-up, 40% 

of patients received at least one appropriate shock, 21% of patients received at least one 

inappropriate shock, and electrical storm (three or more sustained episodes of ventricular 

tachycardia, ventricular fibrillation, or appropriate shocks from an ICD within 24 hours) 

occurred in 20% of patients. Seven patients died despite ICD placement, with four deaths 

associated with electrical storm. The effectiveness of the shocks was also assessed. Some 

99% of shocks for ventricular tachycardia failed despite being appropriate whereas 94% of 

shocks for ventricular fibrillation were successful (Roston et al. 2018a). Thus, the efficacy of 

ICD shocks in CPVT appears dependent on the arrhythmia mechanism - effective for 

ventricular fibrillation but ineffective for VT. (Miyake et al. 2013) A recent multicenter 

study of 136 CPVT patients who presented with cardiac arrest showed no survival benefit 

associated with ICD implant (van der Werf et al. 2019). These data indicate that ICD therapy 

can be both ineffective and proarrhythmic, and can cause serious medical complications and 

psychological burden, especially in paediatric populations. Hence, ICD implantation is 

controversial and of questionable utility for CPVT patients.

Possible future CPVT therapies

One promising approach is to target the sinus node dysfunction that is characteristic of 

CPVT. As proof of concept, artificially raising heart rates with atropine, by atrial overdrive 

pacing or by re-expressing Casq2 in the sinoatrial node prevented catecholamine-induced 

ventricular arrhythmia in the Casq2 KO mouse CPVT model (Faggioni et al. 2013; Flores et 
al. 2018). Observational patient data also suggests the efficacy of raising sinus heart rates as 

a novel therapeutic approach that can prevent exercise-induced VT (Faggioni et al. 2013), 

which we recently confirmed in a small open-label clinical trial, where raising sinus heart 

rates with atropine prevented or reduced exercise-induced ventricular ectopy in six CPVT 

patients (Kannankeril et al. 2019).

Another approach that has been tested successfully in CPVT mouse models is gene therapy 

via adeno-associated viral (AAV) vectors. Multiple studies have seen beneficial effects from 

delivering various calcium handling proteins such as calsequestrin (Denegri et al. 2014; 

Kurtzwald-Josefson et al. 2017; Cacheux et al. 2019) and an engineered calmodulin that 

inhibits RyR2 calcium release (Liu et al. 2018). AAV was also successfully used for in vivo 
CRISPR/Cas9-mediated gene editing of an RYR2 CPVT mutation in mice (Pan et al. 2018). 

As gene therapy continues to improve, the above studies demonstrate the power that a 

targeted approach could have on arrhythmic diseases, and potentially prevent patients from 

needing any pharmacological or surgical interventions.

More selective small molecule inhibitors of RyR2-mediated calcium release could provide a 

better tolerated and effective CPVT therapy. Dantrolene, a drug used clinically to treat 

hyperactive skeletal muscle calcium release, decreased exercise-induced ventricular ectopy 
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in some but not all CPVT patients (Penttinen et al. 2015). Our group recently reported the 

discovery of ent-verticilide, a cyclic depsipeptide that has nanomolar potency, is selective for 

RyR2 over RyR1, and exhibits anti-arrhythmic efficacy in vivo (Batiste et al. 2019). Another 

promising drug target is the calmodulin-dependent serine-threonine protein kinase II 

(CaMKII) (Fig. 1). RyR2 phosphorylation by CaMKII increases RyR2 calcium leak. 

CaMKII inhibition with KN-93 (Liu et al. 2011) or with AAV-mediated delivery of a 

CaMKII peptide inhibitor (Bezzerides et al. 2019) was effective in suppressing arrhythmias 

in a murine model of CPVT. Finally, Kifuensine, an inhibitor of mannosidase-I, was used to 

successfully rescue expression of calsequestrin and reduce CPVT occurrence in triadin-KO 

mice by preventing proteasomal degradation of misfolded proteins (Cacheux et al. 2019).

Conclusion

The goal of this topical review was to update the field on the current molecular and tissue 

mechanisms of CPVT and highlight therapeutic approaches. At a molecular level, six genes 

that affect calcium handling have been found to cause CPVT: RYR2, CASQ2, TRDN, 

CALM1, CALM2 and CALM3. More work is needed to understand exactly how mutations 

disrupt protein function and cause pathological calcium release at the cellular level. At a 

tissue level, current research suggests that sinus node dysfunction contributes 

mechanistically to the development of exercise-induced ventricular ectopy and could be 

targeted therapeutically by increasing the sinus heart rate. Future studies are needed to 

definitively answer whether the ectopic beats originate in the ventricular conduction system 

(i.e. Purkinje cells) or in the ventricular working myocardium. Insights from studying the 

molecular and tissue mechanisms extend beyond CPVT, because RyR2 hyperactivity and 

abnormal calcium handling is also a common feature of structural heart diseases such as 

ischaemic cardiomyopathy or non-ischaemic heart failure, which are the leading cause of 

sudden death in the developed world. Hence, CPVT can serve as an important paradigm for 

studying calcium-related arrhythmia mechanisms and developing novel therapeutics that 

prevent ventricular arrhythmia and sudden death.
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Figure 1. The sarcoplasmic reticulum (SR) calcium release complex in cardiac muscle
Pictured above are the proteins that are involved in the regulation of calcium release from 

the SR during excitation-contraction coupling. The ryanodine receptor type 2 (RyR2) is a 

large conductance calcium channel located in the junctional SR membrane that is gated by 

calcium influx via the L-type calcium channels (LTCC) in the cell membrane. RyR2 open 

probability is regulated by post-translational modifications (e.g. phosphorylation by 

calcium-calmodulin kinase II, CaMKII, protein kinase A, PKA), by cytosolic RyR2 binding 

proteins (calmodulin [CaM], immunophillins such as FK506 binding protein [FKBP]) and 

SR luminal proteins (calsequestrin [Casq2], triadin, junction). Casq2 forms polymers that 

are anchored to RyR2 and the junctional SR by triadin and junctin. CaM bound to LTCC 

mediates calcium-dependent inactivation of LTCC.
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Figure 2. Cellular pathogenesis of catecholaminergic polymorphic ventricular tachycardia 
(CPVT)
The cartoon illustrates cellular mechanisms underlying CPVT caused by the loss of 

calsequetrin. 1, catecholamines released during stress or exercise activates β-adrenergic 

receptor signalling, leading to cardiomyocyte calcium loading and enhanced sarcoplasmic 

reticulum (SR) Ca uptake. 2, the increased SR calcium load is a physiological response 

necessary for increasing cardiac output during the physiological fight or flight response 

(Bers, 2001). Normally, ventricular myocytes can handle the increased SR calcium load. 3, if 

a CPVT mutation is present, RyR2 SR calcium release channels open spontaneously during 

late diastole, causing unregulated ‘pathological’ SR calcium release termed ‘spontaneous 

calcium release events’ (SCR). 4, the rise in cytosolic calcium during the SCR activates the 

electrogenic sodium calcium exchanger, which generates an arrhythmogenic transient 

inward current. 5, this induces a cell membrane depolarization termed ‘delayed 

afterdepolarizations’ (DADs). 6, DADs are a well-established cellular mechanism that can 

then cause triggered beats that lead to ventricular arrhythmias (Priori & Corr, 1990).
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Figure 3. Summary of current hypotheses for how RyR2 mutations could lead to 
catecholaminergic polymorphic ventricular tachycardia
The first theory states that mutations prevent FKBP binding to RyR2. The second theory 

states that a mutation can lower the intra-sarcoplasmic reticulum (SR) calcium threshold 

needed RyR2 to open during diastole, termed ‘store overload-induced calcium release’ 

(SOICR). Finally, the ‘unzipping’ theory stems from the observation that the N-terminal and 

central domain of RyR2 interact with one another forming a tight seal. Mutations in RYR2 
can affect the interaction and lead to an unzipping of the protein, making RyR2 more prone 

to open spontaneously.
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Figure 4. The new cardiac calsequestrin filament (Titus et al. 2019, with permission)
Pictured above is the putative structure of the cardiac calsequestrin filament. a, putative 

calsequestrin filament including its dimeric and tetrameric assembly. b, the filament exhibits 

a helical structure at the domain level. For simplicity, calsequestrin monomers are coloured 

by thioredoxin domain (domain I, purple; domain II, yellow; domain III, cyan). The filament 

is formed by an inner thioredoxin double helix (domains II and III) with an outer thioredoxin 

single helix (domain I) wrapped around the double helical core. Right side: The monomers 

are translated but remain in their dimer-forming orientation.
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Figure 5. Cardiac conduction system (CSS) targeted CASQ2 gene deletion or rescue
Cartoon showing the heart rate and ventricular arrhythmia phenotype of mice with 

conditional deletion or rescue of calsequestrin in the CCS. Red colour indicates functional 

CASQ2.
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