Skip to main content
. 2020 Nov 22;20(22):6682. doi: 10.3390/s20226682

Table 4.

The best performance of gesture spotting using different machine learning models.

Machine Learning Model Window Size (Samples) Overlap (%) Metric Gesture Overall
Fetch Lift Sip Drop Release
ADA 16 50 Sensitivity (%) 83.26 89.74 93.10 90.62 76.58 86.66
Precision (%) 85.64 91.55 93.83 89.88 85.26 89.23
DT 16 25 Sensitivity (%) 89.72 84.08 92.24 86.98 80.79 86.76
Precision (%) 84.03 91.92 94.66 91.61 87.53 89.95
RF 16 50 Sensitivity (%) 89.35 88.70 94.75 90.61 87.44 90.17
Precision (%) 91.63 95.27 95.35 93.98 87.80 92.80
NB 16 25 Sensitivity (%) 57.35 77.01 90.46 88.46 54.78 73.61
Precision (%) 71.02 90.93 88.23 64.08 71.51 77.15
k-NN 16 50 Sensitivity (%) 78.10 83.04 95.69 85.60 71.58 82.80
Precision (%) 84.53 86.19 85.28 82.05 86.04 84.82
SVM 16 25 Sensitivity (%) 76.87 87.14 96.28 90.62 75.80 85.34
Precision (%) 83.30 95.64 94.58 92.70 78.41 88.93

ADA: AdaBoost; DT: decision tree; RF: random forest; NB: Naïve Bayes; k-NN: k-nearest neighbors; SVM: support vector machine.