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Abstract: Angiogenesis plays an essential role in the development of most solid tumors by 
delivering nutrients and oxygen to the tumor. Therefore, anti-angiogenic therapy, particularly 
anti-VEGF and anti-VEGF receptor (VEGFR) therapy, has been a popular strategy to treat 
cancer. However, anti-angiogenic therapy does not significantly improve patients’ outcomes 
when used alone because the cutdown of the vessels transforms tumor cells to a hypoxia- 
tolerant phenotype. While combining anti-angiogenic therapy with other therapies, including 
chemotherapy, radiotherapy, immunotherapy, and anti-epidermal growth factor receptor 
(EGFR) therapy, has a promising efficacy due to the vessel normalization effect induced 
by anti-angiogenic agents. Here, we review the characteristics of tumor angiogenesis, the 
mechanisms, clinical applications, and prospects of combining anti-angiogenic therapy with 
other therapies in the treatment of non-small cell lung cancer. 
Keywords: angiogenesis, non-small cell lung cancer, anti-angiogenesis therapy, combination 
therapy, immunotherapy

Introduction
Lung cancer is the most common cancer and the leading cause of cancer-related 
mortality globally.1 Non-small cell lung cancer (NSCLC) accounts for 85% of lung 
cancer, and 75% of NSCLC patients present with late-stage disease at the time of 
diagnosis, which leads to a poor prognosis with low 5-year overall survival (OS). 
Although progress has been achieved in immunotherapy and molecular-targeted 
therapy, the patients’ survival remains poor. Nevertheless, since bevacizumab, the 
first anti-angiogenic drug, was approved for the treatment of NSCLC in 2004, anti- 
angiogenic therapy has been proven to be an effective strategy in the treatment of 
NSCLC, which has been a popular strategy to treat advanced NSCLC.

The walls of blood vessels are composed of endothelial cells (ECs) and mural 
cells, which are embedded in an extracellular matrix. Angiogenesis, the process of 
new blood vessels forming from pre-existing ones, is crucial not only in various 
physiological processes such as embryogenesis and wound healing but also in the 
growth, proliferation, and metastases of NSCLC.2 When the tumors grow, new 
vessels start to form around and inside of tumors to provide nutrients and oxygen.3 

However, the vessels are typically immature and characterized by disorganization, 
high heterogeneity, and high permeability, which cause various drug resistances.4 

Therefore, anti-angiogenesis has become a key target for cancer treatment.5,6 

Combining anti-angiogenic therapy with other therapies, especially immunotherapy, 
has a hopeful prospect.
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This review summarizes the mechanisms and methods 
of anti-angiogenic therapy, and highlights the prospect of 
anti-angiogenic therapy to combine with other therapies in 
the treatment of NSCLC.

Tumor Angiogenesis in NSCLC
Numerous growth factors are involved in angiogenesis, among 
which the vascular endothelial growth factor (VEGF) family, 
consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, and 
placental growth factor (PlGF), play a critical role.7 In the 
VEGF family, VEGF-A (often referred to as VEGF) is the 
dominant mediator of angiogenesis and closely related to 
angiogenesis in NSCLC. VEGF receptor (VEGFR) 1 and 
VEGFR-2 are the receptors for VEGF-A.3,8 Although the 
binding affinity of VEGF-A to VEGFR-1 is much higher 
than that to VEGFR-2, VEGFR-2 plays a decisive role in 
angiogenesis in NSCLC.9 In contrast, VEGFR-1 is not rele
vant in adults’ physiological angiogenesis, while it assists 
tumor angiogenesis, as the overexpression of VEGFR-1 and 
PlGF can improve the cell invasiveness and drug resistance of 
NSCLC.8,10 There is evidence that high VEGFR-1 expression 
associates with low survival rate in patients with NSCLC.11 

Besides, the binding of VEGF-C/D to VEGFR-3 contributes 
to lymphangiogenesis, and neuropilins (NRPs) can act as co- 
receptors and interact with all VEGF family.12

VEGFR-2 is a transmembrane receptor tyrosine kinase, 
containing a ligand-binding domain, a transmembrane 
domain, and a tyrosine kinase domain. The binding of 
VEGF-A to VEGFR-2 initiates the dimerization and phos
phorylation of VEGFR-2, followed by the activation of sev
eral signaling pathways. First, phospholipase Cγ (PLCγ) is 
activated directly and then hydrolyzes phosphatidylinositol 
4,5 bisphosphate (PIP2), the latter of which decomposes into 
inositol 3,4,5 trisphosphate (IP3) and 1,2-diacylglycerol 
(DAG). IP3 leads to the influx of Ca2+, which increases vessel 
permeability. DAG activates protein kinase C (PKC), fol
lowed by the activation of mitogen-activated protein kinase 
(MAPK) through the PKC-Raf-MEK-MAPK pathway, 
which strengthens the proliferation of EC. Second, Src is 
activated indirectly, and then phosphorylates endothelial cad
herin (E-cadherin), leading to looser EC-EC junctions. 
Finally, the phosphoinositide 3 kinase (PI3K)/Akt signaling 
pathway is activated via multiple pathways. The activation of 
Akt is associated with EC survival and the upregulation of 
endothelial nitric oxide synthase (eNOS) which further 
increases vessel permeability9,13,14 (Figure 1).

In contrast, there are also endogenous anti-angiogenic 
forces. The activation of VEGFR-2 upregulates the 

expression of delta-like ligand (Dll) 4, which is located on 
the membranes of ECs.15 Contrarily, the binding of Dll-4 to 
Notch receptors 1 and 4 expressed on the membranes of 
other ECs downregulates the expression of VEGFR-2, and 
blocking Dll-4 induces the formation of unfunctional ves
sels and stop tumor growth.16 In addition, there are several 
endogenous anti-angiogenic molecules, such as platelet 
factor 4 and Interferon-γ (IFN-γ).17 The endogenous anti- 
angiogenic regulation contributes to prevention of over- 
angiogenesis and maturation of existing vessels.18

Most tumors must develop new blood vessels from pre- 
existing ones in order to grow beyond a minimum size of 
2–3 mm3, and the same is true for NSCLC.19 It is commonly 
held that VEGF-A is over-expressed in NSCLC, and the 
progression of NSCLC is heavily relied on angiogenesis.17 

Li and co-workers revealed that the larger or more advanced 
the tumors of NSCLC are, the more likely the tumors present 
excessive angiogenesis. Their result also showed that angio
genesis in squamous cell lung carcinoma is more abundant 
than that in lung adenocarcinoma.20 Moreover, a high level of 
circulating VEGF-A is correlated with poor OS in NSCLC, 
which may be valuable in predicting patients’ prognosis.11,21

Although ECs are the main target cells for VEGF-A, 
most VEGF-A in tumor tissues is secreted by tumor 
cells.22 Hypoxia, acidosis, and cytokines are major stimuli 
of the secretion of VEGF-A, among which hypoxia is the 
strongest stimulus23–25 (Figure 1). Hypoxia is a hallmark 
of cancer and hypoxia-inducible factors (HIFs) are over- 
expressed in NSCLC.26 Hypoxia induces the over- 
expression of VEGF-A directly through HIFs, which can 
bind to the promoter element of VEGF-A and initiate the 
transcription of VEGF-A.14

The activation of epidermal growth factor receptor 
(EGFR) is also a pro-angiogenic factor, as it can upregu
late the production and secretion of VEGF.27 Although 
there are no valid predictive biomarkers of response to 
treatment with anti-angiogenetic inhibitors, it was reported 
that the expression of VEGF-A was increased in EGFR- 
mutant NSCLC compared with EGFR-wild type.28,29 In 
addition, patients with EGFR mutation benefitted more 
from the treatment of anti-angiogenic therapy + che
motherapy than wild-type patients [median progression- 
free survival (PFS) 10.5 vs 6.6 months; P=0.0278].29 

These findings indicate a potential of anti-angiogenic ther
apy as an important part of treatment strategy in EGFR- 
mutant NSCLC patients.

In physiological state, newly formed vessels go through 
a maturing process to form regular spatial pattern and enable 
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normal function, and the process requires a low level of 
VEGF.30 The hypersecretion of VEGF in tumors disturbs the 
pre-existing balance between the pro- and anti-angiogenic 
forces, accelerates vessel formation, and evades the newly 
formed vessels from the maturing process.18 Therefore, 
tumor vessels are typically abnormal and unfunctional, 

characterized by less pericyte coverage, heterogenous vessel 
diameter and increased permeability.31

Mechanisms of Anti-Angiogenesis Therapy
The heterogenous diameter and increased permeability of 
tumor vessels can be obstructions in the treatment of cancer. 

Figure 1 VEGFR-2 signaling and 4 types of anti-angiogenic agents. VEGFR-2 activation promotes angiogenesis via up-regulating EC survival and proliferation along with vessel 
permeability through PI3K-Akt (-eNOS-NO) pathway, TSAd-Src-e-cadherin pathway, PKC-Raf-MEK-MAPK pathway and through regulating the secretion of IP3. Anti-VEGF 
mAb and anti-VEGFR mAb bind with VEGF-A and VEGFR-2 respectively. Decoy VEGF-trap receptor competitively binds with VEGF-A. VEGFR-TKIs block intracellular 
signaling of VEGFR-2. 
Abbreviations: PLCγ, phospholipase Cγ; IP3, inositol 3,4,5 trisphosphate; PKC, protein kinase C; E-cadherin, endothelial cadherin; PI3K, phosphoinositide 3 kinase; eNOS, 
endothelial nitric oxide synthase; TSAd, T cell-specific adaptor; PIP2, phosphatidyl inositol 4,5 bisphosphate; DAG, 1,2-diacylglycerol.
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First, the heterogeneity in vessel diameter results in hetero
geneity in blood flow velocity, with some blood even staying 
static.18,32 This condition impairs gas exchange in the tumor 
tissue, and fosters hypoxia and acidosis.23,25,33 Second, ele
vated permeability increases the interstitial fluid pressure 
(IFP) inside of the tissue, which creates a resistance force 
against drug infiltration, forcing therapeutic components to 
gather around tumors rather than inside of them.18 Both the 
situations impair drug efficacy and assist multiple drug 
resistances34 (Figure 2).

However, anti-angiogenic therapy can normalize tumor 
vessels by interfering the interaction between VEGF and 
VEGFR or disturbing the angiogenic signaling.18 So far, 
numerous anti-angiogenic drugs have been developed to 
treat various cancers, all of which can be classified into 4 
types: (1) anti-VEGF monoclonal antibody (mAb); (2) anti- 
VEGFR mAb; (3) decoy VEGF-trap receptor; (4) VEGFR 
tyrosine kinase inhibitors (TKIs).35 (Table 1) Besides, endo
statin (endostar) can also inhibit the proliferation of EC by 
inhibiting a wide range of angiogenic factors. Anti-VEGF 
mAb (bevacizumab) and anti-VEGFR mAb (ramucirumab) 
interfere the interaction between VEGF and VEGFR, which 
have shown promising efficacy in clinical practice.36,37 

Decoy VEGF-trap receptor (aflibercept) competitively binds 
with VEGF and reduces the chance of the binding of VEGF 

and VEGFR, which has promising efficacy in metastatic 
colorectal cancer, but has not shown distinguished efficacy 
in NSCLC.38 VEGFR-TKIs block the intracellular signaling 
of VEGF/VEGFR (Figure 1). A meta-analysis reported that 
VEGFR-TKIs generally had advantage in terms of PFS but 
not OS in advanced NSCLC patients compared with placebo, 
chemotherapy, or anti-EGFR therapy, and the TKIs increased 
the risks of adverse events (AEs) of the patients as well.39

It is noteworthy that the anti-angiogenic agents can 
only normalize vessels when used at a low dose. In con
trast, when they are used at a high dose, with too many 
vessels pruned, the condition of hypoxia gets worse.18 

What is more, anti-angiogenic therapy does not signifi
cantly improve patients’ outcomes when used alone, 
because the cutdown of the vessels transforms tumor 
cells to a hypoxia-tolerant phenotype, which enhances 
the revascularization and the invasion of the tumor.14

The normalized vessels are embodied in normal shape, 
orderly distribution, and decreased permeability with more 
compact pericyte coverage and EC-EC conjunctions.31 

The normalization can reverse multiple drug resistances 
and benefit other therapies through alleviating hypoxia and 
decreasing IFP. The vessel normalization theory indicates 
the potential synergistic effect of anti-angiogenic therapy 
in combination with other therapies.

Figure 2 Tumor angiogenesis induces drug resistances through multiple mechanisms including inducing hypoxia, acidosis, and high IFP. 
Abbreviations: CR, chemotherapy resistance; RR, radiotherapy resistance; IR, immunotherapy resistance; TME, tumor microenvironment; TIL, tumor-infiltrating 
lymphocyte; ROS, reactive oxygen species; IFP, interstitial fluid pressure.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                           

OncoTargets and Therapy 2020:13 12116

Tian et al                                                                                                                                                              Dovepress

http://www.dovepress.com
http://www.dovepress.com


Anti-Angiogenic Therapy Combined with 
Other Therapies
Combined with Radiotherapy
Radiotherapy induces cell cycle arrest or cell death by 
exposing tumor cells to ionizing radiation. In an aerobic 
microenvironment, tumor cells generate enough reactive 
oxygen species (ROS) which cause lethal DNA damage.40 

As oxygen is involved in the radiotherapy-induced DNA 
damage, hypoxia can be a limitation for the efficacy of 
radiotherapy and a factor for radiotherapy resistance.5 

Many studies have focused on increasing tumor oxygena
tion through anti-angiogenic therapy to improve the ther
apeutic effect of ionizing radiation.41

In 2012, a Phase I study, which enrolled 6 patients with 
inoperable Stage III NSCLC, assessed the pulmonary toxicity 
after bevacizumab + concurrent thoracic radiotherapy. 
Unfortunately, the study was terminated because 4 patients 
developed grade 2–3 pneumonitis.42 The Phase II HELPER 
study, which enrolled 73 patients with unresectable stage III 
NSCLC, evaluated the efficacy and safety of endostar + che
moradiotherapy. The result showed a preferable OS (median 
34.7 months), while 58.2% of patients had grade≥3 AEs.43 

Another similar study showed similar outcomes of a preferable 
OS (estimated median 24.0 months) with higher risk of 
grade≥3 AEs in the combination group.44 In addition, in 
a phase II study, endostatin can prevent tumor tissue edema 
when combined with radiotherapy in the treatment of brain 
metastases of NSCLC compared with radiotherapy alone.45 In 
another phase II study, sunitinib + radiotherapy in the treatment 
of brain metastases of NSCLC showed a promising safety but 
no survival benefit.46

In general, although anti-angiogenic therapy is mechani
cally logical to improve the efficacy of radiotherapy, the clin
ical outcomes showed poor survival improvements and 
unfavorable safety. Whereas this combination may be suitable 
for patients with brain metastases to prevent edema.

Combined with Chemotherapy
Hypoxia and acidosis contribute heavily to chemotherapy 
resistance.47 Hypoxia induces chemotherapy resistance 
through multiple mechanisms, such as cell cycle arrest in G1/ 
G2/S stage and suppression of DNA repair.33 And as most of 
cytotoxic agents are weak bases which can be neutralized 
immediately when entering a low-PH environment, acidosis 
can impair the efficacy of these agents as well23 (Figure 2). 
Anti-angiogenic therapy can alleviate hypoxia and acidosis via 
vessel normalization, and cooperate with chemotherapy.48 

Thus, many trials aimed to assess the efficacy of anti- 
angiogenic therapy + chemotherapy in patients with NSCLC, 
among which we list the landmark Phase III clinical trials and 
their results in Table 2.

Bevacizumab is a completely humanized mAb which 
binds to VEGF-A and interferes the interaction between 
VEGF-A and VEGFR-2.49,50 In 2006, the US Food and Drug 
Administration (FDA) approved bevacizumab for patients 
with unresectable, locally advanced, recurrent, or metastatic 
nonsquamous NSCLC.51 The phase III ECOG4599 trial com
pared the efficacy and safety of carboplatin + paclitaxel with 
that of carboplatin + paclitaxel + bevacizumab in the patients 
with recurrent or advanced NSCLC. The result showed that 
carboplatin + paclitaxel + bevacizumab had a distinguished 
advantage in prolonging patients’ PFS (median 6.2 months vs 
4.5 months; hazard ratio (HR)=0.66; 95% confidence interval 
(CI) 0.57–0.77; P<0.001) and overall survival (OS) (median 
12.3 months vs 10.3 months; HR=0.79; 95% CI 0.67–0.92; 
P=0.003), while the rates of clinically significant bleeding, 
neutropenia, and other 7 AEs increased in the carboplatin + 
paclitaxel + bevacizumab group (P<0.05).52 BEYOND, 
a similar phase III trial conducted among Chinese NSCLC 
patients, confirmed the advantage of bevacizumab + carbopla
tin + paclitaxel as first-line treatment in prolonging the OS 
(median 9.2 months vs 6.5 months; HR=0.40; 95% CI 0.29–
0.54; P<0.001) and PFS (median 24.3 months vs 17.7 months; 
HR=0.68; 95% CI 0.50–0.93; P=0.0154) of the patients, and 
the safety results were similar to the ECOG4599 study.53 The 
phase III AVAPERL trial reported a favorable PFS prolonga
tion (median 7.4 months vs 3.7 months; HR=0.57; 95% CI 
0.44–0.75; P<0.0001) but no significant OS extension (median 
17.1 months vs 13.3 months; HR=0.87; 95% CI 0.63–1.21; 

Table 1 Four Types of Anti-Angiogenic Agents Approved for the 
Treatment of Malignant Tumors

Types Agents

Anti-VEGF 

mAb

Bevacizumab

Anti-VEGFR 

mAb

Ramucirumab

VEGF-trap 

receptor

Aflibercept

TKIs Nintedanib, Axitinib, Sorafenib, Sunitinib, Vatalanib, 

Cediranib, Pazopanib, Vandetanib, Cediranib, 
Pazopanib, Vandetanib, Regorafenib, Cabozantinib, 

Anlotinib, Motesanib, Apatinib, Lenvatinib

Abbreviations: TKI, tyrosine kinase inhibitor; mAb, monoclonal antibody.

OncoTargets and Therapy 2020:13                                                                                         submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                      
12117

Dovepress                                                                                                                                                             Tian et al

http://www.dovepress.com
http://www.dovepress.com


Ta
bl

e 
2 

Pr
ev

io
us

 R
ep

or
te

d 
St

ag
e 

III
 C

lin
ic

al
 T

ri
al

s 
of

 A
nt

i-A
ng

io
ge

ni
c 

T
he

ra
py

 C
om

bi
ne

d 
w

ith
 C

he
m

ot
he

ra
py

 in
 t

he
 T

re
at

m
en

t 
of

 N
SC

LC

Tr
ia

l
D

is
ea

se
Tr

ea
tm

en
t

Tr
ea

tm
en

t 
Li

ne
N

o.
 o

f 
P

at
ie

nt
O

R
R

 
(%

)
M

ed
ia

n 
P

FS
 

(M
on

th
s)

H
R

 (
95

%
 C

I)
 

an
d 

P
M

ed
ia

n 
O

S 
(M

on
th

s)
H

R
 (

95
%

 C
I)

 
an

d 
P

EC
O

G
45

99
52

R
ec

ur
re

nt
 o

r 
ad

va
nc

ed
 

N
SC

LC

Be
v 

+ 
C

ar
 +

 P
ac

 

vs
 

C
ar

 +
 P

ac

-
87

8
35

 

vs
 

15

6.
2 

vs
 

4.
5

H
R

=0
.6

6 

(0
.5

7–
0.

77
) 

P<
0.

00
1*

12
.3

 

vs
 

10
.3

H
R

=0
.7

9 

(0
.6

7–
0.

92
) 

P=
0.

00
3*

BE
YO

N
D

53
R

ec
ur

re
nt

 o
r 

ad
va

nc
ed

 
N

SC
LC

Be
v 

+ 
C

ar
 +

 P
ac

 
vs

 

C
ar

 +
 P

ac

Fi
rs

t-
lin

e
27

6
54

 
vs

 

26

9.
2 

vs
 

6.
5

H
R

=0
.4

0 
(0

.2
9–

0.
54

) 

P<
0.

00
1*

24
.3

 
vs

 

17
.7

H
R

=0
.6

8 
(0

.5
0–

0.
93

) 

P=
0.

01
54

*

AV
A

PE
R

L54
A

dv
an

ce
d 

no
ns

qu
am

ou
s 

N
SC

LC

Be
v 

+ 
Pe

m
 +

 C
is

 +
 

m
ai

nt
en

an
ce

 (
Be

v 
+ 

Pe
m

) 

vs
 

Be
v 

+ 
Pe

m
 +

 C
is

 +
 

m
ai

nt
en

an
ce

 B
ev

Fi
rs

t-
lin

e
25

3
/

7.
4 

vs
 

3.
7

H
R

=0
.5

7 

(0
.4

4–
0.

75
) 

P<
0.

00
01

*

17
.1

 

vs
 

13
.3

H
R

=0
.8

7 

(0
.6

3–
1.

21
) 

P=
0.

29

PO
IN

T
BR

EA
K

55
A

dv
an

ce
d 

no
ns

qu
am

ou
s 

N
SC

LC

Be
v 

+ 
Pe

m
 +

 C
ar

 +
 

m
ai

nt
en

an
ce

 P
em

 +
 B

ev
 

vs
 

Be
v 

+ 
C

ar
 +

 P
ac

 +
 

m
ai

nt
en

an
ce

 B
ev

-
93

9
34

 

vs
 

33

6.
0 

vs
 

5.
6

H
R

=0
.8

3 

(0
.7

1–
0.

96
) 

P=
0.

01
2*

12
.6

 

vs
 

13
.4

H
R

=1
.0

 

(0
.8

6–
1.

16
) 

P=
0.

94
9

R
EV

EL
37

St
ag

e 
IV

 N
SC

LC
R

am
 +

 D
oc

 

vs
 

D
oc

Se
co

nd
-li

ne
12

53
23

 

vs
 

14

4.
5 

vs
 

3.
0

H
R

=0
.7

6 

(0
.6

8–
0.

86
) 

P<
0.

00
01

*

10
.5

 

vs
 

9.
1

H
R

=0
.8

6 

(0
.7

5–
0.

98
) 

P<
0.

02
3*

LU
M

E-
lu

ng
158

St
ag

e 
III

B/
IV

 N
SC

LC
N

in
 +

 D
oc

 

vs
 

D
oc

Se
co

nd
-li

ne
13

14
4.

9 

vs
 

1.
5

3.
4 

vs
 

2.
7

H
R

=0
.7

9 

(0
.6

8–
0.

92
) 

P=
0.

00
19

*

10
.1

 

vs
 

9.
1

H
R

=0
.9

4 

(0
.8

3–
1.

05
) 

P=
0.

27
20

LU
M

E-
lu

ng
259

St
ag

e 
III

B/
IV

 o
r 

re
cu

rr
en

t 

N
SC

LC

N
in

 +
 D

oc
 

vs
 

D
oc

Se
co

nd
-li

ne
71

3
9.

1 

vs
 

8.
3

4.
4 

vs
 

3.
6

H
R

=0
.8

3 

(0
.7

0–
0.

99
) 

P=
0.

04
35

*

12
.0

 

vs
 

12
.7

H
R

=1
.0

1 

(0
.8

5–
1.

21
) 

P=
0.

89
40

A
LT

ER
 0

30
3*

*61
A

dv
an

ce
d 

N
SC

LC
A

nl
ot

in
ib

 

vs
 

pl
ac

eb
o

T
hi

rd
-li

ne
 o

r 

fu
rt

he
r 

tr
ea

tm
en

t

43
9

27
 

vs
 

1

5.
4 

vs
 

1.
4

H
R

=0
.2

5 

(0
.1

9–
0.

31
) 

P<
0.

00
1*

9.
6 

vs
 

6.
3

H
R

=0
.6

8 

(0
.5

4–
0.

87
) 

P=
0.

00
2*

Z
O

D
IA

C
68

St
ag

e 
III

B–
IV

 N
SC

LC
Va

nd
et

an
ib

 +
 D

oc
 

vs
 

D
oc

Se
co

nd
-li

ne
13

91
17

 
vs

 

10

4.
0 

vs
 

3.
2

H
R

=0
.7

9 
(0

.7
0–

0.
90

) 

P<
0.

00
01

*

10
.3

 
vs

 

9.
9

H
R

=0
.9

5 
(0

.8
4–

1.
07

) 

P=
0.

37
1

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                           

OncoTargets and Therapy 2020:13 12118

Tian et al                                                                                                                                                              Dovepress

http://www.dovepress.com
http://www.dovepress.com


Z
EA

L*
**

67
A

dv
an

ce
d 

N
SC

LC

Va
nd

et
an

ib
 +

 P
em

 

vs
 

Pe
m

Se
co

nd
-li

ne
53

4
19

 

vs
 

8

17
.6

 

vs
 

11
.9

H
R

=0
.8

6 

(0
.6

9–
1.

06
) 

P=
0.

10
8

10
.5

 

vs
 

9.
2

H
R

=0
.8

6 

(0
.6

5–
1.

13
) 

P=
0.

21
9

ES
C

A
PE

66
U

nr
es

ec
ta

bl
e 

st
ag

e 
III

B/
IV

 

N
SC

LC

So
ra

fe
ni

b 
+ 

C
ar

 +
 P

ac
 

vs
 

C
ar

 +
 P

ac

Fi
rs

t-
lin

e
92

6
27

 

vs
 

24

4.
6 

vs
 

5.
4

H
R

=0
.9

9 

(0
.8

4–
1.

16
) 

P=
0.

43
3

10
.7

 

vs
 

10
.6

H
R

=1
.1

5 

(0
.9

4–
1.

41
) 

P=
0.

91
5

N
EX

U
S65

U
nr

es
ec

ta
bl

e 
st

ag
e 

III
B 

to
 IV

 
no

ns
qu

am
ou

s 
N

SC
LC

So
ra

fe
ni

b 
+ 

G
em

 +
 C

is
 

vs
 

G
em

 +
 C

is

Fi
rs

t-
lin

e
90

4
27

.8
 

vs
 

25
.8

6.
0 

vs
 

5.
5

H
R

=0
.8

3 
(0

.7
1–

0.
97

) 

P=
0.

00
8*

12
.4

 
vs

 

12
.5

H
R

=0
.9

8 
(0

.8
3–

1.
16

) 

P=
0.

40
1

M
O

N
ET

-1
64

St
ag

e 
III

B/
IV

 o
r 

re
cu

rr
en

t 

no
ns

qu
am

ou
s 

N
SC

LC

M
ot

es
an

ib
 +

 C
ar

 +
 P

ac
 

vs
 

C
ar

 +
 P

ac

-
10

90
40

 

vs
 

26

5.
6 

vs
 

5.
4

/ P<
0.

00
1*

13
.0

 

vs
 

11
.0

H
R

=0
.9

 

(0
.7

8–
1.

04
) 

P=
0.

14

A
M

G
-7

06
69

St
ag

e 
IV

 o
r 

re
cu

rr
en

t 

no
ns

qu
am

ou
s 

N
SC

LC

M
ot

es
an

ib
 +

 C
ar

 +
 P

ac
 

vs
 

C
ar

 +
 P

ac

-
40

1
60

.1
 

vs
 

41
.6

6.
1 

vs
 

5.
6

H
R

=0
.8

1 

(0
.6

4–
1.

03
) 

P=
0.

08
25

N
R

 

vs
 

21
.6

H
R

=0
.9

0 

(0
.6

2–
1.

29
) 

P=
0.

55
36

V
IT

A
L63

A
dv

an
ce

d 
or

 m
et

as
ta

tic
 

no
ns

qu
am

ou
s 

N
SC

LC
A

fli
be

rc
ep

t 
+ 

D
oc

 
vs

 

D
oc

Se
co

nd
-li

ne
91

3
23

.3
 

vs
 

8.
9

5.
2 

vs
 

4.
1

H
R

=0
.8

2 
(0

.7
2–

0.
94

) 

P=
0.

00
35

*

10
.1

 
vs

 

10
.4

H
R

=1
.0

1 
(0

.8
7–

1.
17

) 

P=
0.

90

BR
29

62
A

dv
an

ce
d 

N
SC

LC
C

ed
ir

an
ib

 +
 C

ar
 +

 P
ac

 

vs
 

C
ar

 +
 P

ac

–
30

6
52

 

vs
 

34

5.
5 

vs
 

5.
5

H
R

=0
.9

1 

(0
.7

1–
1.

18
) 

P=
0.

49

12
.2

 

vs
 

12
.1

H
R

=0
.9

4 

(0
.6

9–
1.

30
) 

P=
0.

72

N
ot

es
: *

P<
0.

05
; *

*N
ot

 c
om

bi
ne

d 
w

ith
 c

he
m

ot
he

ra
py

; *
**

Es
tim

at
ed

 r
es

ul
ts

. 
A

bb
re

vi
at

io
ns

: O
R

R
, o

bj
ec

tiv
e 

re
sp

on
se

 r
at

e;
 P

FS
, p

ro
gr

es
si

on
-fr

ee
 s

ur
vi

va
l; 

O
S,

 o
ve

ra
ll 

su
rv

iv
al

; H
R

, h
az

ar
d 

ra
tio

; N
SC

LC
, n

on
-s

m
al

l c
el

l l
un

g 
ca

nc
er

; N
R

, n
ot

 r
ea

ch
ed

; C
I, 

co
nfi

de
nc

e 
in

te
rv

al
; C

ar
, c

ar
bo

pl
at

in
; P

ac
, p

ac
lit

ax
el

; C
is

, 
ci

sp
la

tin
; P

em
, p

em
et

re
xe

d;
 D

oc
, d

oc
et

ax
el

; G
em

, g
em

ci
ta

bi
ne

; B
ev

, b
ev

ac
iz

um
ab

; R
am

, r
am

uc
ir

um
ab

; N
in

, n
in

te
da

ni
b.

OncoTargets and Therapy 2020:13                                                                                         submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                      
12119

Dovepress                                                                                                                                                             Tian et al

http://www.dovepress.com
http://www.dovepress.com


P=0.29) in the maintenance bevacizumab + pemetrexed group 
compared with maintenance bevacizumab, while grade ≥3 
AEs, such as neutropenia, hypertension, and anemia, occurred 
more often in the combination group.54 The phase III 
POINTBREAK trial reported that pemetrexed + carboplatin 
+ bevacizumab had similar efficacy with paclitaxel + carbo
platin + bevacizumab (median OS 12.6 months vs 13.4 
months; HR=1.0; 95% CI 0.86–1.16; P=0.949).55 In general, 
it is commonly reported that bevacizumab + chemotherapy is 
effective in prolonging patients’ survival compared with che
motherapy alone or bevacizumab alone. However, the inci
dences of bleeding, neutropenia, and many other 
hematological AEs increase in the combination therapy 
group compared with chemotherapy or bevacizumab alone.

Ramucirumab is another completely humanized mAb, 
which targets on VEGFR-2.56 The phase III REVEL trial 
compared the efficacy and safety of ramucirumab + docetaxel 
with those of docetaxel alone in patients with stage IV NSCLC 
after platinum-based therapy. The results showed that the 
combination therapy prolonged the PFS (median 4.5 months 
vs 3.0 months; HR=0.76; 95% CI 0.68–0.86; P<0.0001) and 
OS (median 10.5 months vs 9.1 months; HR=0.86; 95% CI 
0.75–0.98; P=0.023) of the patients compared with docetaxel 
alone. No significantly increased incidence of grade≥3 AE 
(79% vs 71%) occurred, and the toxicities can be reduced 
with appropriate dose reductions and supportive care.37 The 
study indicates ramucirumab as a reliable agent to treat 
advanced NSCLC. Based on this delightful result, the FDA 
approved the combined use of ramucirumab with docetaxel for 
metastatic NSCLC patients with disease progression on or 
after platinum-based chemotherapy in 2014.

Nintedanib is an orally available angiogenic inhibitor 
which binds to not only VEGFR 1–3 but also platelet-derived 
growth factor receptors (PDGFR) α/β and fibroblast growth 
factor receptors (FGFR) 1–3.57 The phase III LUME-Lung 1 
trial compared the efficacy of docetaxel + nintedanib with 
docetaxel alone as second-line therapy in patients with stage 
IIIB/IV NSCLC. The results showed docetaxel + nintedanib 
extended the PFS in the total population (median 3.4 months vs 
2.7 months; HR=0.79; 95% CI 0.68–0.92; P=0.0019) the OS in 
the adenocarcinoma population (median 12.6 months vs 10.3 
months; HR=0.83; 95% CI 0.70–0.99; P=0.0359) compared 
with docetaxel alone.58 Another phase III trial (LUME-Lung 
2) evaluated the efficacy and safety of pemetrexed + nintedanib 
in pretreated NSCLC patients. The result showed an improve
ment in the PFS (median 4.4 months vs 3.6 months; HR=0.83, 
95% CI 0.70–0.99, p=0.00435) with no significant difference 
in the OS (median 12.0 months vs 12.7 months; HR=1.01, 95% 

CI 0.85–1.21, p=0.8940) in the pemetrexed + nintedanib group 
compared with pemetrexed group.59 In the two studies, 
grade≥3 AEs both occurred more often in the combination 
group, but the incidences of neutropenia and bleeding were 
similar in the experimental and control group, respectively. 
These two studies indicated that nintedanib + chemotherapy 
is an effective second-line option for patients with advanced 
NSCLC.58,59 In 2014, the European Medicines Agency 
(EMA) approved nintedanib + docetaxel in the treatment of 
advanced lung adenocarcinoma with disease progression on or 
after chemotherapy.

Anlotinib is a multi-targeting TKI which targets on VEGF 
receptors 1–3, c-kit, FGFR 1–4, and PDGFR α/β.60 The phase 
III ALTER 0303 trial assessed the efficacy and safety of 
anlotinib in Chinese patients with advanced NSCLC. The 
results showed significantly longer PFS (median 5.4 months 
vs 1.4 months; HR=0.25, 95% CI 0.19–0.31, p<0.001) and OS 
(median 9.6 months vs 6.3 months; HR=0.68, 95% CI 0.54–
0.87, p=0.002) in the anlotinib group compared with the pla
cebo group, even though anlotinib was not combined with 
chemotherapy, and the treatment was tolerable as well.61 In 
2018, anlotinib was approved for third-line treatment of 
advanced NSCLC by China Food and Drug Administration 
(CFDA).

In general, all the above studies have stressed that bevaci
zumab, ramucirumab, nintedanib can prolong patients’ survi
val generally when combined with chemotherapy and provide 
a new approach in treating advanced NSCLC, but meanwhile 
AEs caused by this combination therapy should be taken 
seriously. However, in some other clinical trials (Table 2) 
where chemotherapy was combined with other anti- 
angiogenic agents (eg, vandetanib, sorafenib, motesanib, afli
bercept, cediranib), no significant survival advantage was 
observed in the combination group.62–69

Combined with Immunotherapy
Immunotherapy is a kind of treatment that assists the 
immune system in fighting cancer. It has been proven to 
be effective to treat various cancers with slighter side 
effects.70 Immune checkpoint inhibitors (ICIs) are critical 
agents of immunotherapy.71 There are various types of 
ICIs, such as cytotoxic T lymphocyte-associated antigen- 
4 (CTLA-4) inhibitors (eg, ipilimumab), programmed cell 
death protein 1 (PD-1) inhibitors (eg, pembrolizumab, 
nivolumab), and programmed cell death 1 ligand 1 (PD- 
L1) inhibitors (eg, atezolizumab).72

Immunosupportive tumor microenvironment (TME) is 
essential for better performance of immunotherapy. 
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Nevertheless, pathological vessels create immunosuppressive 
TME through various mechanisms. Firstly, the high IFP hin
ders immune cells from infiltrating into tumors. And the loose 
EC-EC adhesions impede the extravasation of immune cells.73 

Secondly, hypoxia and acidosis reprogram the macrophages 
into the immunosuppressive M2 phenotype.74 Hypoxia also 
induces the production of chemokines that recruit immuno
suppressive regulatory T cells (Tregs).75,76 Besides, the high 
level of VEGF decreases the abundance of mature dendritic 
cell (DC) and thus interfere the antigen presentation.77 Finally, 
hypoxia up-regulates PD-L1, 2, 3-dioxygenase (IDO), 
interleukin-6 (IL-6) and interleukin-10 (IL-10), which inhibit 
anti-tumor immune response.78,79 In a word, pathological 
angiogenesis induces immunosuppressive TME and therefore 
develops immunotherapy resistance.

However, anti-angiogenic therapy reverses tumor micro
environment into an immunosupportive type by decreasing 
IFP and alleviating hypoxia.35 Decreased IFP promotes 
immune cell infiltration and inhibits the recruitment of Tregs 
and myeloid-derived suppressor cells (MDSCs). Alleviated 
hypoxia downregulates PD-L1 and transduces macrophages 
into immunosupportive M1 phenotype. Anti-VEGF agents 
also block the inhibitory signal for DC differentiation and 
decrease overall MDSC pool.80 Besides, immune checkpoint 
inhibitors (anti-PD-L1 agents and anti-CTLA-4 agents) have 
a synergistic effect with anti-angiogenic therapy, as they acti
vate T cells and the activated T cells secret IFN-γ which 
induces vessel normalization as well.81

These findings indicate the advantages of anti- 
angiogenic therapy + ICIs. There are several ongoing 
clinical studies assessing the efficacy and safety of this 
combination therapy. We list them in Table 3.

The phase I JVDF trial evaluated the safety and toler
ance of ramucirumab + pembrolizumab. This study 
enrolled 92 patients with three types of malignant tumors, 
including 27 participants with nonsquamous NSCLC. 
During the treatment with ramucirumab + pembrolizumab, 
only 7% of nonsquamous NSCLC patients had serious 
treatment-related AE, such as asthenia and myocardial 
infarction. The objective response rate (ORR) was 30% 
(95% CI 13.8–50.2).82 A similar phase I trial (ChechMate 
012) also revealed a tolerable safety and a high ORR 
(57%).83 These results demonstrated that ramucirumab + 
pembrolizumab is manageably safe.

Another phase II trial (NCT04379739), which enrolled 
92 patients with advanced nonsquamous NSCLC, evalu
ated the efficacy and safety of apatinib + camrelizumab 
as second or further line therapy. The results showed that 

apatinib + camrelizumab had promising efficacy 
(ORR=30.8%) and manageable safety, and the patients 
with high blood tumor mutation burden (bTMB) had better 
results than those with low bTMB (median PFS 7.8 
months vs 5.6 months).84

The phase III Impower150 trial assessed the efficacy 
and safety of bevacizumab + atezolizumab + chemotherapy 
as first-line therapy in patients with stage IV or recurrent 
metastatic nonsquamous NSCLC. The patients received 
carboplatin + paclitaxel + atezolizumab (ACP), atezolizu
mab + bevacizumab + carboplatin + paclitaxel (ABCP), or 
bevacizumab + carboplatin + paclitaxel (BCP). As the pre
vious studies had revealed that the patients with EGFR/ 
ALK alterations hardly benefit from immunotherapy, 
patients were detected with EGFR/ALK alterations and 
effector T cell (Teff) level. And the Teff gene signature 
has proven to be a more precise immunological marker 
than PD-L1 level. The results showed that the PFS was 
drastically prolonged in the ABCP group than the BCP 
group among the wild type (WT) population (median 8.3 
months vs 6.8 months; HR=0.62; 95% CI 0.52 to 0.74; 
P<0.001). Particularly, in the Teff-high WT population, 
the PFS prolongation was even more significant (median 
11.3 months vs 6.8 months; HR=0.51; 95% CI 0.38 to 0.68; 
P<0.01). In the WT population, the OS was longer when 
treated with ABCP than treated with BCP (median 19.2 
months vs 14.7 months; HR=0.78; 95% CI 0.64 to 0.96; 
P=0.02). The incidences of treatment-related AE were simi
lar among all three groups, and neutropenia and hyperten
sion are the common AEs.85 In the subgroup analysis of 
Impower150, the ABCP therapy showed advantages in 
every subgroup. In addition, in the patients with PD-L1 
expression level >50%, the PFS difference is more signifi
cant (median 12.6 months vs 6.8 months; HR=0.39; 95% CI 
0.25 to 0.60). The PFS is also prolonged in patients with low 
PD-L1 level and those with low Teff expression. This study 
provides a prospect of atezolizumab + bevacizumab in 
treating a large range of patients with late-stage nonsqua
mous NSCLC, especially those with a high PD-L1 expres
sion level.85

In general, the combination of angiogenic inhibitors 
and ICIs shows a manageable safety and an out-standing 
efficacy, which can benefit a larger group of patients with 
NSCLC. Yet, our understanding of this combination ther
apy is very limited at present. There are still a bunch of 
queries and challenges when it comes to its wide-range 
application. A series of related clinical trials are underway 
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Table 3 Clinical Trials of Anti-Angiogenic Therapy Combined with Immunotherapy in the Treatment of NSCLC

Trial Phase Disease Anti- 
Angiogenic 
Agent(s)

ICI(s) Chemotherapy Status

NCT03377023 I/II Metastatic NSCLC Nintedanib Nivolumab/ 

Ipilimumab

- Recruiting

NCT04040361 II Stage IB/II/IIIA NSCLC Ramucirumab Pembrolizumab - Not yet recruiting

NCT03836066 II NSCLC Bevacizumab Atezolizumab - Recruiting

NCT03616691 II NSCLC Bevacizumab Atezolizumab - Not yet recruiting

NCT03896074 II NSCLC Bevacizumab Atezolizumab - Not yet recruiting

NCT03971474 II Stage IV or recurrent 

NSCLC

Ramucirumab Pembrolizumab Docetaxel/Gemcitabine 

(Hydrochloride)/Pemetrexed 

(Disodium)

Recruiting

NCT02681549 II Melanoma 

NSCLC

Bevacizumab Pembrolizumab - Recruiting

NCT03527108 II NSCLC Ramucirumab Nivolumab - Not yet recruiting

NCT03991403 III NSCLC Bevacizumab Atezolizumab Pemetrexed/Carboplatin/ 

Paclitaxel/Cisplatin

Not yet recruiting

NCT01454102 

(CheckMate 

012)

I NSCLC Bevacizumab Nivolumab/ 

Ipilimumab

Pemetrexed/Carboplatin/ 

Paclitaxel/Cisplatin/Gemcitabine

Active, not 

recruiting*

NCT03689855 II NSCLC Ramucirumab Atezolizumab - Recruiting

NCT03713944 II Stage IV or recurrent 

NSCLC

Bevacizumab Atezolizumab Pemetrexed/Carboplatin Recruiting

NCT02366143 

(Impower150)

III NSCLC Bevacizumab Atezolizumab Pemetrexed/Carboplatin Active, not 

recruiting*

NCT04147351 II Stage IIIB/IV NSCLC Bevacizumab Atezolizumab - Not yet recruiting

NCT04245085 II EGFR-mutant Stage IIIB/C 

or IV Nonsquamous 

NSCLC

Bevacizumab Atezolizumab Pemetrexed/Carboplatin/ 

Paclitaxel

Not yet recruiting

NCT04194203 III NSCLC Bevacizumab Atezolizumab Pemetrexed/Carboplatin/ 

Paclitaxel

Not yet recruiting

NCT02443324 

(JVDF)

I Gastric Adenocarcinoma 

NSCLC 

Biliary Tract Cancer

Ramucirumab Pembrolizumab - Active, not 

recruiting*

NCT03786692 II Stage IV NSCLC Bevacizumab Atezolizumab Pemetrexed/Carboplatin Recruiting

NCT03647956 II EGFR-mutant Stage IIIB/IV 

NSCLC

Bevacizumab Atezolizumab Pemetrexed/Carboplatin Recruiting

NCT02572687 I Gastric Cancer 

Gastroesophageal Junction 

Adenocarcinoma 

NSCLC 

Hepatocellular Carcinoma

Ramucirumab Durvalumab - Active, not 

recruiting

(Continued)
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(Table 3), so more results of the follow-up studies are 
expected.

Combined with Anti-EGFR Therapy
EGFR, which is generally the receptor for epidermal growth 
factor (EGF) and transforming growth factor (TGF)-α, is 
a member of the HER/erbB family. EGFR is over-expressed 

in NSCLC cells and takes a critical part in numerous tumori
genic processes, such as the survival, proliferation, adhesion, 
differentiation, migration, transformation, and motility of 
tumor cells.86 Anti-EGFR agents (such as gefitinib, erlotinib) 
have advantages in prolonging patients’ OS and PFS.87 

International guidelines recommend EGFR-TKIs as the first- 
line treatment for advanced NSCLC patients who are positive 

Table 3 (Continued). 

Trial Phase Disease Anti- 
Angiogenic 
Agent(s)

ICI(s) Chemotherapy Status

NCT02574078 I/II NSCLC Bevacizumab Nivolumab Pemetrexed/Carboplatin/ 

Paclitaxel/Cisplatin/Gemcitabine/ 

Docetaxel

Active, not 

recruiting

NCT04151563 I/II NSCLC Ramucirumab Nivolumab/ 

Ipilimumab

Docetaxel Not yet recruiting

NCT04046614 I/II Lung adenocarcinoma Nintedanib Nivolumab - Recruiting

NCT03117049 III NSCLC Bevacizumab Nivolumab Carboplatin/Paclitaxel Active, not 

recruiting

NCT03307785 I Metastatic or stage IIIB 

NSCLC

Bevacizumab Dostarlimab/ 

TSR-022

Pemetrexed/Carboplatin/ 

Paclitaxel/Cisplatin

Active, not 

recruiting

NCT04211896 II NSCLC Anlotinib Nivolumab - Not yet recruiting

NCT04164745 II NSCLC Anlotinib Pembrolizumab - Recruiting

NCT04165330 I/II Soft tissue sarcoma 

NSCLC 

SCLC

AL3818 

(Anlotinib 

Hydrochloride)

Nivolumab - Recruiting

NCT04094909 II Stage IV NSCLC Rh-endostatin Pembrolizumab - Not yet recruiting

NCT03472560 II NSCLC 

Urothelial cancer

Axitinib Avelumab - Active, not 

recruiting

NCT04213170 II NSCLC with brain 

metastases

Bevacizumab Sintilimab - Recruiting

NCT04124731 II NSCLC Anlotinib Sintilimab Pemetrexed/Carboplatin/ 

Cisplatin/Gemcitabine

Not yet recruiting

NCT04201990 I/II Lung cancer Apatinib Camrelizumab - Not yet recruiting

NCT04379739 II NSCLC Apatinib Camrelizumab - Not yet recruiting

NCT04203485 III PD-L1 positive NSCLC Apatinib Camrelizumab Pemetrexed disodium/Paclitaxel/ 

Carboplatin

Not yet recruiting

NCT04133337 I/II NSCLC Apatinib Camrelizumab – Not yet recruiting

NCT04239443 II Advanced NSCLC 

Uterine cancer 

Soft tissue sarcoma

Apatinib Camrelizumab – Recruiting

NCT04303130 II NSCLC Endostar Camrelizumab – Recruiting

Abbreviations: NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; ICI, immune checkpoint inhibitor.
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for EGFR-sensitive mutations. Different EGFR-TKIs have 
different pharmacological mechanisms. First-generation 
EGFR-TKIs (such as gefitinib, erlotinib and icotinib) bind 
with EGFR reversibly. Most of second-generation EGFR- 
TKIs (such as afatinib, dacomitinib) are multi-target drugs 
that form irreversible covalent bonds with EGFR tyrosine 
and inhibit the activities of other members of the ErbB family 
(such as ErbB-2, ErbB-4).88 The majority of patients receiving 
the first- or second-generation EGFR-TKIs eventually develop 
resistance, and the T790M mutation is associated with the 
resistance in most cases. Third-generation EGFR-TKIs (repre
sented by osimertinib) not only selectively inhibit EGFR- 
sensitive mutations but also overcome T790M-mutation- 
mediated resistance.89

As mentioned above, EGFR-mutation in NSCLC is gen
erally accompanied by the over-expression of VEGF-A. 
Contrarily, anti-EGFR therapy can down-regulate VEGF 
level and decrease microvascular density.90 However, anti- 
EGFR therapy alone cannot inhibit tumor angiogenesis, but 
when combined with anti-VEGF/VEGFR therapy, a greater 
vessel normalization effect can be achieved.91 Moreover, 
anti-EGFR resistance is regularly accompanied by high 
VEGF expression.92 Using anti-VEGF/VEGFR agents is 
likely to reverse this resistance. So far, many studies have 
focused on the combination of anti-VEGF/VEGFR therapy 
and anti-EGFR therapy. We list the phase III clinical trials 
which evaluated the combination of anti-VEGF/VEGFR 
therapy and anti-EGFR therapy in Table 4.

The phase II JO25567 trial compared the safety and effi
cacy of erlotinib + bevacizumab (EB) with that of erlotinib 
alone (E) in the treatment of EGFR-mutation-positive 
advanced or recurrent NSCLC patients. The result showed 
a significant prolongation (6.3 months) in patients’ PFS in 
the EB group.93 Meanwhile, more grade≥3 AEs occurred in 
the EB group (90.7% vs 53.2%) but most of them are 
manageable.93

In 2011, the result of the phase III Be Ta study, which 
compared EB with E, was reported. The study did not require 
the participants to be EGFR-mutation positive. Although the 
PFS was prolonged in the EB group (median 3.4 months vs 1.7 
months, HR=0.62, 95% CI 0.52 to 0.75), the OS did not show 
significant difference (median 9.3 months vs 9.2 months, 
HR=0.97, 95% CI 0.80 to 1.18, P=0.7583), probably because 
the study did not take EGFR mutation into key account.94 

NEJ026 was a follow-up phase III trial comparing EB with 
E in patients with advanced or recurrent EGFR-mutation- 
positive NSCLC. It is reported that the PFS is significantly 
prolonged in the EB group (median 16.9 months vs 13.3 

months, HR=0.605, 95% CI 0.417 to 0.877, P=0.016); how
ever, EB provided no further benefit to the OS of the patients 
(median 50.7 months vs 46.2 months, HR=1.007, 95% CI 
0.681 to 1.490, P=0.973).95,96 In 2017, Wang et al conducted 
a phase III study, which evaluated the efficacy and safety of EB 
+ panitumumab in patients with stage II–IV NSCLC. The OS 
(median 10.4 months vs 8.9 months, P=0.003) and PFS (med
ian 4.6 months vs 1.9 months, P=0.031) are significantly 
prolonged in the combination group compared with erlotinib 
alone.97 In 2019, the result of a similar phase III study 
(CTONG 1509) conducted among Chinese EGFR-mutation- 
positive patients also showed a significant prolongation in PFS 
in the EB group (median 18.0 months vs 11.3 months, 
HR=0.55, 95% CI 0.41 to 0.75, P<0.001).98 These findings 
indicate that the combination of EB may benefit EGFR- 
mutation-positive patients. Further clinical data are needed to 
verdict the hypothesis.

The phase III ATLAS trial validated the advantage of EB in 
patients with stage IIIB/IV, or recurrent NSCLC. The result 
showed that EB significantly prolonged the PFS (median 4.8 
months vs 3.7 months, HR=0.71, 95% CI 0.58 to 0.86, 
P<0.001) but did not extend the OS (median 14.4 months vs 
13.3 months, HR=0.92, 95% CI 0.70 to 1.21, P=0.5341) com
pared with bevacizumab alone. Both groups (B group and EB 
group) showed a similar incidence of AEs.99 Another phase III 
study evaluated efficacy and safety of sunitinib + erlotinib 
treatment in patients with refractory NSCLC. The findings 
showed significant improvements in patients’ PFS (median 
3.6 months vs 2.0 months, HR=0.807, 95% CI 0.695 to 
0.937, P=0.0023) and ORR (10.6% vs 6.9%) but not in OS 
(median 9.0 months vs 8.5 months, HR=0.922, 95% CI 0.797 
to 1.067, P=0.1388).100 All these studies suggest that anti- 
angiogenic therapy + anti-EGFR therapy can enhance anti- 
tumor activity and is effective in prolonging survival. More 
follow-up results are expected.

Discussion
Angiogenesis is essential in the development and drug resis
tance of several solid tumors. But unlike physiological angio
genesis, tumors tend to form not only excessive but also 
spatially chaotic and unfunctional vessels, characterized by 
increased permeability and varying diameter and blood flow 
velocity, which results in high IFP, hypoxia, and acidosis in the 
TME. All these conditions impair drug filtration and contribute 
to the resistances of several therapies, including radiotherapy, 
chemotherapy, immunotherapy, and anti-EGFR therapy. 
VEGF, especially VEGF-A, is critical in tumor angiogenesis, 
whose level is elevated in most solid tumor types. Anti-VEGF 
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/VEGFR agents have become the cardinal anti-angiogenic 
agents because of its benefit to vessel normalization when 
used at low dose. Although anti-angiogenic therapy alone 
cannot achieve satisfactory outcomes, the effect of vessel 
normalization can alleviate hypoxia, and transform tumor 
TME into an immunosupportive type. So, anti-angiogenic 
therapy has great potential in combined use with chemother
apy, anti-EGFR therapy, and especially immunotherapy.

However, there are still difficulties encountered in 
anti-angiogenesis therapy. First, although it seems that 
EGFR-mutant NSCLC patients are more likely to benefit 
from anti-angiogenic therapy, researchers have not 
found any valid predictive biomarkers of response to 
anti-angiogenetic treatment to filter out potential non- 
responders. Second, the combination therapies with anti- 
angiogenetic inhibitors increase the risk of infrequent 
serious AEs, such as bleeding and neutropenia. Efforts 
should be made to reduce these adverse reactions. What 
is more, there are many questions are yet to be answered 
when it comes to the combination therapies with anti- 
angiogenetic inhibitors, such as, the proper timing of 
anti-angiogenic combination therapy, and the suggestive 
dose and proportion of the drugs.

Besides the classic anti-angiogenesis drugs listed in Table 
1, there are also newly developed anti-angiogenic drugs target
ing on VEGFR-1, PDGFR, and angiopoietin-1/2, which are 
still under evaluation in pre-clinical or clinical models.8,19 

Chinnasamy et al developed anti-VEGFR2 chimeric antigen 
receptor (CAR) T cell in mice model as an effective strategy 
for tumor regression, which still needs further evaluation of 
efficacy and safety in humans.101 We believe with more dis
coveries reported in the future, combination therapy with anti- 
angiogenic agents will be a promising strategy to treat NSCLC 
and bring benefits to more patients.
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