Table 3.
Machine Learning Model | Window Size (Samples) | Overlap (%) | Sensitivity (%) | Precision (%) | Specificity (%) | Accuracy (%) |
---|---|---|---|---|---|---|
ADA | 160 | 50 | 86.06 | 95.50 | 98.08 | 94.42 |
DT | 128 | 50 | 80.83 | 95.05 | 97.91 | 92.79 |
RF | 96 | 50 | 81.87 | 95.96 | 98.29 | 93.34 |
NB | 256 | 50 | 92.20 | 60.28 | 69.75 | 76.76 |
k-NN | 128 | 25 | 84.87 | 94.29 | 97.45 | 93.68 |
SVM | 224 | 50 | 83.17 | 91.07 | 96.02 | 92.14 |
ADA: AdaBoost; DT: decision tree; RF: random forest; NB: Naïve Bayes; k-NN: k-nearest neighbors; SVM: support vector machine.