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Abstract

Immunohistochemistry represents an indispensable complement to an epidemiology and 

morphology-driven approach to tumor diagnosis and site of origin assignment. This review reflects 

the state of my current practice, based on 15-years’ experience in Pathology and a deep-dive into 

the literature, always striving to be better equipped to answer the age old questions, “What is it, 

and where is it from?” The tables and figures in this manuscript are the ones I “pull up on the 

computer” when I’m teaching at the microscope and turn to myself when I’m (frequently) stuck. 

This field is so exciting because I firmly believe that, through the application of next-generation 

immunohistochemistry, we can provide better answers than ever before. Specific topics covered in 

this review include 1. broad tumor classification and associated screening markers; 2. the role of 

cancer epidemiology in determining pretest probability; 3. broad-spectrum epithelial markers; 4. 

non-canonical expression of broad tumor class screening markers; 5. a morphologic pattern-based 

approach to poorly to undifferentiated malignant neoplasms; 6. a morphologic and 

immunohistochemical approach to define 4 main carcinoma types; 7. CK7/CK20 coordinate 

expression; 8. added value of semiquantitative immunohistochemical stain assessment; algorithmic 

immunohistochemical approaches to 9. “garden variety” adenocarcinomas presenting in the liver, 

10. large polygonal cell adenocarcinomas, 11. the distinction of primary surface ovarian epithelial 

tumors with mucinous features from metastasis, 12. tumors presenting at alternative anatomic 

sites, 13. squamous cell carcinoma vs. urothelial carcinoma, and neuroendocrine neoplasms, 

including 14. the distinction of pheochromocytoma/paraganglioma from well-differentiated 

neuroendocrine tumor, site of origin assignment in 15. well-differentiated neuroendocrine tumor 

and 16. poorly differentiated neuroendocrine carcinoma, and 17. the distinction of well-

differentiated neuroendocrine tumor G3 from poorly differentiated neuroendocrine carcinoma; it 

concludes with 18. a discussion of diagnostic considerations in the broad-spectrum keratin/CD45/

S-100-“triple-negative” neoplasm.
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Next-Generation Immunohistochemistry and the Primacy of Lineage-

Restricted Transcription Factors:

“Next-generation immunohistochemistry” refers to the mining of the molecular genetic and 

developmental biology literature to “discover” new immunohistochemical markers, 

including those identified through gene expression profiling, protein correlates of molecular 

genetic events, and lineage-restricted transcription factors. While historically our diagnostic 

armamentarium was geared toward cytoplasmic or membranous differentiation markers, 

which often demonstrate reduced expression and, thus, reduced sensitivity in poorly 

differentiated tumors, transcription factors tend to be strongly expressed regardless of 

differentiation. Table 1 lists the next-generation immunohistochemical markers discussed in 

this review, associated diagnostic applications, and their “qualifications” as next-generation 

markers.

There are “immuno-optimists” and “immuno-pessimists.” I like to think I’m an “immuno-

realist.” There is no “perfect” immunohistochemical marker, and in most instances a panel 

of immunohistochemical stains should be applied to adjudicate an epidemiology and 

morphology-driven differential diagnosis. The “immuno-pessimists” are perfectly fine with 

an EWSR1-rearrangement driving Ewing sarcoma, clear cell sarcoma, desmoplastic small 

round cell tumor, angiomatoid fibrous histiocytoma, extraskeletal myxoid chondrosarcoma, 

and sclerosing epithelioid fibrosarcoma but have the unrealistic expectation that a single 

marker, especially a lineage-restricted transcription factor, will have a single diagnostic 

application. Even an “old school” next-generation marker like TTF-1 is expressed by lung 

and thyroid (and mesonephric-like adenocarcinoma, by the way).(1, 2) Just like that 

EWSR1-rearrangement, transcription factors are “allowed” to exert differential effects in a 

cell-type-specific manner.

A colleague recently remarked “GATA-3 is ruined” when I let her know that it was the best 

widely available marker to distinguish pheochromocytoma/paraganglioma from well-

differentiated neuroendocrine tumor. Expression in this tumor type isn’t “random,” it’s 

predicted by developmental biology, in which GATA-3 participates in a complex 

transcriptional network to regulate development of the autonomic nervous system.(3, 4) 

Large scale immunohistochemical surveys of emerging markers not only confirm what we 

already know, but provide the opportunity to discover additional “tools.” For example, when 

Miettinen and colleagues described SOX10 expression in 12% of 486 invasive ductal 

carcinomas of breast origin, it wasn’t “aberrant” staining, but rather, a signal demanding an 

explanation. It turns out that SOX10 expression is restricted to ER-negative breast cancers 

and that SOX10-positivity is, thus, incredibly useful in the diagnosis of triple-negative breast 

cancer.

My favorite immunohistochemical markers are oligospecific transcription factors. I refer to 

them as the “Swiss Army Knives” of immunopathology, capable of “solving” multiple 

differential diagnoses. GATA-3 is a classic example, and Miettinen and colleagues 

highlighted 9 unique diagnostic contexts in which GATA-3 could be useful!(5) In addition to 

the familiar ones in which GATA-3 functions as a positive marker of breast and urothelial 

carcinoma, the authors also pointed out utility in squamous cell carcinoma site of origin 
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assignment (cutaneous=GATA-3+, pulmonary=GATA-3−), mesothelioma (GATA-3+) vs. 

lung adenocarcinoma (GATA-3−), pancreatic adenocarcinoma (GATA-3+) vs. other 

gastrointestinal (GI) adenocarcinomas (GATA-3−), chromophobe (GATA-3+) vs. clear cell 

renal cell carcinoma (GATA-3−), choriocarcinoma (GATA-3+) vs. embryonal carcinoma and 

seminoma (GATA-3−), and paraganglioma (GATA-3+) vs. neuroendocrine tumor 

(GATA-3−). Images 1A–L depict another exemplar oligospecific transcription factor “in 

action.” Although SATB2 was introduced to the diagnostic pathology community as a colon 

cancer marker, it had previously been shown in the developmental biology literature to be an 

osteoblast differentiation marker, a fact that Conner and Hornick translated to paraffin.(6–8) 

Li and colleagues found it to be a specific marker of well-differentiated neuroendocrine 

tumors of lower GI origin.(9) A large scale prospective immunohistochemical study 

surprisingly discovered signal in Merkel cell carcinoma, and strong expression subsequently 

has been vetted as a reasonably sensitive and specific marker of Merkel cell carcinoma in the 

differential diagnosis with visceral poorly differentiated neuroendocrine carcinoma.(10, 11) 

Finally, small round blue cell tumors with BCOR genetic abnormalities were found to 

overexpress SATB2 at the mRNA level, which has been confirmed immunohistochemically, 

while Ewing sarcoma is consistently negative.(12, 13)

I subscribe to the David Levithan axiom that “Things that matter are not easy.” Pathology is 

hard, and immunohistochemistry is hard. There is more information here than I can hold in 

my head simultaneously. The tables and figures in this manuscript are the ones I “pull up on 

the computer” when I’m teaching at the microscope and turn to myself when I’m 

(frequently) stuck. I hope you will find reading this review to be at least a fraction as useful 

as I have found writing it.

Broad Tumor Classes (“The Big Four Plus Three More”) and Associated 

Screening Markers (“The Big Three”):

When I was a first-year pathology resident, the first anatomic pathology textbook I read 

from cover to cover was Mac DeMay’s Practical Principles of Cytopathology (affectionately 

known as “Baby DeMay”). Its cover depicts cytologic images of a group of cohesive, 

epithelioid cells; dyshesive, spindle cells; dyshesive round cells with blastic chromatin, and a 

brown-pigmented, “bug-eyed demon,” exemplars of carcinoma, sarcoma, lymphoma, and 

melanoma. I refer to these as the “Big Four” tumor types. Other (uncommon) tumor types 

include germ cell tumor, mesothelioma, and pheochromocytoma/paraganglioma. In a 

seemingly unclassifiable malignant neoplasm, before I “bust,” I always ask myself if I have 

adequately excluded these seven general tumor types.

Table 2 presents these seven tumor types; screening markers useful in tumor type 

assignment; immunohistochemical, morphologic, and anatomic scenarios in which they 

should be especially considered; and useful confirmatory markers for the non-carcinoma 

tumor types, which will be discussed in differential diagnostic contexts but are not the 

emphasis of this review.

In the setting of a poorly to undifferentiated malignant neoplasm, a broad-spectrum 

epithelial marker (typically a broad-spectrum keratin), CD45 (aka leukocyte common 
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antigen; LCA), and S-100 (or SOX10) are used to screen for carcinoma, hematolymphoid 

neoplasm, and melanoma, respectively. These represent the “Big Three” screening markers. 

SALL4 or placental alkaline phosphatase (PLAP) may be used to screen for a germ cell 

tumor. I prefer SOX10 over S-100 based on clinical experience with cases in which 

melanomas were weak or negative for S-100, while strongly expressing SOX10 (Images 

2A–C). I prefer SALL4 to PLAP based on greater sensitivity, especially in yolk sac tumors.

(14–17) Of note, SALL4 is also a marker of hepatoid adenocarcinoma (i.e., primary 

adenocarcinomas, typically of the stomach or lung, that co-express markers of hepatocellular 

differentiation) and is “aberrantly” expressed by a significant minority (20-30%) of serous, 

gastric, urothelial, and biliary carcinomas.(18, 19) A similar pattern of aberrant expression in 

carcinoma has been reported with PLAP.(20)

There is no single screening marker for sarcoma. A marker that I am loath to name because I 

loathe it so much (let’s just call it the “v word”) is often inappropriately applied, though it is 

also ubiquitously expressed by melanoma and is often expressed by lymphoma and 

carcinoma, especially sarcomatoid examples (Images 3A–D).(21–25) I will begrudgingly 

admit that it is useful as part of a panel to distinguish endometrial (in which it is typically 

expressed) from endocervical (in which it is only rarely expressed) adenocarcinomas.(26–

28) Undifferentiated sarcomas often demonstrate a degree of myogenic differentiation and 

smooth muscle actin (SMA) and desmin may be helpful (though they may also be 

expressed by sarcomatoid carcinoma; SMA >> desmin).(29–31) In the mediastinum, 

retroperitoneum, and paratestis, (well- and) dedifferentiated liposarcoma should always be 

considered; MDM2 and CDK4 are overexpressed due to amplification.(32) CD34 is nearly 

always expressed by vascular neoplasms, dermatofibrosarcoma protuberans, and solitary 

fibrous tumor; is often expressed by tumors with fibroblastic differentiation and by 

epithelioid sarcoma; and is occasionally expressed by other sarcomas.(33) I was taught that 

in an undifferentiated malignant neoplasm in which carcinoma, melanoma, and lymphoma 

have been thoroughly immunohistochemically excluded, CD34 expression favors a 

diagnosis of sarcoma over carcinoma.

There is no screening marker for mesothelioma, though even sarcomatoid mesotheliomas are 

typically keratin-positive.(34) Mesothelioma should always be considered in the pleura, 

pericardium, and peritoneum, and useful differentiation markers include calretinin, WT-1, 
D2-40, CK5/6 (or CK5) and BAP1 (loss).(35) Similarly, there is no screening marker for 

pheochromocytoma/paraganglioma, which should be considered in the setting of epithelioid 

cytomorphology and negative results with a broad-spectrum epithelial marker/CD45/S-100. 

These are well-differentiated neuroendocrine neoplasms and express the general 

neuroendocrine markers chromogranin A and synaptophysin; GATA-3 expression 

distinguishes them from well-differentiated neuroendocrine tumor.(5)

Cancer Epidemiology-Based Approach:

My diagnostic approach is rooted in cancer epidemiology, which informs the pretest 

probability of disease, and strong morphologic skills, which influence my choice of markers 

in any individual case. I recently performed an exercise as an affirmation, and perhaps a 

recalibration, of that cancer epidemiology-based approach. The results of that exercise are 
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presented in Tables 3–5. My goal was to derive the annual incidence and relative frequency 

of 1. the seven tumor types discussed above (i.e., “the big four plus three more”), 2. the main 

histotypes of carcinoma (i.e., adenocarcinoma, squamous cell carcinoma, urothelial 

carcinoma, and neuroendocrine tumor/carcinoma), and 3. the 10 most common 

adenocarcinomas. These results are based on data compiled and reported by the American 

Cancer Society.(36)

To derive the number of hematolymphoid neoplasms, I aggregated totals for lymphoma, 

leukemia, and myeloma; for melanoma, I included cutaneous melanoma and all eye and 

orbit tumors, most of which are ocular melanomas; for sarcoma, I included tumors of bones 

and joints and soft tissue; for germ cell tumor, I included all testis tumors and 5% of ovarian 

tumors.(37) The incidence or mesothelioma and pheochromocytoma/paraganglioma could 

not be derived from the American Cancer Society report and were derived from separate 

epidemiologic studies.(38, 39) Tumors of the lung and bronchus were allocated to 

adenocarcinoma (53%), squamous cell carcinoma (27%), poorly differentiated 

neuroendocrine carcinoma (19%), and well-differentiated neuroendocrine (carcinoid) tumor 

(1%).(40) Tumors of the esophagus were allocated to adenocarcinoma (80%) and squamous 

cell carcinoma (20%).(41) For squamous cell carcinoma, in addition to the above, I included 

totals for tumors of the oral cavity, larynx (non-human papillomavirus-associated); pharynx, 

uterine cervix, anus, vulva, and vagina (human papillomavirus-associated). Tumors of the 

kidney and renal pelvis were allocated to renal cell carcinoma (90%) and urothelial 

carcinoma (10%).(42) For urothelial carcinoma, I also included totals for tumors of the 

urinary bladder and ureter. The total estimated incidence of poorly differentiated 

neuroendocrine carcinoma included separately derived estimates of cutaneous (i.e., Merkel 

cell; n=2500) and extrapulmonary visceral tumors (n=1000).(43, 44) Fifty-seven percent of 

small intestinal and 5% of pancreatic tumors were allocated to the well-differentiated 

neuroendocrine tumor category.(45, 46) Tumors of the liver and intrahepatic bile duct were 

allocated to hepatocellular carcinoma (82%) and intrahepatic cholangiocarcinoma (18%).

(47) For adenocarcinoma, Müllerian tumors included those from the uterine corpus and 

ovary; pancreatobiliary tumors included tumors from the pancreas, gallbladder, and 

intrahepatic cholangiocarcinoma; and upper GI tract tumors included tumors from the 

esophagus, stomach, and small intestine.

From these results I draw several conclusions. In the setting of an undifferentiated malignant 
neoplasm, the tumor is likely a carcinoma (80%). Less commonly it is a hematolymphoid 

neoplasm (10%) or melanoma (6%). Outside of somatic soft tissue or the retroperitoneum, it 

is unlikely to be a sarcoma (1% of all tumors). Outside of the gonads or mediastinum, it is 

unlikely to be a germ cell tumor (0.6%). Outside of the pleura or peritoneum, it is unlikely to 

be a mesothelioma (0.2%). These results validate use of the “Big Three” screening markers. 

In the setting of carcinoma, even given a solid growth pattern, the tumor is likely an 
adenocarcinoma (77% of all carcinomas). Among adenocarcinomas, tumors of the breast, 
prostate, colorectum, and lung predominate, representing two-thirds of all adenocarcinomas.
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Choice of Broad Spectrum Epithelial Markers:

Cytokeratins:

The cytoskeleton is composed of actin-containing microfilaments; tubulin-containing 

microtubules; and intermediate filaments, the latter of which consist of nuclear lamins, glial 

fibrillary acidic protein (GFAP), neurofilament (NF), desmin, vimentin (There, I said it!), 

and/or keratins, depending on cell type. Keratins are principal components of the epithelial 

cell cytoskeleton. Individual keratin proteins were initially resolved by two-dimensional gel 

electrophoresis and, thus, may be referred to as “basic-neutral” or “acidic” and “high” or 

“low” molecular weight.(39, 48, 49) There are 54 functional keratin genes, with the encoded 

proteins assembling as obligate heterodimers, composed of one “basic-neutral” and one 

“acidic” keratin.(50) Each epithelial cell type demonstrates a characteristic pattern of keratin 

expression, which is generally maintained in the tumors that recapitulate those cell types. 

While most epithelia express 4 to 8 individual keratins, hepatocytes express only keratins 8 

and 18.(51) Stratified epithelia express keratins 1-6 and 9-17, while simple epithelia express 

keratins 7, 8, 18, 19, and 20 (these latter 5 are all low-molecular weight keratins).

A broad-spectrum keratin (aka wide-spectrum or screening keratin) is one of the three 

cornerstones of the immunohistochemical workup of an undifferentiated malignant 

neoplasm. There are many acceptable alternatives. Most commercially available broad-

spectrum keratins are monoclonal antibodies (e.g., OSCAR, MNF116) or cocktails of 

monoclonal antibodies (e.g., AE1/AE3, MAK-6) that recognize multiple low and high-

molecular weight keratins. Laboratories may choose to supplement these with an antibody 

specific to low-molecular weight keratins (e.g., CAM5.2—recognizes keratins 8 and 7). 

Antibodies to high-molecular weight keratins (e.g., 34βE12—recognizes keratins 1, 5, 10, 

and 14; D5/16 B4—recognizes keratins 5 and 6) may be used to screen for or as markers of 

squamous or urothelial differentiation, though expression by subsets of adenocarcinomas 

represents a potential pitfall; they are also frequently used to highlight myoepithelial (breast) 

and basal (prostate) cells.(52)

Mainly by habit, I use keratin AE1/AE3 as my screening keratin. My laboratory also has a 

“pan-keratin,” which is a homebrew cocktail of AE1/AE3 (recognizes keratins 1-6, 8, 10, 

14-16, and 19), OV-TL 12/30 (recognizes keratin 7), and Zym5.2 (recognizes keratins 8 and 

18). The homebrew notably supplements keratin AE1/AE3 with an antibody that recognizes 

keratin 18, which is a major low-molecular weight keratin expressed by carcinomas. There 

are also commercially available cocktails that do the same (e.g., AE1/AE3/5D3, AE1/AE3/

PCK26). The affinity of an antibody for individual keratins is at least as important as the 

total number of keratins it reacts with, as demonstrated by reported higher rates of CAM5.2 

(recognizes keratin 8 and to a lesser extent 7) than AE1/AE3-positivity in hepatocellular and 

renal cell carcinoma.(51, 53, 54)

Related to the issue of affinity, given selection of an appropriate broad-spectrum keratin for 

one’s laboratory, the most important (though by no means only) determinants of its 

successful clinical performance are careful, upfront assay optimization (i.e., evaluation of 

the assay at various permutations of antigen retrieval, primary antibody dilution, primary and 

detection chemistry incubation duration, etc. to achieve the optimal signal-to-noise ratio) 
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and validation (i.e., demonstration that the assay performs accurately and reproducibly in a 

representative cohort of expected positive and negative cases).(55) The Canadian 

Immunohistochemistry Quality Control (CIQC) reported false negative results ranging from 

20-80% for laboratories participating in initial pan-keratin and low-molecular weight keratin 

immunohistochemistry proficiency testing.(56) They attributed these failures to poor 

antibody optimization, evidenced by lack of staining in normal hepatocytes and renal 

proximal tubules.

Alternative Broad-Spectrum Epithelial Markers:

When I remain diagnostically bereft after an initial screening panel, I may perform 

immunostains to epithelial membrane antigen (EMA) or epithelial cell adhesion molecule 

(EpCAM) (Images 4A–E). Although I do not have it in my laboratory, claudin-4 has been 

advanced as an additional broad-spectrum epithelial marker.(57) I occasionally struggle to 

get a well-differentiated neuroendocrine tumor (and less commonly a poorly differentiated 

neuroendocrine carcinoma) or a renal cell carcinoma to definitively stain with a broad-

spectrum keratin, and adrenal cortical neoplasms are very frequently negative for most or all 

of the broad-spectrum epithelial markers.(58–61) EMA is encoded by the MUC1 gene, and, 

in addition to its role as a broad-spectrum epithelial marker, it is often used in the distinction 

of sebaceous and squamous cell carcinoma (EMA+) from basal cell carcinoma (EMA−) and 

ovarian surface epithelial tumors (EMA+) from sex cord-stromal tumors (EMA−), the latter 

of which are often reactive with antibodies to broad-spectrum keratins.(62, 63) MOC-31 and 

Ber-EP4 are monoclonal antibodies to EpCAM. Despite their reputations as 

“adenocarcinoma markers” based on their performance in the adenocarcinoma (EpCAM+) 

vs. mesothelioma (EpCAM−) and cholangiocarcinoma (EpCAM+) vs. hepatocellular 

carcinoma (EpCAM−) differential diagnoses, they may be used as secondary broad-

spectrum epithelial markers. Ber-EP4 is often used in dermatopathology in the differential 

diagnosis of basal cell carcinoma (Ber-EP4+) vs. cutaneous squamous cell carcinoma (Ber-

EP4−), though MOC-31 likely performs equally well.(64, 65) Not surprisingly EPCAM was 

one of the most highly expressed genes in basal cell carcinoma based on an analysis of 

publicly available microarray data.(66) In addition to use as a broad-spectrum epithelial 

marker, claudin-4 performs similarly to EpCAM in the adenocarcinoma (claudin-4+) vs. 

mesothelioma (clausin-4−) and cholangiocarcinoma (claudin-4+) vs. hepatocellular 

carcinoma (claudin-4−) differential diagnoses.(67–69)

Non-Canonical Expression of Broad Tumor Class Screening Markers:

In a poorly to undifferentiated neoplasm, expression of broad-spectrum epithelial markers 

outside of carcinoma and S-100 or SOX10 outside of melanoma can lead to major diagnostic 

confusion and outright diagnostic errors. Although “CD45 never lies” (i.e., I am unaware of 

CD45 expression outside of hematolymphoid neoplasms with the exception of reports of 4 

undifferentiated carcinomas and 1 undifferentiated sarcoma and a study of CD45-positive 

“signal” in necrotic carcinomas), other “hematolymphoid markers” are frequently non-

canonically expressed, most notably CD138 (aka syndecan-1).(70–75)
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Expression of Broad-Spectrum Epithelial Markers by Mesenchymal Tumors:

Among mesenchymal tumors, expression of broad-spectrum epithelial markers is hardly 

confined to synovial sarcoma (a tumor my most valued teacher affectionately refers to as 

“carcinoma of soft tissue”). In fact, the WHO Classification of Tumours of Soft Tissue and 
Bone describes keratin and/or EMA-positivity in dozens of soft tissue and bone tumors, 

including one-third of the over 100 soft tissue tumor types (see Table 6).(76) Although 

expression in most tumor types is focal, in several it can be diffuse and strong, potentially 

leading to an erroneous impression of carcinoma. Perhaps not surprisingly, tumor types with 

epithelioid cytomorphology, including several with epithelioid as part of their name (i.e., 

epithelioid hemangioendothelioma, epithelioid angiosarcoma, epithelioid sarcoma), may be 

strongly keratin and/or EMA-positive (Image 5A–F).(77, 78) Positivity may also be seen in 

small round blue cell sarcomas (e.g., embryonal and alveolar rhabdomyosarcoma, 

desmoplastic small round cell tumor, Ewing sarcoma) and dedifferentiated and 

undifferentiated/unclassified sarcoma (Images 5G–I).(79–84) Pathologists are generally 

unaware that 30-40% of conventional leiomyosarcomas are keratin and/or EMA-positive 

(Images 5J–L).(85, 86) Regardless of broad-spectrum epithelial marker positivity, sarcoma 

should always be considered in the mediastinum, retroperitoneum, and somatic soft tissue; 

given spindle cell morphology; or in instances in which carcinoma typing/site of origin 

assignment is uncertain.

Expression of Broad-Spectrum Epithelial Markers by Hematolymphoid Tumors:

There are rare reports of keratin-positivity in hematolymphoid tumors. I found one study 

reporting keratin KL1-positivity in 5 of 18 (28%) anaplastic large cell lymphomas and 

another reporting CK22-positivity in 13 of 866 (1.5%) tumors in tissue microarray, including 

5 of 18 mantle cell lymphomas.(25, 87) Keratin-positivity in plasma cell neoplasms has been 

described as frequent by some but rare to non-occurring by others.(88–90)

EMA-positivity in hematolymphoid neoplasms, on the other hand, is much more 

widespread, including most plasma cell neoplasms; anaplastic large cell lymphoma 

(50-95%); several diffuse large B-cell variants, including T-cell/histiocyte-rich, ALK-

positive, and plasmablastic lymphomas, and primary effusion lymphoma; nodular 

lymphocyte-predominant Hodgkin lymphoma [in the LP (erstwhile L&H) cells]; and 

occasional examples of follicular dendritic cell sarcoma.(91–94) Unfortunately, there is 

substantial overlap here with CD45-weak-to-negative hematolymphoid neoplasms, 

including, again, plasma cell neoplasm, anaplastic large cell lymphoma, ALK-positive large 

B-cell lymphoma, plasmablastic lymphoma, and follicular dendritic cell sarcoma. Given 

this, I am loath to make a diagnosis of carcinoma in a large round cell malignancy based on 

EMA-positivity alone, and if carcinoma typing/site of origin assignment is uncertain I 

frequently employ CD43, CD79a, MUM1, ALK, and CD30 with an eye toward these 

frequently EMA-positive lymphomas (follicular dendritic cell sarcoma would, of course, 

demonstrate spindle cell rather than round cell morphology). Although plasma cell 

neoplasms are typically readily recognized, even at extramedullary sites, anaplastic 

examples resemble undifferentiated carcinoma, sarcoma, or melanoma (95–100).
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Expression of p63 by Hematolymphoid Tumors:

Although p63 is not a broad-spectrum epithelial marker, per se, it is often used to screen for 

the presence of squamous or urothelial differentiation in high-grade malignant neoplasms, 

especially in the lung, upper aerodigestive tract, genitourinary tract, anorectum, and at 

potentially metastatic sites. TP63 is alternatively transcribed from two promoters, resulting 

in isoforms with a transactivating (TA) or dominant-negative (ΔN) domain.(101) ΔNp63 

(aka p40) is the principal isoform expressed in stratified epithelia, where it regulates stem 

cell renewal; of critical importance to this discussion, it is lineage-restricted.(102–104) 

TAp63 has a tumor-suppressor function and is much more widely expressed. The 4A4 

monoclonal antibody, which was initially generated coincident with the discovery of the 

TP63 gene, recognizes a core domain common to both ΔNp63 and TAp63. Despite the fact 

that antibodies to ΔNp63 would theoretically be more lineage-specific, the 4A4 antibody 

well-served so many diagnostic applications that it was ubiquitously adopted, becoming 

synonymous with p63.

Reports of frequent p63-positivity in lung adenocarcinoma, ranging from 15-65% (central 

mass around 30%) with up to a quarter of positive cases demonstrating at least multifocal 

staining, motivated a re-exploration of the potential diagnostic role of ΔNp63.(105–109) 

Bishop and colleagues compellingly demonstrated the superiority of p40 (ΔNp63) over 4A4 

(which I will refer to as “pan-p63”) noting pan-p63-positivity in 31% of 237 lung 

adenocarcinomas and p40-positivity in only 3% of 203 lung adenocarcinomas (each of these 

7 cases demonstrating only 1-5% cells staining); p40 and pan-p63 each stained 100% of 81 

lung squamous cell carcinomas. Although “aberrant” pan-p63 positivity was perceived as a 

“lung adenocarcinoma problem,” adenocarcinomas from diverse anatomic sites similarly 

express TAp63. For example, Kaufmann and colleagues reported pan-p63-positivity in 12% 

of 111 poorly differentiated adenocarcinomas from diverse non-pulmonary sites.(105)

Validation of p40 immunohistochemistry zoomed to the top of my laboratory development 

queue after I nearly made the greatest gaffe of my career. I was consulted on a patient with a 

large lung mass invading the chest wall with sarcomatoid morphology. The tumor was pan-

p63-positive and negative for multiple broad-spectrum epithelial markers. Despite the fact 

that, overall, only 60% of sarcomatoid carcinomas express broad-spectrum epithelial 

markers (a similar percentage express p63), I was uncomfortable, and ordered a CD45 and 

S-100. CD45 was strongly expressed, and the tumor was quickly demonstrated to be a 

diffuse large B-cell lymphoma, activated B-cell type (DLBCL, ABC) (Images 6A–D). I was 

unaware that TAp63 expression extended beyond adenocarcinoma to lymphomas, and, in 

fact, Bishop and colleagues had pointed out this pitfall in their paper.(110–121) As pan-

p63’s last official act in my laboratory, I recently performed a head-to-head comparison of 

pan-p63 vs. p40 in tissue microarrays of 478 hematolymphoid neoplasms, representing 23 

tumor types. While pan-p63-positivity was noted in 44%, 32%, 13%, and 5.5% of tumors 

(when thresholded at H-scores of ≥1, >10, >100, and >200), p40-positvity was not detected 

(0%).(122) DLBCL, ABC was the most frequently positive tumor type (86%) and among the 

strongest-expressing (mean positive H-score 109). Although pan-p63 has been touted in the 

hematopathology literature as potentially useful in the distinction of primary mediastinal 

large B-cell lymphoma and anaplastic large cell lymphoma (pan-p63+) from classical 
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Hodgkin lymphoma (pan-p63−) and, more recently, diffuse large B-cell lymphoma, leg type 

(pan-p63+) from primary cutaneous follicle centre lymphoma (pan-p63−), I consider pan-

p63 immunohistochemistry “too dangerous for general consumption.”(114, 116, 119)

Expression of Broad-Spectrum Epithelial Markers by Melanoma:

Reports of keratin-positivity in melanoma date back over thirty years, with very frequent 

expression detected in frozen section and less frequent expression in formalin-fixed, 

paraffin-embedded material.(123–125) There are similar, though fewer, reports of EMA-

positivity.(126, 127) I frequently cite data from Achilles and Schröder’s 1994 study (because 

it is representative and because it allows me to quip that keratin-expression by melanoma is 

one of our “Achilles heels”); they found broad-spectrum keratin-positivity (using KL1, 

CAM5.2, and 35βH11 clones) in 23% of 22 recurrent or metastatic and 0% of 62 primary 

cutaneous melanomas.(128) Other authors have similarly reported more frequent expression 

in metastatic than in primary tumors.(126, 129) Chen and colleagues detected CK18 in 4 

melanoma cell lines by RT-PCR, ISH, and western blotting; CK18 ISH was positive in 10% 

of 30 primary cutaneous, 40% of 25 primary mucosal, and 48% of 25 metastatic melanoma 

clinical samples—though only 10% of these 80 samples were immunohistochemically 

positive.(130) Romano and colleagues revisited this issue in a large, contemporary series 

(n=73), reporting frequent keratin AE1/AE3 (40%) and OSCAR (28%) positivity.(131) They 

found more frequent positivity in epithelioid than spindle cell/desmoplastic melanomas and 

also highlighted frequent aberrant expression of synaptophysin (29%) and desmin (24%). 

All cases expressed at least one melanocytic marker, though S-100 was only positive in 92%. 

Only one of the S-100-negative tumors expressed keratin. Although carcinomas not 

uncommonly express S-100 (see below), when faced with a broad-spectrum epithelial 
marker/S-100 (or SOX10) co-expressing high-grade malignant neoplasm, I formally 
evaluate for melanoma with all the melanoma markers at my disposal (i.e., melan A, 

HMB-45, MiTF) (Images 7A–F).

I was recently asked if—in a broad-spectrum keratin/CD45/S-100 “triple-negative” high-

grade malignant neoplasm—strong, membranous E(pithelial)-cadherin staining supported a 

diagnosis of carcinoma. My “spidey sense” tingled. I had never used E-cadherin as a broad-

spectrum epithelial marker, but my impression is that my friend was not the first to make 

such an attempt. I was unaware at the time, but melanocytes normally express E-cadherin, 

which mediates their interaction with basal keratinocytes. There is a basic science literature 

addressing the down-regulation of E-cadherin and concomitant up-regulation of N-cadherin 

in melanomagenesis.(132, 133) There is scant diagnostic pathology-centric literature on E-

cadherin expression in primary and malignant melanomas, but I found four highly relevant 

articles. Andersen and colleagues reported membranous E-cadherin staining in ≥5% of 

tumor cells in 40% of 144 primary tumors and 51% of 53 metastases; Mikesh and colleagues 

reported staining in 78% of 197 melanomas (95% of their samples were metastases); Lade-

Keller and colleagues reported staining in ≥50% of tumor cells in 76% of 394 primary 

tumors (with combined low E-cadherin and high N-cadherin predictive of reduced 

melanoma-specific and metastasis-free survival on multivariate analysis); and, most recently, 

Mitchell and colleagues reported at least moderate E-cadherin staining in 49% of 68 primary 

melanomas, including 71% of BRAF-wild type and only 26% of BRAF-mutant tumors 
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(Images 8A–C).(134–137) Incidentally, E-cadherin is also expressed by erythroblasts and it 

has been suggested as a useful diagnostic marker in acute erythroid leukemia and for 

erythroblast enumeration in myelodysplastic syndrome.(138–141) So much for epithelial!

Expression of Broad-Spectrum Epithelial Markers by Mesothelioma and Germ Cell Tumors:

Mesotheliomas nearly always express broad-spectrum epithelial markers and should always 

be differential considerations at mesothelial-lined sites. Germ cell tumors should always be 

considered in the mediastinum, retroperitoneum, and gonads. Embryonal carcinoma, yolk 

sac tumor, and choriocarcinoma are consistently broad-spectrum keratin-positive, with 

seminoma much less likely so.(142–147) Trophoblastic tumors and rare yolk sac tumors are 

EMA-positive, while seminoma and embryonal carcinoma are negative.(144, 148, 149) Yolk 

sac tumors are typically CK7-negative, with only up to 10% focally positive; as such, this 

marker has been touted as useful in the distinction of this tumor type from differential 

considerations, including ovarian clear cell and endometrioid adenocarcinoma (CK7+).(148–

150) There is a single recent report to the contrary, with Wegman and colleagues finding 

CK7-positivity in 84% of 19 yolk sac tumors (along with 100% of 27 choriocarcinomas, 

52% of 29 embryonal carcinomas, and 0% of 28 seminomas).(151) p63-positivity is typical 

of placental site nodule and epitheloid trophoblastic tumor (and is not seen in exaggerated 

placenta site and placental site trophoblastic tumor), which is a significant pitfall in the 

differential with uterine cervical squamous cell carcinoma; choriocarcinomas are also 

variably p63-positive.(151–154) I am uncertain whether, like the situation with lymphoma, 

the adoption of p40 will “save you from getting into trouble.” In one study, though, while 

Shih and Kurman found p63-positivity in 100% of 18 epithelioid trophoblastic tumors 

(average of 70-90% cells positive) and 63% of 8 choriocarcinomas (average of up to 5% 

cells positive), they found p40-positivity in only 22% and 38% of epithelioid trophoblastic 

tumors and choriocarcinomas, respectively, each in <5% of cells.(152)

Expression of Melanoma Markers by Carcinoma:

S-100 is a 24-member family of calcium-binding proteins with overlapping but unique sets 

of regulatory functions, each expressed in a cell-type specific manner.(155) Polyclonal sera 

were initially raised against S-100 isolated from cow brain, which predominantly expresses 

the S100B protein. Individual family members form homo- or heterodimers; S100B 

homodimerizes or forms heterodimers with S100A1 or S100A11.(156, 157) S100B is the 

predominant S-100 protein expressed by melanocytes, glia, Schwann cells, chondrocytes, 

adipocytes, and myoepithelial cells.(156, 158) Despite the existence of S100B-specific 

monoclonal antibodies, most laboratories employ a polyclonal; in the most recent NordiQC 

S-100 proficiency testing assessment, 81% of 299 laboratories reported use of a polyclonal.

(159) The most widely used polyclonal antibody has been shown in western blots to react 

strongly with S100B but also less strongly with S100A1 and least strongly with S100A6.

(160)

Regarding S-100 expression by adenocarcinoma, though probably an outlier, I typically cite 

Herrera et al, who reported S-100-positivity in 43% of 228 primary and 39% of 122 

metastatic tumors, equally split between rare, focal, multifocal, and diffuse-expressing 

groups. They noted most frequent expression in ovarian (84% of primaries), salivary gland 
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(80%), endometrial (78%), kidney (65%), and breast (60%) tumors and no expression (0%) 

in esophageal, pancreatic, and prostate tumors.(161) Drier and colleagues’ study better 

reflects my clinical experience. They reported S-100-positivity (using the same polyclonal 

antibody employed by Herrera and colleagues, 65% of laboratories in the NordiQC survey, 

and in my own laboratory) in 12% of 400 poorly differentiated carcinomas, most common in 

salivary gland (63%), cutaneous eccrine sweat gland (59%), and breast (49%) cancers.(162) 

Otherwise, most reports of S-100-positivity in carcinoma are in breast and salivary gland 

tumors, probably reflecting a component of myoepithelial differentiation.(163–167) Given 

what I had learned about polyclonal S-100’s cross-reactivity with S100A1 and S100A6, I 

examined publicly available pan-cancer gene expression data.(168) While S100B was by far 

most strongly expressed by gliomas and melanomas with a little overlap with breast cancers, 

S100A1 was most strongly expressed by the following cancers (in descending order): 

melanoma, thyroid carcinoma, serous ovarian carcinoma, low-grade glioma, papillary renal 

cell carcinoma, clear cell renal cell carcinoma, breast carcinoma, endometrial carcinoma. I 

suspect the especially high rate of positivity and somewhat unusual distribution of positive 

carcinoma types in Herrera et al’s study to reflect an assay with especially strong affinity for 

S100A1.

SRY-related high-mobility-group (HMG) box (SOX) family transcription factors play 

essential roles in stem cell maintenance, lineage commitment, and terminal differentiation.

(169–171) Among 20 SOX-family transcription factors, SOX10 is especially critical in the 

development of the neural crest and its derivatives, including Schwann cells and 

melanocytes. In Miettinen and colleagues’ comprehensive survey of SOX10 expression, 

which included assessment of 2716 epithelial neoplasms, they highlighted frequent 

positivity in myoepithelial-lineage tumors including pleomorphic adenoma (99% of 112), 

adenoid cystic carcinoma (97% of 36), myoepithelioma of soft tissue (63% overall; less 

frequent in malignant tumors), and cylindroma/spiradenoma (100% of 10).(172) Among 

common carcinomas, SOX10-positivity was not seen in tumors of the prostate (n=124), 

colorectum (n=164), bladder (n=118), endometrium (n=103), ovary (n=38 endometrioid, 

n=94 serous), pancreas (n=150), kidney (n=270), thyroid (n=36), stomach (n=36), liver 

(n=46 hepatocellular, n=40 cholangiocarcinoma), and adrenal cortex (n=38); 1 of 86 lung 

adenocarcinomas was positive. Of note, 12% of 486 ductal and 0% of 50 lobular breast 

cancers were positive. Several groups have subsequently found that SOX10-positivity is 

restricted to ER-negative breast cancers and that it is most frequently seen in triple-negative 

breast cancers (60%), with expression typically diffuse and strong.(173–176) As triple-

negative breast cancers may be GATA-3 weak or negative (up to 30%), I have joined others 

in advocating for use of SOX10 in the workup of an adenocarcinoma of unknown primary 

(Images 9A–C). Otherwise, Miettinen and colleagues found SOX10-positivity in 4% of 229 

squamous cell carcinomas. I recently encountered a SOX10-positive basaloid neoplasm of 

the anorectum in which my morphologic differential included basaloid squamous cell 

carcinoma and adenoid cystic carcinoma. Rooper and colleagues have subsequently showed 

that, while 59% of 22 true basaloid squamous cell carcinomas of the head and neck were 

SOX10-positive, 0% of 280 non-basaloid squamous cell carcinomas were.(177)

As S-100 and SOX10 are each only up to 95% sensitive for the diagnosis of metastatic 

melanoma, in the setting of a broad-spectrum epithelial maker/CD45/S-100 (SOX10)-
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negative tumor, other melanocytic markers may be applied, including melan A, HMB-45, 

tyrosinase, and MiTF.(178) Melan A (aka MART-1) is frequently positive in adrenal cortical 

neoplasms (65-100%) and a subset of translocation renal cell carcinomas [all t(6;11)/TFEB 
carcinomas and only rarely in Xp11.2/TFE3 carcinomas—with the exception of the 

melanotic variant], which are usually weak or negative for broad-spectrum epithelial 

markers.(179–187) Melan A-positivity is also found in some sex cord-stromal tumors, 

strongest and most frequent in those containing steroid cells, though SF1, inhibin, and 

calretinin are all more sensitive sex cord-stromal tumor markers.(188–190) Of note, melan 

A-positivity in adrenal cortical neoplasms and sex cord-stromal tumors is only seen with 

clone A103 (by far the dominant clone) and appears to represent cross-reactivity, as these 

tumor types do not demonstrate significant MLANA gene expression.(191–193) [For clarity, 

I use “melan A” when referring to clone A103 and “MART-1” when referring to clone 

M2-7C10.] Outside of these settings, melan A appears highly specific for melanoma; for 

example, a recent study found 0% melan A-positivity in 1027 non-small cell lung cancers.

(194) HMB-45 does not show the same cross-reactivity and, among epithelial tumors, is thus 

expected to be restricted to the translocation renal cell carcinomas showing melanocytic 

differentiation. I found an outlier study reporting HMB-45-positivity in 10% of 52 

adenocarcinomas, but, in the same study cited immediately above, HMB-45-positivity was 

found in only 1 of 1027 non-small cell lung cancers.(194, 195) MiTF has not been 

extensively evaluated in carcinoma, though Busam and colleagues reported positivity in 8% 

of 40 adenocarcinomas; there is greater concern about relying on MiTF alone to establish a 

diagnosis of melanoma, given more frequent expression in other tumors (see below).(196) I 

found one study of tyrosinase-positivity in 16% of 32 non-melanocytic tumors in cell block 

(4 carcinomas and 1 mesothelioma).(197)

Expression of Melanoma Markers by Mesenchymal Tumors:

Among soft tissue tumors, S-100 is a marker of Schwannian, melanocytic, and myoepithelial 

lineage; positivity is also typical of ossifying fibromyxoid tumor and may be seen in tumors 

of adipocytic and chondroid lineage, extraskeletal myxoid chondrosarcoma, 

rhabdomyosarcoma, Ewing sarcoma, and synovial sarcoma.(198–200) SOX10 expression 

appears more specific for Schwannian, melanocytic, and myoepithelial lineage.(172, 200) 

Among S-100 (SOX10)-positive high-grade malignant spindle cell neoplasms, malignant 

peripheral nerve sheath tumor is often considered in a differential with spindle cell and 

desmoplastic melanoma. Of note, S-100 and SOX10 are negative in just over half of 

malignant peripheral nerve sheath tumors and, when positive, the intensity and extent of 

expression does not typically approach that seen in melanoma (with the exception of strong 

reactivity seen in epithelioid malignant peripheral nerve sheath tumor).(201) Only half of 

spindle cell melanomas will express more specific melanoma differentiation markers, while 

desmoplastic melanomas rarely do.(178) Loss of histone H3K27 trimethylation has been 

suggested to be a reasonably sensitive and highly specific marker of malignant peripheral 

nerve sheath tumor in this differential, though a recent report of loss in 37% of 265 

melanomas (vs. 72% of 122 malignant peripheral nerve sheath tumors) has called the utility 

of this marker in this differential into question.(202, 203) While Schaefer and colleagues 

reported intact H3K27me3 in 20 spindle cell melanomas, Le Guellec and colleagues 
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reported complete loss in 25% of 28 primary desmoplastic/spindle cell melanomas and 39% 

of 229 melanoma metastases (presumably mainly conventional/epithelioid ones).

Melan A, HMB-45, and tyrosinase are expressed by soft tissue tumors showing melanocytic 

differentiation, including clear cell sarcoma, PEComa, and (malignant) melanotic 

schwannian tumor. Clear cell sarcomas are distinguished from melanoma based on their 

relative monomorphism and the presence of EWSR1 rearrangement; tumors arising in the GI 

tract typically lack expression of the melanocytic differentiation markers.(204, 205) 

PEComa (including angiomyolipoma, clear cell “sugar” tumor, and 

lymphangioleiomyomatosis) shows myomelanocytic differentiation. Unlike in melanoma, 

the differentiation markers HMB-45 and melan A are more likely to be positive than S-100 

or SOX10.(172, 206) In typical examples the diagnosis is suggested based on the presence 

of finely granular eosinophilic cytoplasm, nested architecture, and relative monomorphism. 

Melanotic schwannian tumor is distinctly uncommon. It typically arises in a paravertebral 

location, is heavily pigmented, has a tendency to show spindle cell morphology, frequently 

shows psammomatous calcifications, and is often punctuated by striking atypia; up to 40% 

show loss of PRKAR1A, useful in the differential with melanoma.(207)

Microphthalmia-associated transcription factor (MiTF) has been referred to as the “master 

regulator of melanocyte development.”(208) Germline mutations lead to the 

neurocristopathy Waardenburg syndrome, type IIA.(209) In addition to abnormal 

pigmentation, mice with germline mi mutations also have defects in mast cells and 

osteoclasts.(210) Shortly after the initial description of MiTF immunohistochemistry in 

melanoma diagnosis, Busam and colleagues described frequent expression by histiocytes, 

follicular dendritic cells, Schwann cells, fibroblasts, smooth muscle cells, and in associated 

tumors.(196) Granter and colleagues noted poor sensitivity in desmoplastic and spindle cell 

melanoma (29% of 21 tumors) and frequent expression in diagnostic mimics, including 4 of 

6 dermatofibromas, 1 of 6 schwannomas, 1 of 2 leiomyomas, and 2 of 6 leiomyosarcomas.

(211) In an example of “what’s old is new,” Mohanty and colleagues recently highlighted 

universal or very frequent MiTF-positivity in an array of cutaneous fibrohistiocytic lesions 

including, dermatofibroma, angiofibroma, atypical fibroxanthoma, keloid, dermal scar, and 

fibromatosis.(212) Equally if not more alarming, Choy and colleagues described MiTF-

positivity in 89% of 19 undifferentiated pleomorphic sarcomas.(213) A recent meta-analysis 

reported MiTF-positivity in 60% (18/30) of spindle cell melanomas and only 9% (10/113) of 

desmoplastic melanomas.(178). As such, MiTF-positivity in a high-grade malignant spindle 

cell neoplasm has little to no discriminatory value, and in the skin of the head and neck, 

MiTF-positivity would appear to argue against a diagnosis of desmoplastic melanoma. I 

principally employ MiTF as a “backup” melanocytic lineage marker (to HMB-45 and melan 

A) in the diagnosis of PEComa. Given what I have learned, like p63, MiTF is also probably 

“too dangerous for general consumption.”

Expression of Melanoma Markers by Hematolymphoid Tumors:

S-100 is expressed by several histiocytic and dendritic cell neoplasms including all 

Langerhans cell histiocytoses; many, if not all, interdigitating dendritic cell tumors/

sarcomas; ~30% of histiocytic sarcomas, Erdheim-Chester disease, and blastic plasmacytoid 
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dendritic cell neoplasms; and occasionally in follicular dendritic cell tumors/sarcomas; 

juvenile xanthogranulomas are generally negative.(214–217) Lesional cells in Rosai-

Dorfman disease are consistently S-100-positive.(218) SOX10 expression has not been 

extensively studied in hematolymphoid tumors but Miettinen and colleagues found 177 

hematolymphoid neoplasms, including 5 cases of Langerhans cell histiocytosis, to be 

uniformly negative.(172) S-100-positive non-neoplastic dendritic cells are occasionally 

mistaken for positive tumor cells. In sentinel lymph nodes for melanoma they are frequently 

obscuring, such that I have moved to screening these with SOX10.(219, 220) As described in 

the prior section, MiTF is expressed by histiocytes; Busam and colleagues also reported 

positivity in dendritic cells and in some lymphomas, including 1 of 4 peripheral T-cell 

lymphomas, 2 of 4 diffuse large B-cell lymphomas, 1 of 4 classical Hodgkin lymphomas, 

and 1 of 4 MALT lymphomas.(196)

Expression of Hematolymphoid Differentiation Markers by Other Tumors:

Although CD45 and several other hematolymphoid markers including CD2, CD3, CD4 (if 

you don’t count expression by macrophages), CD8, and CD20 “never lie” (with the 

exception of rare aberrant T-cell marker expression by B-cell neoplasms and vice versa), 

several notably do, including CD5, CD7, CD56, CD138, and MUM1.(221, 222) CD5 is 

usually expressed by thymic carcinoma and only very rarely by thymoma and non-small cell 

lung carcinoma, and in the mediastinum I apply it to this differential; but it is also frequently 

expressed by cholangiocarcinoma (up to 80%, though not very well-studied), colon cancer 

(50%), and pancreas cancer (50%) and occasionally to rarely by other carcinomas, sarcomas, 

and melanomas.(223–226) Aside from thymus, where I am unaware of any data, aberrant 

CD7 expression follows a similar pattern (i.e., especially frequent in cholangiocarcinoma, 

frequent in other GI tumors, occasional in other tumor types).

CD56 (neural cell adhesion molecule) is often employed as a general neuroendocrine 

marker; I never do because of lack of specificity. CD56 is normally expressed by neurons, 

glia, neuroendocrine cells, and NK- and activated T-cells but also by thyrocytes, endometrial 

glands, proliferating bile ductules, outer root sheath keratinocytes, pyloric and Brunner 

glands, atrophic and regenerating skeletal muscle, myometrium, and muscularis propria of 

the GI tract and bladder.(227) I have recently encountered a cholangiocarcinoma and a 

pyloric gland adenoma initially misdiagnosed as neuroendocrine tumor based on CD56-

positivity. Among mesenchymal tumors, CD56-positivity is seen with schwannoma/

malignant peripheral nerve sheath tumor, granular cell tumor, rhabdomyosarcoma, 

leiomyoma/leiomyosarcoma, epithelioid gastrointestinal (GI) stromal tumor, low-grade 

fibromyxoid sarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma.(228–

230) I do use CD56 in the diagnosis of monomorphic epitheliotropic intestinal T-cell 

lymphoma (MEITL; until recently known as enteropathy-associated T-cell lymphoma, type 

II), and I would use it to support a diagnosis of blastic plasmacytoid dendritic cell neoplasm.

(216, 231) Curiously, while CD56 is expressed by thyrocytes, with expression retained in 

hyperplastic and most neoplastic lesions, it is only rarely expressed by papillary thyroid 

carcinoma.(232)
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CD138 (aka syndecan-1) is a transmembrane heparan sulfate proteoglycan that is routinely 

employed as a marker of plasmacytic differentiation. Among its many biologic functions, it 

mediates cell-cell and cell-extracellular matrix interactions. It is widely expressed by 

epithelia and carcinomas, an underrecognized fact that leads to diagnostic errors. O’Connell 

and colleagues reported CD138-positivity in 91% of 33 carcinomas and 5 of 10 melanomas, 

as well as 2 of 2 synovial sarcomas, 1 (of 1) gastrointestinal stromal tumor, and 1 of 2 

leiomyosarcomas; expression in 2 of 2 mesotheliomas was noted to be weak(72) Chu and 

colleagues found 50% of 403 epithelial neoplasms from diverse anatomic sites to be 

positive, with no expression in 14 germ cells tumors and expression in only 1 of 20 

melanomas and 1 of 21 mesotheliomas.(223) In a tissue microarray-based study Kambham 

and colleagues demonstrated CD138-expression in 39% of 752 normal tissues and epithelial 

neoplasms.(233) Expression is so frequent in carcinomas, that savvy pulmonary pathologists 

have employed CD138 in the carcinoma vs. mesothelioma differential.(234) In the bone 

marrow, I have seen CD138-positivity in metastatic lobular breast cancer and diffuse-type 

gastric cancer lead to diagnostic confusion. Early in my career, I mistook strong CD138-

positivity in a carcinoma as evidence of plasmacytic differentiation in a broad-spectrum 

keratin/CD45/S-100-triple-negative undifferentiated epithelioid malignant neoplasm, a 

scenario in which anaplastic plasmacytoma and large cell lymphomas with plasmablastic or 

plasmacytic differentiation were diagnostic considerations.

Multiple myeloma oncogene 1 (MUM1), like CD138, is typically employed as a marker of 

plasmacytic differentiation and, perhaps even more frequently, in diffuse large B-cell 

lymphomas as a marker of non-germinal center/activated B-cell phenotype.(235) It is 

normally expressed by B-cells in the light zone of germinal centers and by post-germinal 

center B-cells and plasma cells. MUM1 is also nearly always expressed by melanomas, 

though only rarely in spindle cell and desmoplastic variants. Sundram and colleagues 

reported positivity in 92% of 36 conventional melanomas, which compared favorably to 

HMB-45 (78%) and melan A (75%).(236) Only 1 of 8 spindle cell/desmoplastic melanomas 

was positive, though. The same group had previously demonstrated MUM1-negativity in 

tissue microarrays of 696 carcinomas and 13 germ cell tumors.(237) Of note, while MUM1 

is a very sensitive for plasmacytic differentiation, among hematolymphoid neoplasms 

(unlike CD138 and CD38) it is quite non-specific, with frequent expression by anaplastic 

large cell lymphoma, classical Hodgkin lymphoma, high-grade follicular lymphoma, 

lymphoplasmacytic lymphoma, marginal zone lymphoma, and peripheral T-cell lymphoma, 

among others.(237)

Morphologic Pattern-Based Approach:

Malignant neoplasms present as one or more of the following patterns: epithelioid, (small) 

round cell, spindle cell, and anaplastic (Images 10A–D). Epitheloid neoplasms are 

composed of polygonal cells that may be round, columnar, or cuboidal, generally with round 

to oval nuclei and readily identifiable to abundant cytoplasm. Diagnostic considerations 

include carcinoma (cohesive), melanoma (loosely to poorly cohesive), lymphomas 

composed of large cells (dyscohesive), and rare sarcomas with epithelioid cytomorphology 

(cohesive). Small round (blue) cell neoplasms are typified by small cell size and very high 

nucleus to cytoplasm ratio. Ewing sarcoma and lymphoblastic lymphoma are exemplars. 
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Spindle cell neoplasms demonstrate elongated nuclei and cytoplasmic processes. Although 

sarcomas are prototypical spindle cell neoplasms, sarcomatoid carcinoma and spindle cell 

melanoma are important diagnostic considerations. Anaplastic neoplasms are characterized 

by striking pleomorphism. In my experience, anaplastic neoplasms are usually carcinomas 

or undifferentiated pleomorphic sarcomas, and aside from very, very rare histiocytic 

sarcomas, hematolymphoid neoplasms do not assume this morphologic pattern.

Table 7 summarizes these morphologic patterns, principal diagnostic considerations, and 

markers useful in an initial screening panel. For the epithelioid and anaplastic patterns, the 

“big three” screening markers are useful, and for the spindle cell pattern I swap out CD45 

for SMSA and desmin and sometimes p40 (especially in the head and neck, lung, and 

bladder). Although my panel varies based on anatomic site, in pediatric small round blue cell 

tumors especially useful markers include CD99, NKX2.2 (for Ewing sarcoma); desmin, 

myogenin (for rhabdomyosarcoma); Tdt (for lymphoblastic lymphoma, which is often CD45 

weak-to-negative); chromogranin, synaptophysin, PHOX2B (for neuroblastoma); CD45; and 

a broad-spectrum keratin. Diffuse, strong membranous CD99-positivity supports a diagnosis 

of Ewing sarcoma; strong staining is also often seen in lymphoblastic lymphoma and “less 

compelling” staining is commonly encountered in other small round blue cell tumors.(238–

241) FLI1 is often used as a Ewing sarcoma marker but I have found it to be incredibly non-

specific, including ubiquitous expression by hematolymphoid neoplasms and less frequent 

(though often strong) expression by renal cell carcinoma and melanoma.(242) NKX2.2 has 

emerged as the preferred second Ewing sarcoma marker, with the caveat that is frequently 

expressed by olfactory neuroblastoma, poorly differentiated neuroendocrine carcinoma, and 

gastroenteropancreatic well-differentiated neuroendocrine tumors (all three of which are 

rarely differential considerations in the pediatric setting).(243–247) CIC-DUX4 and BCOR-

associated sarcomas are often morphologically Ewing-like, though they tend to be less 

monomorphous. Although WT-1-positivity is typical of Wilms tumor and desmoplastic 

small round cell tumor (the latter only with antibodies to the carboxy-terminus), it is also 

useful to screen for CIC-DUX4 sarcomas.(248, 249) Although SATB2 has been employed 

as a marker of small cell osteosarcoma in this differential, it was recently shown to be 

expressed by the majority of BCOR-associated sarcomas.(12)

Morphology and Immunophenotype to Define Four Carcinoma Types:

Among carcinomas, I distinguish four main histotypes: “garden variety” adenocarcinoma, 

large polygonal cell adenocarcinoma, squamotransitional, and neuroendocrine (Figure 1). 

Garden variety adenocarcinomas form glands, tubules, and/or papillae and may demonstrate 

cytoplasmic and/or extracellular mucin. Large polygonal cell adenocarcinomas are 

composed of large cells, often with abundant granular eosinophilic or clear cytoplasm, and 

tend to grow as nests or cords or exhibit diffuse architecture. They are typically CK7/CK20-

double negative. Squamotransitional carcinomas tend to be nested and demonstrate dense 

cytoplasm. Like the large polygonal cell adenocarcinomas, and unlike most garden variety 

adenocarcinomas, nuclei are centrally placed. The presence of intercellular bridges and 

keratin pearl formation distinguish squamous cell from urothelial carcinoma, though 

intercellular bridges are difficult to reliably identify in poorly differentiated examples, non-

keratinizing tumors are not infrequent, and urothelial carcinomas often demonstrate a minor 
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component of squamous differentiation. I use p40 to screen for squamotransitional 

carcinomas. High-molecular weight keratin 34βE12 and GATA-3 are useful in occasional 

p40-negative tumors, though they are less specific. The neuroendocrine epithelial neoplasms 

include well-differentiated neuroendocrine tumors and poorly differentiated neuroendocrine 

carcinomas. Neuroendocrine chromatin is described as finely granular (so-called “salt and 

pepper”). Well-differentiated neuroendocrine tumors demonstrate a variety of “organoid” 

growth patterns, including nested, trabecular, and pseudoglandular, either singly or in 

combination. Large cell neuroendocrine carcinomas may also demonstrate organoid 

architecture, while small cell carcinoma tends to grow diffusely. I screen for neuroendocrine 

epithelial neoplasms with the general neuroendocrine markers chromogranin A and 

synaptophysin, though insulinoma-associated protein 1 (INSM1) is rapidly emerging in this 

setting.

Coordinate Expression of CK7/CK20:

CK7 and CK20 are still probably the most commonly used markers to assign site of origin in 

metastatic carcinomas of occult origin (Table 8). Tables like the one I present are ubiquitous 

in signout areas the world over. I found one in our resident preview area and a different one 

in our surgical pathology fellows’ office. They make perfect foils. Seemingly aberrant 

patterns of CK7/CK20 coordinate expression are a frequent source of consternation and one 

of my most frequent curbside consults, generally along the lines of “my tumor looks like a 

___ and stains like a ___ but the CK7 (or CK20) is positive (or negative). Is it still a ___?” 

The answer is nearly always yes. Here are four frequent obstacles in using these tables to 

interpret coordinate expression of CK7/CK20:

1. These tables only take the most common variant of a given tumor type into account:

Clear cell renal cell carcinoma, representing ≥80% of all renal cell carcinomas, is typically 

described as CK7/CK20-double negative, but papillary (type I), chromophobe, and clear 

cell-papillary renal cell carcinoma are nearly always; mucinous tubular and spindle cell and 

medullary carcinoma are usually; and collecting duct carcinoma is often strongly CK7-

positive.(250–257) In fact, CK7-positivity is one of the key immunohistochemical features 

distinguishing chromophobe renal cell carcinoma (CK7+) from oncocytoma (CK7−). 

Although hepatocellular carcinoma is, again, typically described as CK7/CK20-double 

negative, before the discovery of its molecular genetic basis (DNAJB1-PRKACA fusion) 

and the development of an attendant FISH test, I relied on CK7-positivity to support a 

diagnosis of fibrolamellar carcinoma.(258, 259) Colon cancer is typically described as 

CK7−/CK20+, but MSI-H carcinomas frequently (up to 25%) deviate from this phenotype, 

while up to 25% of rectal cancers co-express CK7.(260, 261)

2. These tables typically only present a single staining pattern for a given tumor:

The table in the resident preview area lists tumors of the pancreatobiliary tract among the 

CK7+/CK20− tumors, while the table in the fellows’ office lists them among the CK7+/

CK20+ tumors. My table lists pancreatobiliary tumors among both the CK7+/CK20− and 

CK7+/CK20+ tumors. When I stained tissue microarrays of 251 primary and 97 metastatic 

pancreas cancers a few years ago, I found just under 30% expressed CK20. There are a set of 
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CK7+ tumors that, like pancreatobiliary tumors, sometimes (~50%) co-express CK20; these 

include urothelial carcinoma and bladder adenocarcinoma, lung adenocarcinoma with 

mucinous histology, and primary mucinous ovarian tumor.

3. These tables do not take focality of staining into account:

In most instances, the tumors that are listed as CK7+ demonstrate diffuse, strong CK7 

staining. But among the CK7+/CK20+ tumors, CK20 staining is usually less extensive. For 

example, the mean (median) CK20 H-scores in my CK20+ pancreas cancers were 73 (15). 

Although, as discussed above, clear cell renal cell carcinomas are typically noted to be CK7/

CK20-double negative, I found a recent manuscript that reported CK7-positivity in 80% of 

15 tumors—though focal in all.(262) Neal Goldstein reported CK7 and CK20 positivity in 

50% and 63% of 225 prostate cancers, another prototypical CK7/CK20-double negative 

tumor.(263) In only 5% (CK7) and 10% (CK20) of cases, though, was staining noted in 

>25% of cells, and in no case was staining noted in >50% of cells. Aberrant staining was 

more frequent in Gleason score 9 and 10 tumors. I can recall, on more than one occasion, 

puzzling over focal CK20-positivity, in what ultimately proved to be prostate cancer. As a 

general rule, I would discount focal CK7 staining and, in the absence of concurrent diffuse, 

strong CK7-positivity, be similarly skeptical of the significance of focal CK20-positivity.

4. These tables do not acknowledge the anatomic range of CK7− tumors:

Tumors that are supposed to be consistently CK7+ sometimes aren’t. In my pancreas cancer 

tissue microarrays, 16% of the 251 primaries (though only 4% of the metastases) were 

CK7−. Gloyeske and colleagues recently reported that 8% of 186 breast cancers were CK7−, 

which was actually more frequent in ER+ (9% of 148) than ER− (1% of 38) tumors, though 

not statistically significant.(264)

Conclusion:

I most commonly employ CK7 and CK20 when my morphologic impression is that of a 

garden variety adenocarcinoma. In this context, I find CK7/CK20-double negativity to be 

especially helpful, as it causes me to reconsider the possibility of large polygonal cell 

adenocarcinoma, squamotransitional carcinoma, neuroendocrine neoplasm, and (less 

commonly) germ cell tumor. I tend to ignore focal CK7 staining and, similarly, isolated focal 

CK20 staining. If the pattern of CK7/CK20 coordinate expression fits my morphologic 

impression, I’m pleased; if it doesn’t, but there is otherwise strong evidence to support a 

specific diagnosis, I’m not discouraged from making that diagnosis.

Added Value of Semiquantitative Immunohistochemical Stain Assessment:

Immunohistochemistry provides semiquantitative information about protein expression. I 

attend to both extent and intensity of staining, and these parameters tend to be highly 

correlated. In my clinical work I distinguish diffuse (>90%), multifocal (33-90%), focal 

(5-33%), and rare cells (<5%) staining, and I use the “magnification rule” (based on the 

magnification at which I can clearly observe signal in the appropriate cellular compartment) 

to judge staining as none (0), weak (1+; only observable at 400x), moderate (2+; observable 

at 100-200x), or strong (3+; observable at 20-40x). In the research setting, I do the same 
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thing, though I am more specific about the extent (0-100%) of staining such that an H-score 

(product of extent * intensity; ranging from 0-300) can be derived.(265, 266) For 

transcription factors, I may also refer to expression as “homogeneous” (diffuse, strong 

staining; H-score approaching 300) or “heterogeneous” (any staining less than 

homogeneous).(267)

There is valuable information to be gleaned, especially for CDX2, when immunostains are 

not merely assessed as “positive” or “negative.” For example, colorectal cancer typically 

demonstrates homogenous-pattern CDX2; while upper GI tract adenocarcinomas are usually 

heterogenous; and pancreatobiliary and primary mucinous ovarian tumors are, as a rule, 

heterogeneous, if they are expressing at all (Images 11A–B).(267–270) More generally, for 

any marker, the stronger the signal the greater the diagnostic weight that can be placed on 

the result. This principle is well-illustrated by a recent report from Clark and colleagues, 

who performed a broad tissue microarray-based survey of GATA-3 expression in 

carcinomas. In addition to finding frequent strong expression in breast (95% of tumors; 

median H-score 230) and urothelial cancer (95%; median H-score 170), they also found 

unexpected expression in adenocarcinomas of the endocervix (18%), ovary (10%), pancreas 

(10%), endometrium (7%), stomach (2%), and in cholangiocarcinoma (3%), though all with 

median H-scores of ≤25. I have found weak and patchy PAX8-positivity to similarly be of 

dubious diagnostic significance (Images 12A–E).

Immunohistochemical Approach to “Garden Variety” Adenocarcinoma in 

the Liver (CK7, CK20, CDX2, TTF-1; GATA-3 (woman):

Given a morphologic impression of a garden variety adenocarcinoma in the liver, my initial 

immunohistochemical panel includes CK7, CK20, CDX2, and TTF-1. In a woman, I add 

GATA-3. This immunohistochemical panel is geared toward identifying breast, lung, tubal 

gut, and pancreatobiliary tumors. In my experience, breast and lung tumors present a wide 

range of morphologies and, of course, are incredibly common, so I screen for them every 

time (with the exception of male breast cancer, which represents just under 1% of all breast 

cancers). With upper GI tract tumors I often have a sense that they are “enteric appearing,” 

though not as classically “tall, dark, and dirty” as colorectal cancer. Pancreatobiliary tumors 

present a range of morphologies, including those I pick out as enteric appearing, often with 

foamy gland features (most typical of pancreas cancer and extrahepatic 

cholangiocarcinoma), and those resembling a bile ductular proliferation (most typical of 

intrahepatic cholangiocarcinoma). If I have a very strong morphologic impression of colon 

cancer, I might add a SATB2 up front. I do not routinely screen for prostate cancer, as I feel 

reasonably certain that I can identify it based on morphology (i.e., monomorphous, 

uniformly prominent nucleoli). Similarly, I do not routinely screen for Müllerian tumors, as 

it would be unusual for one to metastasize to the liver without first involving the peritoneum. 

Among the 10 most common adenocarcinomas presented in Table 5, that leaves only renal 

cell carcinoma, hepatocellular carcinoma, and thyroid carcinoma unaccounted for. I consider 

and screen for the first two of these in the setting of a large polygonal cell adenocarcinoma. 

Thyroid cancer presenting as a hepatic metastasis of occult origin is “let’s write a case report 

stuff’—I found 10 reports of isolated liver metastasis in thyroid cancer and all of the patients 
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had a known history. Figure 2 presents the various outcomes of this initial screening panel, 

which I will discuss presently:

CK20/CDX2 homogeneous. Interpretation: Lower GI Immunophenotype

At least 80% of colon cancers demonstrate the classic CK7−/CK20+/CDX2+ 

immunophenotype, with CK20 and CDX2 usually diffuse and strong.(260, 268, 269) At 

least 90% express CK20 and a similar number express CDX2, with an incremental increase 

in sensitivity by performing both markers. In a large tissue microarray-based study of 1000 

MSS and 197 MSI-H tumors, adding CDX2 increased the sensitivity for detecting colon 

cancer from 93% to 97% in the former and 80% to 88% in the latter.(260)

Occasional upper GI and rare pancreatobiliary adenocarcinomas demonstrate a lower GI 

immunophenotype. In this setting SATB2-positivity is fairly specific for a lower GI origin.

(6, 9, 10, 271–273) In my pancreas cancer tissue microarrays only 5% and 1.5% of tumors 

expressed CK20 and CDX2 at H-scores ≥200, respectively; only 4% (i.e., 1 of 25 pancreas 

cancers with a lower GI immunophenotype) of this very small subset was SATB2-positive. I 

have similar data in small intestinal adenocarcinoma, with 31% and 32% of 93 tumors 

expressing CK20 and CDX2 at H-scores ≥200, respectively; of the subset demonstrating 

homogeneous CK20 and/or CDX2 staining (n=43), 21% showed any SATB2 staining and 

only 9% showed SATB2 staining with an H-score ≥100.(274)

CK20/CDX2 heterogeneous. Interpretation: Upper GI/Pancreatobiliary Immunophenotype

Upper GI tract adenocarcinomas can demonstrate any pattern of CK7/CK20 coordinate 

expression. In esophageal tumors, CK7+/CK20− tumors appear to predominate, while in the 

stomach there is a fairly even distribution among the 4 patterns.(268, 275–279) Over 50% of 

esophageal and gastric tumors express CDX2, which tends to be weaker and less extensive 

than in colon cancer.(268, 269) In my small intestinal adenocarcinoma tissue microarrays 

23%, 42%, and 43% of tumors demonstrated CK20, CDX2, and CK20 and/or CDX2-

positivity with H-scores <200 (i.e., heterogeneous-pattern staining).(274) Similarly, in my 

pancreas cancer tissue microarrays, 24%, 27%, and 38% of tumors demonstrated CK20, 

CDX2, and CK20 and/or CDX2-positivity with H-scores <200. Among these heterogenous-

positive tumors 78% and 90% of small intestinal and pancreatic tumors co-expressed CK7. 

In my practice, I use focal to multifocal CK20 and/or CDX2-positivity to support an upper 

GI/pancreatobiliary origin. In the setting of diffuse, strong CK7-positivity, I will even accept 

rare cells staining for CK20 and/or CDX2 in support of this conclusion.

Inactivation of the tumor suppressor SMAD4 is seen in just over half of pancreatic 

adenocarcinomas and is associated with adverse prognosis and a widely metastatic 

phenotype.(280–284) SMAD4 is normally ubiquitously expressed in the nucleus and 

cytoplasm, and inactivation, whether due to homozygous deletion (30%) or inactivating 

mutation accompanied by loss of heterozygosity (20%), leads to complete absence of protein 

expression. SMAD4 loss is seen at similar rates (~50%) in cancers throughout the 

extrahepatic biliary tree and less frequently in the ampulla, gallbladder, and in intrahepatic 

cholangiocarcinoma.(285, 286) SMAD4 immunohistochemistry is incredibly useful in 

challenging fine-needle aspirates, bile duct brushings, and surgical pathology small biopsies, 
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with loss supporting a diagnosis of pancreatobiliary adenocarcinoma over a reactive process.

(287)

Early work suggested that SMAD4 inactivation was relatively specific to pancreas cancer. 

Schutte and colleagues reported SMAD4 inactivation in 4 of 9 (44%) pancreas cancers, 1 of 

8 breast cancers (13%), and 1 of 8 (13%) serous ovarian tumors, with wild-type SMAD4 in 

all other tumor types studied, including carcinomas of the prostate (n=11), bladder (7), liver 

(hepatocellular, 6), lung (6), head and neck (squamous cell carcinoma, 5), and kidney (3), as 

well as melanoma (4), glioblastoma (2), and medulloblastoma (1).(288) Notably, this study 

failed to include any upper GI tract tumors, which constitute pancreatobiliary 

adenocarcinoma’s main morphologic and immunophenotypic differential. Subsequent work 

has demonstrated frequent loss (30%) in colon cancer, though this is less often a differential 

consideration.(289) For the last 10-years I have cautiously used SMAD4 loss in “CK20/

CDX2 heterogenous” and “CK7+ only” tumors to suggest a pancreatobiliary origin. Table 9 

presents data from the largest survey of SMAD4 immunohistochemical expression in 

carcinoma to date, including 1254 tumors of 14 types; loss was seen in only 4% of 53 

esophageal and 2% of 45 gastric cancers, seemingly validating that approach.(290) There is 

a single recent large-scale study in esophageal adenocarcinoma, though, that raises a note of 

caution. Although Singhi and colleagues found SMAD4 loss in only 10% of 205 primary 

tumors, they reported loss in 44% of 43 metastases.(291)

TTF-1-Positive. Interpretation: Lung Origin:

A “CK7+ only” (TTF-1-negative) adenocarcinoma in a patient with tumor in the lung and 

liver is another frequent curbside, along the lines of “I guess it’s not lung cancer; it must be 

pancreatobiliary.” I frequently cite “Murphy’s Law of TTF-1-Positivity in Lung 

Adenocarcinoma”: TTF-1 is expressed by 60-85% of lung adenocarcinomas; in your cases 

it’s 60%, in the other guy’s it’s 85%. It is less likely to be positive in solid, poorly 

differentiated, and metastatic adenocarcinomas (i.e., in the 60% range).(292–295) TTF-1 is 

even less frequently positive (40-50%) in lung cancers with mucinous histology, in which 

TTF-1-negativity is associated with NKX2-1 (the gene encoding TTF-1) inactivating 

mutations or promoter methylation.(227, 296, 297) These tumors are nearly always CK7-

positive and up to half show heterogeneous-pattern CK20 and/or CDX2 staining (i.e., they 

are morphologically and immunophenotypically identical to upper GI and pancreatobiliary 

tumors). In these rare cases, any TTF-1-positivity supports a lung origin, and I use SMAD4 

loss to support a GI origin. For adenocarcinoma in the liver in general, unless there is 

immunophenotypic evidence to the contrary, I accept any TTF-1-positivity to support a 

diagnosis of lung adenocarcinoma.

Given the frequency of lung cancer and the modest “real world” sensitivity of TTF-1, a 

highly sensitive lung adenocarcinoma marker is one of diagnostic immunohistochemistry’s 

“Holy Grails.” Several years ago I was “shocked and awed” by Turner and colleagues’ 

report of the performance of napsin A, an aspartic proteinase involved in the processing of 

surfactant protein B, which was expressed by 87% of 303 lung adenocarcinomas tested, 

while TTF-1 was positive in only 64% of 94.(294) We hurriedly validated napsin A, but my 

anecdotal experience has been disappointing, with the results of TTF-1 and napsin A 
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staining so highly correlated that I have seen very little incremental benefit to performing 

both. Given frequent napsin A-positivity in clear cell (30-50%) and papillary (70-80%) renal 

cell carcinoma, TTF-1 remains my lung adenocarcinoma marker of choice.(294, 298, 299) I 

do use napsin A as a positive marker for Müllerian clear cell carcinoma (≥80%) in the 

differential with other high-grade gynecological tumors (Images 13A–C).(300–303)

I took this review as an opportunity to formally evaluate the sensitivity of TTF-1 and napsin 

A for the diagnosis of lung adenocarcinoma. I included articles that tested tumors in surgical 

pathology (biopsies and/or resections) or cytology (limited to cell blocks) material for 

TTF-1 and napsin A expression concurrently. I started with articles included in a meta-

analysis of the performance of combined TTF-1 and napsin A staining for the diagnosis of 

lung adenocarcinoma, supplementing these 9 articles with 7 published subsequently.(292–

295, 304–316) In these 16 articles, TTF-1 had an 80.6% (1182/1467), napsin A had an 

83.4% (1224/1467), and combined TTF-1/napsin A had an 88.9% (1310/1474) sensitivity 

for lung adenocarcinoma. To formally statistically compare the sensitivity of two diagnostic 

tests, it is necessary for the study to report the number of cases positive for a given 

diagnostic marker and negative for the other and vice versa. Twelve of the 16 studies 

satisfied this criterion. Including only these studies, using a two-tailed McNemar’s test 

napsin A (81.2% of 901) outperforms TTF-1 (78.6% of 901) (p=0.003). Excluding Turner 

and colleagues’ study, which is unusual in several ways [it reported the second lowest 

TTF-1-sensitivity (64%) coupled with the second highest napsin A sensitivity (89%) for the 

greatest Δ sensitivity (25%); it tested 303 adenocarcinomas for napsin A and only a subset of 

94 for TTF-1], TTF-1 (80.3% of 807) and napsin A (80.3% of 807) are (miraculously) 

identically sensitive. Combined TTF-1 and napsin A staining (87.2% of 807) outperforms 

either test alone (p<0.000001). Despite my anecdotal experience, in patients with tumor in 

the lung and liver, I typically perform TTF-1 and napsin A concurrently as part of an initial 

panel. Given the result of this analysis, I would advocate for napsin A as a follow up test in 

an adenocarcinoma of unknown primary given an uninformative result on the initial panel 

(e.g., “CK7+ only”).

GATA-3-Positive. Interpretation: Breast Origin

GATA-3 is by far the most sensitive breast adenocarcinoma marker, expressed by virtually 

100% of ER-positive and 70-80% of ER-negative tumors.(5, 168, 264, 317–319) Expression 

in ER-positive tumors is diffuse and strong, while in ER-negative tumors, though frequently 

strong, it is much more variable. For example, Gloyeske and colleagues reported GATA-3-

positivity in 99% of 131 ER+/HER2− (median H-score 240), 100% of 18 ER+/HER2+ 

(240), 100% of 7 ER−/HER2+ (90), and 73% of 30 ER−/HER2− (109) breast cancers.(264) 

I performed a study focusing on ER-negative breast cancers, which pose the greater 

diagnostic difficulty, finding positivity in 79% of 196 tumors (median H-score 168) with the 

L50-823 clone and 67% of 192 tumors (136) with the HG3-31 clone.(318)

Other studies have also found the L50-823 clone to be more sensitive, though more 

frequently “aberrantly” expressed in non-breast/non-urothelial carcinomas—typically in 

weak, patchy fashion.(168, 319, 320) Pancreas cancer is probably the most frequent 

“aberrant expressor.” I found L50-823-positivity in 23% and 28% of primary (n=245) and 
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metastatic (86) pancreas cancers and HG3-31-positivity in only 9% and 18%; the highest 

mean/median H-score was for L50-823 in metastases (44/8).(321) Thus, I rely on multifocal 

to diffuse, moderate to strong GATA-3-positivity (H score ≥100) to support a diagnosis of 

breast cancer. I follow up a positive GATA-3 result with ER/PR/HER2 testing, per 

ASCO/CAP Guidelines. If these are negative, I perform SOX10 (to support a diagnosis of 

triple-negative breast cancer).

This presumes, of course, that I am already at a diagnosis of adenocarcinoma. In a solid 

tumor, in which a squamotransitional carcinoma is also in the differential, ER/PR/HER2 or 

SOX10-positivity support a diagnosis of breast cancer; diffuse, strong p40-positivity 

supports a diagnosis of squamous or urothelial carcinoma,;and CK20 or uroplakin II-

positivity support a diagnosis of urothelial carcinoma.

Given the sensitivity of GATA-3 in ER-positive breast cancer, I do not perform ER as part of 

my initial “adenocarcinoma in the liver” panel. I never use GCDFP-15 or mammaglobin in 

this setting, as they offer no added value. They perform especially poorly in triple-negative 

breast cancer. For example, Gloyeske and colleagues reported GCDFP-15 and 

mammaglobin positivity in 16% and 19% of triple-negative breast cancers at median H-

scores of 1 (not a typo!) and 113; these markers do not perform well in “all comers” either, 

with positivity in 26% (median H-score 5) and 52% (125) of the entire cohort of nearly 200 

breast cancers.(264) Mammagloblin does have value, though, in the head and neck as a 

marker of (mammary analogue) secretory carcinoma (especially given recent reports of the 

modest sensitivity of pan-Trk immunohistochemistry in secretory carcinoma—likely 

reflecting its reduced sensitivity for NTRK3 fusions in general).(167, 322–326)

CK7-Positive Only. Interpretation: Non-specific pattern. Consider adding one or more of 
the following: napsin A, PAX8, SOX10, SMAD4, CDH17, BAP1.

Given a “CK7+ only” adenocarcinoma on the initial screening panel, I typically make a 

second pass with some combination of napsin A, PAX8, SOX10, SMAD4, CDH17, and, 

recently, BAP1. The roles of napsin A (lung adenocarcinoma marker), SOX10 (triple-

negative breast cancer), and SMAD4 (pancreatobiliary adenocarcinoma; possibly seen at 

similar rates in metastatic upper GI adenocarcinoma) have already been discussed.

Similar to GATA-3 in breast cancer, PAX8 is the clear first choice Müllerian 

adenocarcinoma marker. Diffuse, strong expression is typically seen with serous and clear 

cell carcinomas, while expression is reportedly more variable in endometrioid carcinoma 

(though in my experience tumors nearly always show at least multifocal expression), 

transitional cell carcinoma of the ovary, and malignant mixed Müllerian tumor (327–331). 

Notably, only a significant minority (30-40%) of primary mucinous ovarian tumors express 

PAX8, with positivity characteristically weak and patchy. A recent manuscript reported 

PAX8-positivity in 65% of 211 endocervical adenocarcinomas (with positivity defined as 

>25% cells staining).(332) Of note, PAX8 is also the most sensitive marker of renal cell 

carcinoma, is similarly sensitive to TTF-1 in thyroid tumors (though clearly superior in 

anaplastic thyroid carcinoma), and is expressed by most parathyroid tumors.(333–335) In 

head-to-head comparisons of PAX8 and PAX2, PAX8 consistently outperforms PAX2, 

especially in Müllerian tumors with 2 to 6 times more frequent positivity depending on the 
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tumor subtype (e.g., 98% vs. 55% in serous carcinoma and 100% vs. 19% in clear cell 

carcinoma in one study), such that I will not onboard PAX2 in my laboratory.(336–341) I 

frequently see WT-1 misapplied as a pan-Müllerian marker. Although it is expressed by 

≥90% of ovarian serous carcinomas, it is inconsistently expressed by uterine papillary serous 

carcinoma (30%, though highly variable from study to study), and is only very rarely to 

never expressed by clear cell, endometrioid, and mucinous tumors.(342–346) I do use WT-1 

as a serous carcinoma marker in the differential with other Müllerian adenocarcinomas. 

Many laboratories still use polyclonal PAX8 antibodies, though there has been a shift toward 

use of monoclonals (82% of laboratories reported use of a monoclonal in a 2017 NordiQC 

survey, up from 29% in 2012). Polyclonal PAX8 antibodies cross-react with other PAX-

family transcription factors, which can be diagnostically useful in recognizing pancreatic 

neuroendocrine tumors (which predominantly express PAX6) but is a significant potential 

pitfall when polyclonal PAX8 is positive in a diffuse large B-cell lymphoma.(347–349) 

Given the latter, I recently switched to a monoclonal in my laboratory.

E-cadherin is the “founding member” of the very large cadherin (calcium-dependent 

adhesion) protein superfamily, encoded by over 100 genes.(350) I recently onboarded 

cadherin-17 (CDH17) as a pan-gastrointestinal marker (Images 14A–D). CDH17 has a 

similar tissue distribution as CDX2, normally expressed by epithelial cells throughout the 

tubal gut from the duodenum to the rectum and also by pancreatic ductal epithelium.(351) 

CDH17 appears to represent an exception to the “primacy of lineage-restricted transcription 

factors” rule with several large-scale published studies demonstrating superior sensitivity of 

CDH17 to CDX2 in carcinomas of the lower and upper GI tract and pancreatobiliary tree.

(352–355) For example, Altree-Tacha and colleagues reported CDH17 and CDX2-positivity 

in 97% vs. 93% of 149 colonic, 39% vs. 29% of 31 esophageal, 64% vs. 47% of 175 gastric, 

and 32% vs. 4% of 57 pancreatic adenocarcinomas and 33% vs. 8% of 12 

cholangiocarcinomas.(355) In addition to superior sensitivity, CDH17 is also very specific, 

with no significant expression in breast, prostate, kidney, and thyroid tumors. I have seen a 

few positive lung adenocarcinomas, though expression has been limited to rare cells; 

occasional Müllerian tumors have also been reported to be positive, though data are limited. 

Although CDH17 is alternatively known as liver-intestine (LI)-cadherin, that designation 

was based on its initial discovery in rats, which, in addition to the tissue distribution 

described above, also express the molecule in hepatocytes. Human hepatocellular 

carcinomas are only very rarely positive. CDH17 is also consistently positive in metanephric 

adenoma, midgut and hindgut well-differentiated neuroendocrine tumors (and occasionally 

and almost never positive in pancreatic and lung tumors), and primary adenocarcinomas of 

the bladder (independent of intestinal phenotype).(356–358) Regarding the latter, this may 

reflect transient CDH17 expression in the urogenital sinus during embryogenesis is and 

useful in the distinction of primary bladder adenocarcinoma (CDH17+) from urothelial 

carcinoma with glandular differentiation (CDH17−).(356)

BAP1 is ubiquitin C-terminal hydrolase (UCH)-family deubiquitylating enzyme that 

regulates numerous cellular processes by influencing transcription. BAP1 germline 

inactivating mutations predispose to mesothelioma, uveal and cutaneous melanoma, and 

clear cell renal cell carcinoma.(359, 360) Large-scale NGS projects and complementary 

immunohistochemical surveys have identified frequent somatic BAP1 inactivation in 
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(pleural and peritoneal) mesothelioma (60% epithelioid, ≥15% sarcomatoid), uveal 

melanoma (30-50%), intrahepatic cholangiocarcinoma (25%), and clear cell renal cell 

carcinoma (15%).(361–367) BAP1 immunohistochemistry has several clinical applications. 

BAP1 inactivation supports a diagnosis of mesothelioma (vs. reactive mesothelial 

hyperplasia and vs. lung adenocarcinoma). As other immunohistochemical mesothelial 

markers do not distinguish benign from malignant mesothelial proliferations [of note, 

CDKN2A (p16) FISH also does but is not as potentially widely available], this is especially 

useful in cytology specimens.(363, 368, 369) BAP1 inactivation is a powerful prognostic 

marker in uveal melanoma, seen in 85% of primary tumors that will ultimately metastasize 

and only 50% of non-metastasizing tumors.(370) BAP1 inactivation is seen in a subset of 

“atypical Spitz tumors” [i.e., those in germline mutation carriers; formally referred to as 

“melanocytic BAP1-mutated atypical intradermal tumor” (MBAIT) and informally as 

“BAPoma”].(371) In the setting of a “CK7+ only” adenocarcinoma in the liver, BAP1 loss 

supports a specific diagnosis of intrahepatic cholangiocarcinoma (Images 15A–C).(372–

374)

CK7−/CK20− (Double Negative). Interpretation: Non-specific pattern. Reconsider the 
possibility of prostate cancer, large polygonal cell adenocarcinoma, squamous cell 
carcinoma, neuroendocrine neoplasm, and germ cell tumor:

PAX8 and SALL4 were previously referenced as the clear first choice renal cell carcinoma 

and germ cell tumor markers, respectively. This section will focus on the diagnosis of 

prostate cancer and the next on hepatocellular and adrenal cortical carcinomas. Discussion 

of squamotransitional and neuroendocrine neoplasms will follow.

As mentioned previously, prostate cancer is typified by relative monomorphism and 

uniformly prominent nucleoli; cases tend to be CK7/CK20-double negative, though higher 

Gleason grade tumors may focally express CK7 and/or CK20. Given its monomorphism, 

prostate cancer may be mistaken for large cell neuroendocrine carcinoma (and vice versa). 

Traditional prostate cancer differentiation markers include prostate specific antigen (PSA) 

and prostatic (specific) acid phosphatase (PrAP; aka PSAP). Both of these markers are very 

sensitive (approaching if not exceeding 95%), even in the metastatic setting. Of note, PSA 

expression has been described in one-third of breast and salivary gland tumors, while PrAP 

is usually and often expressed by rectal and midgut neuroendocrine tumors, respectively.

(375–377)

As metastatic tumors are occasionally PSA/PrAP-weak-to-negative and rare cytoplasmic 

positivity can be challenging to interpret, it is useful to have additional diagnostic markers at 

one’s disposal. I initially validated androgen receptor (AR) for this purpose, as the vast 

majority of prostate cancers are positive, and it has several additional diagnostic 

applications: sebaceous carcinoma (AR+) vs. squamous and basal cell carcinomas (AR−), 

salivary duct carcinoma (AR+) vs. other salivary gland neoplasms (AR−), extramammary 

Paget’s disease (AR+) vs. other pagetoid neoplasms (AR−).(378–380) Most ER+ and 

HER2+ breast cancers are AR-positive, while expression in TNBC is largely confined to 

those with apocrine histology.(381, 382) A significant drawback of AR in this diagnostic 

setting is positivity in up to one quarter of urothelial and renal cell carcinomas.(383) ERG, 
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typically employed as an endothelial differentiation marker, may also be useful in PSA/

PrAP-weak-to-negative tumors, as TMPRSS2-ERG gene fusion (seen in nearly half of 

prostate cancers) results in ERG protein (over)expression.(384) I am currently validating the 

transcription factor NKX3.1 as an additional prostate cancer marker. NKX3.1 is normally 

expressed in the prostate, where it regulates proliferation and ductal branching during 

development.(385) Recent studies have shown it to be at least as, if not more, sensitive than 

PSA in metastatic and poorly differentiated tumors.(386–388) It appears to be highly 

specific, with Gural and colleagues reporting positivity in only 1 of 383 non-prostate cases 

(1 of 4 lobular breast cancers; a separate study from the same department subsequently 

found weak-to-moderate NKX3.1-positivity in 27% of 37 invasive lobular and only 2% of 

86 invasive ductal carcinomas).(386, 389)

Metastatic prostate cancer that occurs in the context of androgen ablation therapy is referred 

to as castration-resistant. These tumors are often PSA/PrAP-weak-to-negative, though, in my 

anecdotal experience, they are often strongly AR-positive. Although “small cell carcinoma 

of the prostate” may arise de novo, 25-40% arise in the setting of androgen ablation. These 

tumors variably express the general neuroendocrine markers, while Rb is nearly always 

inactivated.(390) Despite the name, in my experience tumors demonstrating neuroendocrine 

differentiation in the setting of androgen ablation more often display large cell 

neuroendocrine carcinoma morphology.

Large Polygonal Cell Adenocarcinoma:

The differential diagnosis of a large polygonal cell adenocarcinoma includes hepatocellular, 

renal, and adrenal cortical carcinomas. Frequently employed hepatocellular differentiation 

markers include hepatocyte paraffin 1 (Hep Par 1), glypican-3, and arginase-1. Hep Par 1 is 

very sensitive in well- (>95%) and moderately differentiated tumors (>90%) and less so in 

poorly differentiated ones (50-80%). It recognizes the urea cycle enzyme carbamoyl 

phosphate synthetase I (CPS I), and similar cytoplasmic reactivity of TTF-1 (seen with 

8G7G3/1 but not with SPT24) in hepatocytes and hepatocellular carcinoma is attributable to 

binding to a mitochondrial enzyme of the same molecular weight (i.e., almost certainly CPS 

I; though binding by 8G7G3/1 is of lower affinity and, thus, of lower sensitivity).(391–393)

Glypican-3 is especially useful at extremes of the differentiation spectrum. It is the only 

widely utilized hepatocellular differentiation marker that distinguishes well-differentiated 

hepatocellular carcinoma from hepatocellular adenoma, though it is only 50-60% sensitive 

in this setting (other “cancer stains” used in this differential, including glutamine synthetase 

and HSP-70, are not specific to liver tumors).(394–396) Most studies have found it to be 

superior to Hep Par 1 in poorly differentiated tumors.(394, 395) Glypican-3 is also a useful 

yolk sac tumor marker; expression by 20-30% of squamous cell carcinomas and melanomas 

represents an underrecognized diagnostic pitfall.(397)

Arginase-1 is also a urea cycle enzyme. It may be the most sensitive hepatocellular marker 

across the differentiation spectrum.(395, 398) Hep Par 1 (and not arginase-1) is strongly 

expressed by small intestinal enterocytes, while colonic enterocytes are weakly expressing 

or negative. Thus, I occasionally use Hep Par 1 in the distinction of ileal from colonic (e.g., 
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pouch vs. cuff) mucosa in IBD patients and in the differential diagnosis of small intestinal 

vs. colon cancer.(399) I recently found Hep Par 1 and arginase-1-positivity in 42% (mean H-

score 127) and 0% of 93 small intestinal adenocarcinomas.(274) Lagana and colleagues 

similarly reported Hep Par 1 and arginase-1 positivity in 51% and 6% of 49 small intestinal 

adenocarcinomas and 9% and 0% of colorectal adenocarcinomas.(400) Hep Par 1-positivity 

has also been reported, though variably so, in other upper GI tract adenocarcinomas. For 

example, Kakar and colleagues reported strong positivity in 6 of 8 esophageal and 7 of 10 

gastric adenocarcinomas, while Lugli and colleagues reported positivity in only 3 of 74 

gastric cancers.(401, 402) Given frequent positivity in upper GI tract carcinomas, Chu and 

Weiss advocated for Hep Par 1 as part of a panel to distinguish signet-ring-cell carcinomas 

of the stomach (positive in 83% of 30) from those of the breast (0% of 21) and colon (22% 

of 9).(403) Given these results in upper GI tract adenocarcinomas, Hep Par 1-positivity 

should not be equated with a diagnosis of “hepatoid adenocarcinoma.”

A few others stains are worth brief mention. Polyclonal antibodies to carcinoembryonic 

antigen (pCEA) cross react with biliary glycoprotein (aka CEACAM1), and canalicular-

pattern staining (as opposed to cytoplasmic staining) is a useful hepatocellular 

differentiation marker, though clearly less sensitive than the aforementioned markers and 

occasionally difficult to interpret.(395) CD10 also demonstrates canalicular-pattern staining 

in hepatocytes and hepatocellular carcinoma but is only half to two-thirds as sensitive as 

pCEA, and I never employ it in this setting.(404, 405) Although I have alpha-fetoprotein 

(AFP) in my laboratory as a yolk sac tumor marker, given poor sensitivity and interpretive 

challenges, I, again, never employ it as a hepatocellular carcinoma marker. I frequently use 

MOC-31 as a hepatocellular carcinoma “negative marker” (as part of a limited panel with 

Hep Par 1 or arginase-1, often adding glypican-3) when my differential diagnosis is poorly 

differentiated hepatocellular carcinoma vs. other, but in the broader differential diagnosis of 

the large polygonal cell adenocarcinomas it is not useful, as it is similarly infrequently 

expressed by most renal cell (with the exception of the chromophobe variant) and adrenal 

cortical carcinomas (e.g., Pan and colleagues reported MOC-31 positivity in 19% of 170 

hepatocellular, 9% of 160 non-chromophobe renal cell, and 0% of 40 adrenal cortical 

carcinomas).(51, 406)

The transcription factor steroidogenic factor 1 (SF1) is the best adrenal cortical and 

gonadotroph (pituitary) lineage marker and probably the best sex cord-stromal marker, 

though many laboratories have failed to onboard it due to the presence of acceptable (though 

probably less sensitive and clearly less specific) alternatives. SF1 is initially expressed in the 

developing urogenital ridge and is ultimately expressed in adrenal cortex, Sertoli and Leydig 

cells of the testis, and theca and granulosa cells of the ovary; it is also expressed by pituitary 

gonadotrophs and neurons in the ventromedial nucleus of the hypothalamus.(407) More 

frequently employed adrenal cortical (and sex cord-stromal) markers include melan A, 

calretinin, and inhibin A. In the largest systematic study of SF1, it was expressed by 98% of 

161 adrenal cortical carcinomas and 0% of 73 non-steroidogenic tumors.(408) While Sangoi 

and colleagues found SF1 to be expressed in (only) 86% of 63 adrenal cortical lesions, an 

identical frequency to melan A and inhibin A and similar to calretinin (89%), it was 100% 

specific in the differential diagnosis with clear cell renal cell carcinoma (n=184), while 

melan A and calretinin each stained 10% and inhibin A 9% of the renal tumors.(54)

Bellizzi Page 28

Adv Anat Pathol. Author manuscript; available in PMC 2020 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Adrenal cortical carcinomas frequently (60%) express synaptophysin (though not 

chromogranin A) and, thus, are apt to be mistaken for neuroendocrine neoplasms.(54, 184, 

409) Calretinin is obviously also expressed by mesothelioma, though “aberrant” expression 

in poorly differentiated carcinomas represents an underrecognized diagnostic pitfall (e.g., 

Taliano and colleagues reported “high-level” expression in 31% of 214 high-grade invasive 

ductal carcinomas; Winn and colleagues reported strong expression in 73% of 16 medullary 

colon cancers; Miettinen and Sarloma-Rikala reported expression in 49% of 41 small cell, 

32% of 124 squamous cell, and 11% of 148 differentiated acinar-type carcinomas of lung 

origin).(410–412)

Regarding sex cord-stromal tumors, Zhao and colleagues found SF1 to be expressed in 

100% of 127 tumors (32 adult granulosa cell tumors, 27 Sertoli cell tumors, 18 Sertoli-

Leydig cell tumors, 25 steroid cell tumors, 25 fibroma/fibrothecomas), while melan A was 

restricted to the steroid cell tumors and the Leydig cell component of Sertoli-Leydig cell 

tumors, inhibin A was only 56% sensitive in fibroma/fibrothecoma (though 93-100% 

sensitive in the other tumor categories), and calretinin was only 43% sensitive in the 

combined Sertoli cell tumor/Sertoli-Leydig cell tumor/fibroma/fibrothecoma group (though 

81% sensitive in adult granulosa cell and 100% sensitive in steroid cell tumors).(190)

Immunohistochemical Approach to Primary Ovarian Surface Epithelial 

Tumor with Mucinous Features vs. Metastasis (CK7, CK20, CDX2, PAX8):

When facing an ovarian epithelial tumor with mucinous features, the possibility of 

metastasis should always be considered. Primary tumors are more likely to be unilateral and 

large, while metastatic tumors are apt to be bilateral and smaller. If encountered at frozen 

section, the pathologist should always inquire as to the status of the appendix, and an 

appendectomy should be strongly considered, as remotely ruptured low-grade appendiceal 

mucinous neoplasms occasionally appear relatively unremarkable intraoperatively.

Utilizing the clinicopathologic classifier depicted in Figure 3 in a cohort of 194 tumors (52 

primary mucinous ovarian borderline tumors or carcinomas, 142 metastases), Yemelyanova 

and colleagues correctly classified 98% of primary tumors and 82% of metastases.(413) 

Sixty-five percent of metastases were bilateral, while none of the primaries were; the median 

size of metastases was 12 cm, while the median size of primaries was 21 cm.

Immunohistochemistry may also be helpful in the distinction of primary mucinous ovarian 

tumors from metastatic tumors with mucinous features. Nearly all (95%) primary mucinous 

ovarian tumors express CK7 with expression typically homogeneous (90%). In a series of 42 

primary mucinous ovarian tumors, Vang and colleagues found 83% expressed CK20, while 

40% expressed CDX2.(270) When primary mucinous tumors express these markers, 

expression is typically heterogeneous [in Vang and colleagues’ series, “diffuse” (defined in 

this study as >50% cells staining) CDX2 and CK20-positivity was noted in 7% and 36% of 

tumors].

This CK7/CK20/CDX2 phenotype overlaps with that seen in pancreatic ductal 

adenocarcinoma (i.e., CK7 homogeneous; CK20/CDX2 heterogeneous, if positive).(268) 
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Upper GI tract adenocarcinomas are also often CK20/CDX2 heterogeneous, while 

individual cases may or may not express CK7. Low-grade appendiceal mucinous neoplasms 

(and colon cancers) demonstrate a lower GI tract immunophenotype, typically homogeneous 

for CK20 and CDX2 expression. CK7 is variably expressed (up to 15% of cases) and should 

not dissuade from an interpretation of a lower GI origin. Rare mucinous ovarian tumors 

arising in the setting of a teratoma also typically demonstrate a lower GI immunophenotype.

(414)

A few additional markers may be useful in this diagnostic setting. PAX8 is expressed by 

some primary mucinous ovarian tumors, though expression is often weak and patchy, in 

contrast to the strong staining typical of other Müllerian carcinomas. In 9 studies, PAX8 was 

expressed by 95/317 (30%) primary mucinous ovarian tumors (range 3-53%; median 30%).

(327, 329, 330, 336, 349, 415–418) Representative of the quality of staining in these cases, 

Ozcan and colleagues reported a median intensity of 0.8 (on a 0-3+ scale) and a median 

extent of 17% of cells staining.(336)

As stated previously, SMAD4 expression is lost in 55% of pancreatic ductal 

adenocarcinomas and distal cholangiocarcinomas, 35% of ampullary carcinomas, 30% of 

colon cancers, 10-20% of gallbladder cancers and perihilar/intrahepatic 

cholangiocarcinomas, and only up to a few percent each of other adenocarcinomas.(289) Ji 

and colleagues reported intact expression in 57 primary mucinous ovarian tumors.(419)

SATB2 expression has recently been proposed as an additional marker of lower GI origin. 

Perez Montiel and colleagues found SATB2 expression in 100% of 20 lower GI metastases 

to ovary and 0% of 76 primary mucinous ovarian tumors.(420) Similarly, Moh and 

colleagues found SATB2 expression in 78% of 46 lower GI metastases and 1% of 99 

primary mucinous ovarian tumors; SATB2 expression was not seen in any pancreatic (n=6), 

gastric (n=9), gallbladder (n=3), or endocervical (n=4) metastases.(421) An algorithmic 

immunohistochemical approach to the distinction of primary and metastatic ovarian tumors 

with mucinous features is presented in Figure 4.

Additional Site-Specific Considerations:

At any site, tumors primary to that site should always be considered. In addition, certain 

tumors have a special predilection for metastasis to certain sites. This is taken into account 

in my algorithms for “adenocarcinoma in the liver” and “adenocarcinoma with mucinous 

features in the ovary.” Table 10 lists additional site-specific considerations. I will briefly call 

out a couple of these.

In the chest, lung cancer is the principal consideration, regardless of a negative TTF-1. In the 

anterior mediastinum, additional special considerations include thymic and germ cell tumors 

and liposarcoma. Thymic tumors (and not lung tumors) have been shown to be PAX8-

positive with a polyclonal antibody (97% of 60 thymomas and 77% of 30 thymic carcinomas 

in one study; 89% of 102 thymomas and 58% of 36 thymic carcinomas in another), but 0% 

of the tumors in the latter study were positive with a monoclonal PAX8 antibody.(335, 422) I 

suspect polyclonal-PAX8-positivity to represent cross reactivity with PAX1 and PAX9, 
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which are normally expressed during thymic development.(423) I had previously mentioned 

CD5 as useful in the distinction of thymic carcinoma (66%; 130/198) from thymoma (3%; 

13/444) and non-small cell lung cancer (adenocarcinoma: 19%; 323/1667, squamous cell 

carcinoma: 0%; 0/1295).(224–226, 424–436) KIT is also useful in that distinction: thymic 

carcinoma (78%; 126/161), thymoma (6%; 15/233), lung adenocarcinoma (13%; 217/1688), 

lung squamous cell carcinoma (6%; 74/1302).(226, 424, 426–430, 432–434, 436)

In the pleura and peritoneum, mesothelioma should always be considered. Mesotheliomas, 

even sarcomatoid ones, tend to demonstrate relative monomorphism, which may represent a 

diagnostic clue. Useful immunohistochemical markers include calretinin, WT-1, D2-40, 

CK5/6, and BAP1 (loss). Of these, D2-40 is notable for being the single best marker of 

sarcomatoid mesothelioma (e.g., Chirieac and colleagues reported D2-40-positivity in 100% 

of 24 sarcomatoid mesotheliomas, while calretinin and WT-1 were only positive in 25% and 

33%, respectively; similarly, Padgett and colleagues reported D2-40-positivity in 79% of 14 

sarcomatoid and 95% of 18 epithelioid mesotheliomas, while calretinin was positive in 43% 

and 73%, respectively).(34, 437)

Squamous Cell Carcinoma vs. Urothelial Carcinoma:

Squamous cell carcinoma and urothelial carcinoma demonstrate substantial morphologic 

overlap. In a potential liver metastasis, I screen for them with p40. Before arriving at a 

diagnosis of squamous cell carcinoma in the lung, one should at least consider the possibility 

of metastatic urothelial carcinoma, especially in poorly to non-keratinizing examples 

(metastasis from an HPV-driven oropharyngeal primary should also be considered in this 

setting, in which case p16 would be positive). Given occasional p40-negativity, which in my 

experience is slightly more common with urothelial carcinoma, it is useful to have additional 

screening markers at one’s disposal. I had used CK5/6 (as a squamotransitional screening 

marker) and GATA-3 (mainly as a urothelial screening marker) in this setting, but based on 

my research for this review, I have substituted high-molecular weight keratin 34βE12 for 

CK5/6. While p40/p63 and CK5/6 are each 95% sensitive for squamous cell carcinoma, I 

found them to be 85% (919/1072) and only 52% (208/401) sensitive for urothelial 

carcinoma; 34βE12, on the other hand, was positive in 94% of urothelial carcinomas 

(262/279).(52, 105, 387, 397, 438–452)

GATA-3 is useful to support a diagnosis of urothelial carcinoma over squamous cell 

carcinoma with some caveats (Images 16A–E). GATA-3 is 76% sensitive (826/1081) for 

urothelial carcinoma but is occasionally expressed by squamous cell carcinoma, especially 

those of cutaneous or anogenitourinary origin—though expression in squamous cell 

carcinomas tends to be weak and patchy.(5, 317, 319, 387, 397, 441, 443, 444, 446–448, 

453–455) For example, while I found GATA-3-positivity in 84% of 50 urothelial carcinomas 

with a mean H-score of 228, 21% of squamous cell carcinomas were positive with a mean 

H-score of 80, including 43% of 23 cutaneous, 31% of 131 anogenitourinary, and 0% of 

lung (n=31) and head and neck (n=53) tumors. (397) Though several studies have similarly 

found a lack of GATA-3-positivity in lung (114 total tumors) and head and neck (59 tumors) 

squamous cell carcinomas, Miettinen and colleagues found positivity in 12% of 74 lung and 

22% of 36 head and neck tumors using L50-823, while Gruver and colleagues reported 
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positivity in 23% of 30 head and neck tumors using the rarely utilized HG3-35 clone.(5, 397, 

441, 447, 454, 456)

There are several other potentially useful urothelial differentiation markers in this diagnostic 

setting. CK20 is expressed by 54% (163/302) of urothelial carcinomas and very rarely by 

squamous cell carcinoma (e.g., Chu and colleagues and Pereira and colleagues reported 

positivity in 2 of 74 and 1 of 194 squamous cell carcinomas, respectively).(52, 387, 444, 

447, 449, 450, 457, 458) I had considered bringing up S100P, which I found to be expressed 

by 60% of 50 urothelial carcinomas and only 4% of 262 squamous cell carcinomas, but I 

ultimately chose not to due to its modest (at least relative to GATA-3) sensitivity and 

frequent positivity in adenocarcinomas (upper GI 62%; pancreas 30%; colon 20%; 

hepatocellular 14%; lung 10%; ovary 7% in one study).(397, 448)

Urothelium has unique functional requirements including maintenance of the blood-urine 

barrier and distensibility during bladder filling. Umbrella cells were long known to have a 

unique ultrastructure with numerous apical plaques with an outer thickness twice that of the 

inner thickness (i.e., the asymmetric unit membrane). It was subsequently shown that these 

plaques are composed of uroplakins, which arrange as heterodimers of uroplakin Ia/II and 

Ib/IIIa forming a closed “twisted ribbon structure.”(459) Immunohistochemistry for 

uroplakin III was previously shown to be a highly specific albeit only modestly sensitive 

(41%; 285/699) urothelial differentiation marker.(444, 447, 450, 454, 455, 457, 460–463) 

More recently monoclonal antibodies to uroplakin II have been developed, which boast 

much improved sensitivity (68%;494/724) without sacrificing specificity.(441, 443, 453, 

460–462, 464) Speaking to uroplakin II’s specificity, Mochizuki and colleagues recently 

reported uroplakin II-positivity in only 6 of 540 (1.1%) non-urothelial carcinomas from 

diverse anatomic sites (in ≤10% of cells in all 6 cases), including 0 of 90 squamous cell 

carcinomas.(464) Given this performance, I have decided to onboard uroplakin II as a 

urothelial differentiation marker in my laboratory, to complement GATA-3 and CK20.

Neuroendocrine Neoplasms:

Neuroendocrine neoplasms include well-differentiated neuroendocrine tumor, poorly 

differentiated neuroendocrine carcinoma, pheochromocytoma, and paraganglioma. They are 

characterized by expression of general neuroendocrine markers and peptide hormones and/or 

biogenic amines. Well-differentiated neuroendocrine tumor and poorly differentiated 

neuroendocrine carcinoma express broad-spectrum keratins, while pheochromocytoma and 

paraganglioma do not. Traditionally, the neuroendocrine nature of these neoplasms has been 

confirmed with immunohistochemistry for chromogranin A and synaptophysin, with 

chromogranin A more specific and synaptophysin more sensitive (i.e., chromogranin A is 

usually negative in rectal tumors, which alternatively express chromogranin B and 

secretogranin II; L-cell appendiceal tumors, gastrin-producing tumors, and gangliocytic 

paragangliomas may also be negative).(465) Well-differentiated neuroendocrine tumor, 

pheochromocytoma, and paraganglioma should always express chromogranin A and/or 

synaptophysin in diffuse, strong fashion, while around one-quarter of poorly differentiated 

neuroendocrine carcinomas are negative for both markers. In poorly differentiated tumors, 

dot-like keratin expression, TTF-1-positivity, and (possibly) Rb loss may serve as surrogate 
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general neuroendocrine markers; INSM1 (see below) is gaining traction as a general 

neuroendocrine marker and may be especially useful in poorly differentiated neuroendocrine 

carcinomas.

Ten to twenty percent of non-neuroendocrine, non-small cell carcinomas from most, if not 

all, anatomic sites (adenocarcinoma>squamous cell carcinoma) express one or more general 

neuroendocrine marker, typically as scattered single cells but rarely in diffuse, strong fashion 

(Images 17A–F).(466–470) This phenomenon is referred to as “occult neuroendocrine 

differentiation,” is of no clear prognostic or therapeutic import, and cases should be 

diagnosed as adenocarcinoma or squamous cell carcinoma and treated as such. A diagnosis 

of “poorly differentiated carcinoma with neuroendocrine differentiation” or “features” 

creates confusion in the mind of the treating clinician and is strongly discouraged.

INSM1 was initially discovered through “genomic subtraction” of glucagonoma cDNA 

sequences from those of an insulinoma cDNA library; it was one of 8 of the resulting 153 

potential clones that subsequently hybridized with insulinoma but not glucagonoma or HeLa 

cells.(471) This zinc-finger transcription factor is normally expressed by β-cells during 

pancreas development. Introduction of INSM1 into the PANC-1 pancreas cancer cell line 

induced expression of the islet-associated transcription factors PAX6 and NKX6.1, and 

combined introduction of INSM1, NeuroD, and PDX-1 resulted in their transdifferentiation 

into insulin-producing cells.(472) In situ hybridization experiments demonstrated INSM1 

mRNA in brain, olfactory epithelium, retina, thymus, thyroid, pancreas, and neuroendocrine 

cells of the GI tract.(473–475)

Rosenbaum and colleagues introduced INSM1 immunohistochemistry to the diagnostic 

pathology community in 2015, reporting expression in 88% of 129 neuroendocrine 

neoplasms from diverse anatomic sites; only 1 of 24 non-neuroendocrine neoplasms stained 

(likely representing the “occult neuroendocrine differentiation” discussed above).(476) Since 

then there has been a flurry of (uniformly positive) reports published in the surgical 

pathology and cytology literatures. Even the couple “negative studies” that report it to be 

less sensitive than traditional general neuroendocrine markers have shown it to be more 

specific.(477, 478) I am especially enthusiastic about INSM1’s performance in poorly 

differentiated neuroendocrine carcinomas.(479–482) As an example, Rooper and colleagues 

reported INSM1-positivity in 95% of 39 small cell lung cancers with an average H-score of 

154, compared to 62%/H-score 60 for synaptophysin and 49%/H-score 85 for chromogranin 

A; similarly INSM1-positivity was found in 91%/H-score 114 of 23 large cell 

neuroendocrine carcinomas vs. 61%/H-score 97 for synaptophysin and 48%/H-score 114 for 

chromogranin A.(480) I am currently validating this marker in my laboratory, and I’m trying 

to decide how to sequence it in my work up of a suspected neuroendocrine neoplasm (e.g., 

continue to screen with chromogranin A and synaptophysin and follow up with INSM1 in 

negative cases or vice versa). There is little experience in pancreatic neuroendocrine tumors, 

and based on how it was identified, I would expect it to be negative in glucagonomas 

(though these only represent 1-2% of all pancreatic neuroendocrine tumors); in the largest 

dedicated series it was expressed by 100% of 25 pancreatic tumors, compared to 96% for 

synaptophysin and 88% for chromogranin A.(483) Outside of neuroendocrine tumors, 

INSM1-positivity has been reported in 90% of 31 extraskeletal myxoid chondrosarcomas 
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and, among round cell tumors, 2 of 4 alveolar rhabdomyosarcomas, 2 of 6 INI1-deficient 

sinonasal carcinomas, 3 of 10 Ewing sarcomas, and 2 of 10 BCOR-reananged sarcomas(481, 

484).

Immunohistochemical Approach to Well-Differentiated Neuroendocrine 

Tumor Site of Origin:

Well-differentiated neuroendocrine tumors often demonstrate one or more organoid growth 

patterns, relative monomorphism (though they may be punctuated by scattered markedly 

enlarged nuclei – so-called “endocrine atypia”), and finely granular chromatin. A broad-

spectrum keratin (e.g., keratin AE1/AE3) should generally be performed to distinguish well-

differentiated neuroendocrine tumor from pheochromocytoma or paraganglioma (recall, 

though, that CK7 and CK20 are often negative in well-differentiated neuroendocrine 

tumors). Although pheochromocytoma and paraganglioma often contain S-100/SOX10-

positive sustentacular cells, they don’t have to, and well-differentiated neuroendocrine 

tumors, especially bronchopulmonary and appendiceal tumors, often do.(485, 486) GATA-3 

is the most widely available positive pheochromocytoma/paraganglioma marker in this 

differential (Images 18A–B).(487, 488) It is often weak-to-negative with delayed or 

incomplete fixation, though. PHOX2B is also often expressed, though it, too, is susceptible 

to delayed/incomplete fixation.(489) Loss of SDHB expression (as a manifestation of 

succinate dehydrogenase deficiency, which often has a hereditary basis) is seen in 5% of 

pheochromocytomas, ≥15% of head and neck paragangliomas, and 30% of 

thoracoabdominal paragangliomas (Image 18C).(490) Tyrosine hydroxylase (the rate 

limiting step in catecholamine biosynthesis) is always positive (and the stain is quite robust) 

in pheochromocytoma, but only 40% of paragangliomas are positive (Image 18D). Although 

Islet 1 is typically utilized as a marker of pancreatic origin in a well-differentiated 

neuroendocrine tumor, the transcription factor participates downstream of PHOX2B in 

sympathoadrenal development, and paragangliomas and especially pheochromocytomas are 

usually Islet-1-positive.(491, 492) This potential pitfall emphasizes the importance of 

demonstrating keratin-positivity in securing a diagnosis of well-differentiated 

neuroendocrine tumor.

Ten to twenty percent of well-differentiated neuroendocrine tumors present as metastases of 

occult origin, typically to liver and/or bone.(493, 494) Most are ultimately determined to be 

of pancreatic or (especially) jejunoileal origin.(493, 495, 496) Jejunoileal primaries are often 

difficult to reach endoscopically, are very difficult to image, and small tumors (<2 cm) are 

often metastatic are presentation.(497) Determination of primary site is prognostically and 

therapeutically significant. For example, the median survival of metastatic well-

differentiated neuroendocrine tumors of jejunoileal, pancreatic, and bronchopulmonary 

origin is 65, 27, and 17 months, respectively; jejunoileal primaries are often resected, even in 

the face of widely metastatic disease, to militate significant bleeding and obstruction risks; 

everolimus and capecitabine/temozolomide are often used in pancreatic tumors and rarely in 

jejunoileal ones.(494, 498, 499)
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There are often morphologic clues to site of origin. Soga and Tazawa described 4 main 

architectural patterns in well-differentiated neuroendocrine tumors: type A (nested), type B 

(trabecular), type C (pseudoglandular), type D (diffuse).(500) Midgut (jejunoileal and EC-

cell appendiceal) tumors are typically type A, often with secondary type C growth (Image 

19A). In addition, they often exhibit extensive eosinophilic cytoplasmic granularity, 

representing serotonin. Rectal tumors are often type B (Image 19B). Type C growth is 

typical of peri-ampullary tumors, which are apt to be mistaken for adenocarcinomas (Image 

19C). Pancreatic tumors may demonstrate any combination of patterns (Images 19D–F). 

Bronchopulmonary tumors that metastasize often demonstrate spindle-cell morphology 

(Image 19G).

The current University of Iowa Hospitals and Clinics well-differentiated neuroendocrine 

tumor site of origin immunohistochemical classifier is presented in Figure 5. It is divided 

into two tiers and is based on the premise that most occult primaries are of jejunoileal or 

pancreatic origin. CDX2 is my “tier-one” marker of midgut origin. It is expressed by 90% of 

midgut tumors, though, it is also expressed by 15% of pancreatic tumors (I have not been 

able to demonstrate this latter group to show any consistent clinical features).(493) Islet 1 is 

the most sensitive marker of “pancreatic” origin (70% of metastases in the aggregated 

published literature, though in my experience 85%).(493) Given the (only) 70% reported 

sensitivity of Islet 1, I initially intended to add polyclonal PAX8 (55% sensitive in the 

aggregated published literature) in hopes of improving the overall sensitivity of the classifier. 

Pancreatic tumors were not reactive with polyclonal PAX8 in my laboratory, though, and I 

switched to monoclonal PAX6, which is the most highly expressed PAX-family transcription 

factor in islets and pancreatic tumors.(347, 501) These two markers are essentially never 

expressed by jejunoileal tumors. Notably, these markers fail to distinguish tumors of 

pancreatic and duodenal origin, as they share a common embryologic origin, and these 

“pancreatoduodenal” markers are also expressed by rectal and appendiceal L-cell 

neuroendocrine tumors (though this latter tumor type is non-metastasizing). Given consistent 

morphology, CDX2-positivity, and Islet 1/PAX6-negativity, I favor a jejunoileal origin. Islet 

1 and/or PAX6-positivity are typical of a pancreatoduodenal or rectal origin; in this setting, 

ATRX (and/or DAXX, though I do not have this latter marker validated in my laboratory) 

loss favors a pancreatic origin, while SATB2-positivity establishes a rectal origin. If the 

tumor is CDX2/Islet 1/PAX6-negative, I perform additional immunohistochemistry.

“Tier-two” site of origin markers include orthopedia homeobox (OTP), ATRX, PR, SATB2, 

PrAP, serotonin, and clusterin. Although TTF-1 is most widely utilized, OTP is the clear first 

choice bronchopulmonary marker. In the aggregated literature, TTF-1 is expressed by 31% 

of bronchopulmonary carcinoid tumors (176/565), with similar rates in typical and atypical 

carcinoid tumors, and only 0.6% (4/708) of gastroenteropancreatic tumors.(493) OTP is 

twice as sensitive without sacrificing specificity, though it is more frequently expressed by 

typical than atypical carcinoids; it also, unlike TTF-1, distinguishes well-differentiated 

tumors from poorly differentiated carcinomas. Papaxoinis and colleagues reported OTP-

positivity in 89% of 132 typical and 62% of 34 atypical carcinoid tumors (compared to 52% 

and 34% for TTF-1; of note, there were no TTF-1+/OTP− tumors).(502) My experience is 

nearly identical, having found OTP-positivity in 82% of 77 typical and 50% of 12 atypical 

carcinoids; otherwise, OTP-positivity was only seen in 1 of 603 gastroenteropancreatic well-
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differentiated neuroendocrine tumors (a pancreatic tumor that co-expressed Islet 1 and 

PAX6) and 0% of 24 poorly differentiated neuroendocrine tumors of lung origin.(503)

Frequent inactivation (10-18%) of alpha thalassemia/mental retardation syndrome X-linked 

(ATRX) was discovered in recent studies defining the molecular landscape of pancreatic 

neuroendocrine tumors.(504, 505) It was concurrently identified as frequently inactivated in 

gliomas, where loss is seen in ≥50% of grade II and III astrocytomas, is mutually exclusive 

of 1p/19q deletion (i.e., ATRX loss is a marker of astrocytic lineage), and is associated with 

favorable prognosis.(506–508) Although I am unaware of a peer-reviewed publication 

regarding the utility of ATRX immunohistochemistry to assign pancreatic origin in a well-

differentiated neuroendocrine tumor, ATRX inactivation was not identified in studies of the 

mutational landscape of ileal or bronchopulmonary neuroendocrine tumors.(509, 510) 

ATRX immunohistochemistry was found to be intact in a series of 246 pituitary adenomas.

(511) ATRX inactivation has also been reported at a similar frequency (13% of 103 tumors) 

in pheochromocytoma/paraganglioma.(512) In addition to its role as a site of origin marker, 

I also perform ATRX immunohistochemistry in established pancreatic neuroendocrine 

tumors as a prognostic marker (it is associated with unfavorable prognosis overall, though 

favorable prognosis in patients presenting with metastatic disease).(513–515)

Progesterone receptor (PR) is normally expressed by islets of Langerhans, and, in the largest 

study of PR expression in well-differentiated neuroendocrine tumors published to date, Viale 

and colleagues reported expression in 58% of 96 pancreatic, 0% of 29 tubal gut, and 7% of 

15 lung tumors.(516) Similarly, I found PR-positivity in 54% of 13 metastatic pancreatic, 

15% of 41 metastatic midgut, and 5% of 20 lung tumors.(501)

SATB2 is nearly always expressed by rectal neuroendocrine tumors and is often positive in 

appendiceal ones, while it is only rarely positive in pancreatic ones. Li and colleagues 

reported SATB2-positivity in 90% of 58 hindgut, 12% of 22 midgut, and 17% of 84 foregut 

tumors.(9) In addition to application in a CDX2/PAX6/Islet 1-negative tumor, its use should 

be strongly considered in a PAX6 and/or Islet 1-positive one, especially in the setting of type 

B architecture.

Prostatic acid phosphatase is frequently expressed by rectal well-differentiated 

neuroendocrine tumors and less frequently by tumors arising at other sites.(493) In the AFIP 

series of 84 rectosigmoid well-differentiated neuroendocrine tumors, 82% were PrAP-

positive, while in the group’s series of jejunoileal tumors, 20% of 51 were positive. In my 

own hands, I found 88% of 17 rectal, 37% of 41 metastatic midgut, 8% of 13 metastatic 

pancreatic, and 0% of 20 lung tumors to be positive.(501)

Midgut neuroendocrine tumors recapitulate EC cells, which normally secrete serotonin. 

Though EC-cell “carcinoid tumors” may arise at any anatomic site, other than “insular 

carcinoid tumor” of ovarian origin (which is morphologically and immunophenotypically 

identical to tumors of midgut origin), they are uncommon. I recently found serotonin to be 

expressed by 75% of 256 metastatic midgut, 3% of 63 metastatic pancreatic, and 0% of 44 

lung well-differentiated neuroendocrine tumors evaluated in tissue microarray.(517) All 

serotonin-positive pancreatic tumors expressed Islet 1 and/or PAX6.
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The widely distributed but tissue-specific glycoprotein clusterin has been identified as a 

component of the secretory granules of many endocrine tissues. Strong expression is typical 

of well-differentiated neuroendocrine tumors of diverse anatomic sites, with the exception of 

jejunoileal tumors, in which it is only rarely, weakly expressed. I recently found it to be 

expressed by 82% of 148 non-jejunoileal tumors (average H-score 183) and only 8% of 107 

jejunoileal tumors (average H-score 31).(518)

A simplified well-differentiated neuroendocrine tumor site of origin immunohistochemical 

classifier is presented in Figure 6. It substitutes PR (and/or polyclonal PAX8) for the more 

accurate Islet 1 and PAX6 and TTF-1 for the more sensitive OTP.

Poorly Differentiated Neuroendocrine Carcinoma Site of Origin:

Unlike the situation in well-differentiated tumors, immunohistochemistry has a relatively 

limited role in assigning site of origin in poorly differentiated neuroendocrine carcinomas. 

Although TTF-1 and CK20 are fairly useful in distinguishing tumors of visceral from 

cutaneous (i.e., Merkel cell carcinoma) origin, there is essentially no “site of origin” 

immunohistochemistry for visceral tumors (Images 20A–D). In the aggregated published 

literature, TTF-1-positivity has been reported in 83% of 846 small cell lung carcinomas, 

36% of 282 large cell neuroendocrine lung carcinomas, 36% of 550 extrapulmonary visceral 

poorly differentiated neuroendocrine carcinomas, and 0.8% of 260 Merkel cell carcinomas.

(493) CK20-positivity has been reported in 88% of 472 Merkel cell carcinomas, 63% of 30 

poorly differentiated neuroendocrine carcinomas of major salivary gland origin, 6% of 331 

extrapulmonary visceral poorly differentiated neuroendocrine carcinomas of non-major 

salivary gland origin, and 5% of 383 poorly differentiated neuroendocrine lung carcinomas. 

Given that small cell lung carcinomas outnumber extrapulmonary visceral ones by a margin 

of up to 50:1 (though the frequency of extrapulmonary visceral carcinomas is probably 

underestimated), a CK20-negative tumor is likely of pulmonary origin, regardless of the 

TTF-1 result.

I have observed frequent transcription factor expression independent of site of origin in 

poorly differentiated neuroendocrine carcinomas, a phenomenon which I have dubbed 

“marked transcription factor lineage infidelity” (Images 21A–F). Several years ago I 

formally studied this, staining tissue microarrays of 40 Merkel cell carcinomas, 24 small cell 

lung cancers, and 19 extrapulmonary visceral neuroendocrine carcinomas for 36 different 

transcription factors. Tumors expressed on average 8 different transcription factors (range 

0-18), with similar numbers in cutaneous, pulmonary, and extrapulmonary visceral tumors.

(519)

I was, thus, initially skeptical of a report of SATB2 expression in 75% of 20 Merkel cell 

carcinomas and 0 of (only) 4 small cell lung cancers, believing it to likely represent a 

manifestation of transcription factor lineage infidelity.(520) When diffuse, strong SATB2 

staining was subsequently found to be among the best discriminators of Merkel cell 

carcinoma (n=98) from visceral neuroendocrine carcinoma (n=57) (64% sensitive, 98% 

specific), I reanalyzed my data taking intensity into account and found SATB2-positivity at 
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an H-score threshold of ≥150 to be 69% sensitive, 90% specific for Merkel cell carcinoma.

(11)

There are a few other markers of note in this differential. Neurofilament is frequently 

expressed by Merkel cell carcinoma (72% of 93) and rarely in non-cutaneous 

neuroendocrine carcinomas (0% of 143 lung tumors in the 5 largest series comparing Merkel 

cell and small cell lung carcinoma), though there is fairly limited data in extrapulmonary 

visceral tumors.(493) In tissue microarray I found neurofilament-positivity (using clone 

2F11) in 67% of 39 Merkel cell, 17% of 24 small cell, and 6% of 18 extrapulmonary 

visceral neuroendocrine carcinomas.(521) Up to 80% of Merkel cell carcinomas are driven 

by Merkel cell carcinoma polyomavirus, and immunohistochemistry to the virus’s large T 

antigen (clone CM2B4) is commercially available (Image 22). The remaining cases are 

ultraviolet-light-driven. In the aggregated literature CM2B4-positivity has been reported in 

75% of 224 non-Australian pure Merkel cell carcinomas, 21% of 89 Australian pure Merkel 

cell carcinomas, 0% of combined Merkel cell carcinomas (i.e., associated with actinic 

keratosis, squamous cell carcinoma in situ, squamous cell carcinoma, or basal cell 

carcinoma), and 2% of other tumors studied (which have mainly consisted of other 

neuroendocrine carcinomas).(493) I was initially excited about the possibility of increased 

sensitivity for the detection of Merkel cell carcinoma by adding CM2B4 to CK20, but I have 

been somewhat disappointed. Several series have found Merkel cell polyomavirus-positive 

tumors to be restricted to the CK20-positive subset.(521–523) Busam and colleagues found 

2 of 27 CM2B4-positive tumors to be CK20-negative, and adding CM2B4 increased the 

sensitivity for the detection of Merkel cell carcinoma from 89% to 94%.(524) Recently, 

Kervarrec and colleagues found CM2B4-positivity in 4 of 8 CK20-negative Merkel cell 

carcinomas, reigniting my enthusiasm.(11) I have found CM2B4’s greatest value to be in the 

head and neck, given frequent CK20-positivity in primary poorly differentiated 

neuroendocrine tumors of the major salivary glands (which are CM2B4-negative). Achaete-

scute complex-like 1 (ASCL1; aka m/hASH1) is usually expressed by visceral poorly 

differentiated neuroendocrine carcinomas (≥70%; small cell carcinoma>large cell 

carcinoma) and rarely by Merkel cell carcinoma, though not well-studied in this latter tumor 

type. Ralston and colleagues reported ASCL1-positivity in 83% of 59 small cell lung 

cancers and 0% of 30 Merkel cell carcinomas, while LaRosa and colleagues found ASCL1-

positivity in 82% of 34 pulmonary, 44% of 137 extrapulmonary visceral, and 22% of 23 

cutaneous poorly differentiated neuroendocrine carcinomas.(525, 526)

Notably absent from the discussion to this point are markers that distinguish site of origin 

among visceral poorly differentiated neuroendocrine carcinomas. Whereas most pulmonary 

poorly differentiated neuroendocrine carcinomas arise de novo, most extrapulmonary 

visceral tumors arise from a non-neuroendocrine precursor and/or in association with a non-

neuroendocrine carcinoma component. Markers associated with the etiopathogenesis of the 

non-neuroendocrine carcinoma native to a given site theoretically would be shared by the 

poorly differentiated neuroendocrine carcinoma. Although SMAD4 is inactivated in up to 

55% of pancreatic cancers and, thus, would appear to represent an attractive site of origin 

marker, two studies each composed of 12 pancreatic poorly differentiated neuroendocrine 

carcinomas found it to be inactivated in only 8%.(527, 528) Most cases of uterine cervical 

small cell carcinoma are high-risk human papillomavirus (HR-HPV)-associated. Not 
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surprisingly, recent studies have similarly implicated HR-HPV in some anal and 

oropharyngeal poorly differentiated neuroendocrine carcinomas, thus suggesting a possible 

role for HR-HPV testing.(529, 530) As a note of caution, as p16 is overexpressed in the 

setting of Rb-inactivation and Rb-inactivation is typical of poorly differentiated 

neuroendocrine carcinomas, p16 overexpression is very frequent (not well-studied but 

≥75%) in poorly differentiated neuroendocrine carcinomas regardless of site of origin (i.e., 

p16-positivity in the head and neck or anogenital tract does not distinguish squamous cell 

carcinoma from poorly differentiated neuroendocrine carcinoma)(478, 529, 531).

Immunohistochemical Approach to Well-Differentiated Neuroendocrine 

Tumor G3 vs. Poorly Differentiated Neuroendocrine Carcinoma:

While in most instances, well-differentiated neuroendocrine tumor and poorly differentiated 

neuroendocrine carcinoma are readily distinguished, in some cases the distinction is 

impossible on H&E alone. This is especially true when faced with the differential diagnosis 

of well-differentiated neuroendocrine tumor G3 vs. large cell neuroendocrine carcinoma on 

a small biopsy. An algorithmic approach to the distinction of morphologically ambiguous 

G3 neuroendocrine epithelial neoplasms is presented in Figure 7. Notably, Ki-67 is not a 

component of this classifier, as there is substantial overlap in these two tumor types. In Tang 

and colleagues’ series of 32 G3 pancreatic neuroendocrine epithelial neoplasms, well-

differentiated neuroendocrine tumors (n=19) and poorly differentiated neuroendocrine 

carcinomas (n=13) had mean; median (range) proliferation indices of 49%; 50% (30-80%) 

and 70%; 80% (26-95%), respectively.(528) Thirty-two percent of the well-differentiated 

neuroendocrine tumors had a Ki-67 proliferation index >55%, while 23% of the poorly 

differentiated neuroendocrine carcinomas had a proliferation index <55%.

Instead, the classifier largely utilizes protein correlates of molecular genetic events. Biallelic 

inactivation of TP53 and RB1 is the hallmark of small cell lung cancer and, though, less 

well-studied, is also frequently found in large cell neuroendocrine lung cancer and 

extrapulmonary visceral poorly differentiated neuroendocrine carcinoma.(532–534) I 

recently analyzed tissue microarrays of 30 small cell lung cancers and 21 extrapulmonary 

visceral neuroendocrine carcinomas for p53 and Rb, finding “mutant pattern” p53 to be 76% 

sensitive, Rb “null pattern” to be 74% sensitive and p53 “mutant pattern” and/or Rb “null 

pattern” to be 90% sensitive for visceral poorly differentiated neuroendocrine carcinoma 

(data presented at USCAP 2019) (Images 23A–C). Of note, my extrapulmonary visceral 

cohort is GYN/GU heavy (62%) and only contains 4 GI tumors. Scant data regarding Rb 

inactivation in pancreatic and colonic tumors has varied. In the pancreas, Yachida and 

Tang’s groups reported loss of Rb expression in 26% (5/19) and 58% (7/12), respectively, 

while in the colon, Jesinghaus and Shamir’s groups reported loss in 11% (2/19) and 78% 

(14/18), respectively.(527–529, 535)

Although p53 and Rb are probably sufficient in most cases, I supplement these with 

clusterin, SSTR2A, and CXCR4. As discussed previously, clusterin is usually expressed by 

well-differentiated neuroendocrine tumors arising outside the jejunoileum and is 

infrequently, weakly expressed by poorly differentiated neuroendocrine carcinomas. 
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SSTR2A (somatostatin receptor subtype 2A) is ubiquitously, nearly ubiquitously, and 

variably expressed by well-differentiated neuroendocrine tumors of midgut, pancreatic, and 

lung origin, while it is only expressed by one-third of poorly differentiated neuroendocrine 

carcinomas, with expression typically weaker than in the well-differentiated tumors.(536) 

Our group recently found CXCR4 (C-X-C motif chemokine receptor 4) to be expressed by 

84% of 95 poorly differentiated neuroendocrine carcinomas (median H-score 104), and only 

4.5% of 66 GI well-differentiated neuroendocrine tumors (median H-score 3).(537) 

Anecdotally, among well-differentiated neuroendocrine tumors, we have seen frequent 

CXCR4-positivity in atypical carcinoid tumors of lung origin (8 of 10, median H-score 130 

in patients studied prospectively).

“Triple-Negative” Malignant Neoplasms:

Table 11 lists over a dozen diagnostic considerations in a broad-spectrum keratin/CD45/

S-100-triple-negative malignant neoplasm. This list includes two carcinoma types that are 

often keratin-negative (sarcomatoid carcinoma, adrenal cortical carcinoma) and one that 

sometimes is (poorly differentiated neuroendocrine carcinoma) and represents a “can’t miss” 

diagnosis since it is both extremely aggressive and highly responsive to therapy (at least 

initially). Sarcoma should be considered in somatic soft tissue and dedifferentiated 

liposarcoma should especially be considered in the mediastinum, retroperitoneum, or 

paratestis. The list contains several CD45-negative lymphomas, which also represent “can’t 

miss” diagnoses. Follicular dendritic sarcoma is at the intersection of sarcoma and 

lymphoma. Conventional melanomas are rarely S-100-negative and melan A and HMB-45 

may be helpful. Melanomas can rarely undergo dedifferentiation (i.e., demonstrate loss of all 

melanocyte-associated markers), while retaining underlying molecular genetic driver 

mutations (e.g., BRAF, NRAS, NF1); I recently saw such a case, which was strongly BRAF 

V600E mutation-specific immunohistochemistry-positive. Germ cell tumor represents 

another “can’t miss” diagnosis, though it is only seminoma that is likely to be “triple-

negative” (while the other germ cell tumors are keratin-positive and, thus, apt to be mistaken 

for carcinoma). Although pheochromocytoma/paraganglioma is “triple-negative,” 

chromogranin A and synaptophysin tend to be among the first ordered when an initial 

immunopanel “busts.” Images 24A–I depict a recently encountered triple-negative malignant 

neoplasm, which I “solved” by applying my algorithmic approach.

Finally, I took this review as an opportunity to perform a meta-review of broad-spectrum 

epithelial markers, p63/p40/TTF-1, and SMA/desmin in sarcomatoid carcinoma, with results 

stratified by anatomic site (Table 12). I found keratin AE1/AE3 to be only 64% sensitive in 

477 tumors with apparent variability from site to site. I was surprised that 34βE12 appeared 

to possibly be inferior to CAM5.2, and, like the situation in urothelial carcinoma, CK5/6 

performed rather abysmally (17% sensitive). This is one situation where p63 may 

outperform p40 in terms of sensitivity, though, with reports of p63-positivity in granulation 

tissue and radiation fibroblasts, it is not worth the “specificity hit.” I was not surprised to 

find more frequent SMA (32%) than desmin (8%) positivity.
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Figure 1: 
Algorithmic Approach to Diagnosis of Four Carcinoma Types

Key: HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; AdCC, adrenal cortical 

carcinoma; SCC, squamous cell carcinoma; UC, urothelial carcinoma; NET, well-

differentiated neuroendocrine tumor; NEC, poorly differentiated neuroendocrine carcinoma; 

CgA, chromogranin A; Syn, synaptophysin; GPC3, glypican-3; Arg1, arginase-1;
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Figure 2: 
Immunohistochemical Algorithm for “Garden Variety” Adenocarcinoma in the Liver

Key: GI, gastrointestinal; UGI, upper gastrointestinal; IHC, immunohistochemistry; PB, 

pancreatobiliary; iCC, intrahepatic cholangiocarcinoma; TNBC, triple-negative breast 

cancer; GPC3, glypican-3
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Figure 3: 
Gross Algorithm for Primary Ovarian Surface Epithelial Tumor vs. Metastasis

Bellizzi Page 78

Adv Anat Pathol. Author manuscript; available in PMC 2020 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Immunohistochemical Algorithm for Primary Ovarian Surface Epithelial Tumor with 

Mucinous Features vs. Metastasis
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Figure 5: 
University of Iowa Immunohistochemical Algorithm for Well-Differentiated 

Neuroendocrine Tumor Site of Origin
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Figure 6: 
Simplified Immunohistochemical Algorithm for Well-Differentiated Neuroendocrine Tumor 

Site of Origin
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Figure 7: 
Immunohistochemical Algorithm for Morphologically Ambiguous G3 Neuroendocrine 

Epithelial Neoplasms
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Image 1. 
SATB2 as Exemplar Oligospecific Lineage-Restricted Transcription Factor: (A) Mucinous 

adenocarcinoma of the ampulla demonstrates (B) homogenous CDX2 expression (left half 

of image) but is SATB2-negative (right) arguing against a lower GI origin. (C) Medullary 

carcinoma of colonic origin (D) expresses SATB2 more frequently than CDX2. (E) The 

presence of osteoblastic differentiation is confirmed in the setting of (F) strong, uniform 

SATB2-positivity. (G) Rectal neuroendocrine tumors are almost always (H) SATB2-positive. 

(I) Among poorly differentiated neuroendocrine carcinomas, (J) diffuse, strong SATB2-

positivity supports a cutaneous origin.
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Image 2. 
SOX10 vs. S-100 in Melanoma: (A) This large round cell malignant neoplasm with 

prominent neutrophilic stroma was referred to me for evaluation as it was broad-spectrum 

keratin/CD45/S-100 “triple-negative.” (B) In retrospect, the S-100 shows rare tumor cells 

with weak cytoplasmic and absent nuclear staining. (C) SOX10 demonstrates diffuse, strong 

nuclear staining, supporting a diagnosis of melanoma, which was corroborated with other 

melanoma differentiation markers.
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Image 3. 
Vimentin Expression in Non-Sarcomas: (A) Melanoma and (C) Burkitt lymphoma express 

vimentin (B and D, respectively). Vimentin immunohistochemistry has limited diagnostic 

utility.
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Image 4. 
Broad-Spectrum Epithelial Markers: (A) Well-differentiated neuroendocrine tumor of lung 

origin demonstrating (B) diffuse, though weak keratin AE1/AE3, (C) absent EMA, (D) 

moderate MOC-31, and (E) diffuse, strong Ber-EP4 staining. It is important to have multiple 

broad-spectrum epithelial markers at one’s disposal.
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Image 5. 
Broad-Spectrum Epithelial Marker Expression by Sarcoma: (A) I initially misdiagnosed this 

epitheloid angiosarcoma presenting in the mediastinum as poorly differentiated non-small 

cell lung carcinoma, (B) based in part, on this keratin AE1/AE3; repeat biopsy demonstrated 

more obvious vasoformative areas, and I confirmed the diagnosis with ERG (C). (D) This 

epithelioid malignant neoplasm presenting in the proximal thigh was initially misdiagnosed 

as metastatic carcinoma based on diffuse, strong EMA-positivity (E); (F) INI1/SMARCB1 

loss supports the correct interpretation of epithelioid sarcoma. (G) This undifferentiated 

malignant neoplasm with osteoclast-like giant cells was initially misdiagnosed a sarcomatoid 

carcinoma based on this keratin AE1/AE3 (H). (I) Resection demonstrated an abrupt 

transition from a well-differentiated cartilaginous neoplasm to undifferentiated malignant 

neoplasm, diagnostic of dedifferentiated chondrosarcoma. (J) Leiomyosarcoma co-

expressing keratin AE1/AE1 (K) and SMSA (L).
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Image 6. 
p63 Expression by Diffuse Large B-cell Lymphoma: (A) This large lung tumor invaded the 

chest wall. Based on (B) p63-positivity and (C) TTF-1 negativity, I initially favored a 

diagnosis of sarcomatoid squamous cell carcinoma. When multiple broad-spectrum 

epithelial markers were negative, I grew suspicious of the diagnosis and ordered (D) CD45, 

which ultimately led to the correct diagnosis of diffuse large B-cell lymphoma. I consider 

p63 immunohistochemistry to be “too dangerous for general consumption,” and for nearly 

all diagnostic applications p40 should be used instead.
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Image 7. 
Immunohistochemical Work Up of a Broad-Spectrum Epithelial Marker/S-100-Co-

Expressing Tumor: (A) This epithelioid malignant neoplasm presented in the temporal lobe 

of an elderly man. Initial work up demonstrated positivity for (B) pan-keratin and (C) S-100. 

I was consulted to work up the site of origin of this presumed carcinoma. I was struck by the 

extent of S-100-positivity and confirmed the diagnosis of melanoma with (D) melan A, (E) 

HMB-45, and (F) MiTF. Up to a quarter of metastatic melanomas express broad-spectrum 

epithelial markers, which may lead to significant diagnostic confusion.
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Image 8. 
E-cadherin Expression by Melanoma: (A) I recently learned that melanomas frequently 

express (B) E-cadherin, which normally functions to anchor non-neoplastic melanocytes to 

basal keratinocytes. (C) SOX10 in this case.
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Image 9. 
SOX10 Expression by Triple-Negative Breast Cancer: (A) Triple-negative breast cancers can 

be negative for (B) GATA-3, and, even when they are positive, expression is often weak, 

overlapping with the “non-specific” expression seen in other tumor types. (C) SOX10 is 

expressed by 60% of triple-negative cancers, typically in diffuse, strong fashion, which I 

have found to be complementary to GATA-3 in securing this diagnosis.
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Image 10. 
Morphologic Pattern-Based Approach to Tumor Diagnosis: Undifferentiated malignant 

neoplasms may demonstrate one or more of the following patterns (A) epithelioid, (B) round 

cell, (C) spindle cell, and (D) anaplastic. An initial immunohistochemical screening panel 

for each of this patterns is provided in Table 7.
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Image 11. 
Homogeneous vs. Heterogeneous CDX2 Expression: (A) Homogeneous (i.e., diffuse, 

strong) CDX2 expression is typical of lower GI tumors (i.e., appendiceal mucinous 

neoplasm and adenocarcinoma and colorectal adenocarcinoma), while (B) heterogeneous 

(i.e., any staining less than homogeneous) expression is typical of upper GI, 

pancreatobiliary, and primary mucinous ovarian tumors.
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Image 12. 
Weak, Patchy PAX8-Positivity Has No Diagnostic Value: (A) This lung adenocarcinoma 

was found to demonstrate (B) weak, patchy PAX8 expression when evaluated as an 

“expected negative” in a recent immunohistochemistry validation study in my laboratory. 

(C) Since TTF-1-positivity does not distinguish tumors of lung and thyroid origin, I also 

performed (D) thyroglobulin and (E) napsin A. Weak, patchy PAX8 (and GATA-3) staining 

is common and should not be “overinterpreted.”
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Image 13. 
Napsin A in Mullerian Clear Cell Carcinoma: (A) Mullerian clear cell carcinoma staining 

for (B) PAX8 and (C) napsin A. In addition to its value in lung cancer, I use napsin A to 

support a diagnosis of clear cell carcinoma among Mullerian tumors.
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Image 14. 
CDH17 as a Pan-Gastrointestinal Marker: (A) Pancreatobiliary-type ampullary 

adenocarcinoma stains for (B) CK7 and not (C) CK20 (or CDX2, not shown). (D) CDH17 

demonstrates diffuse, strong membranous expression. CDH17 has shown superior sensitivity 

to CDX2 as a pan-GI marker, and I use it in “CK7+ only” adenocarcinomas to support a GI 

origin.
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Image 15. 
BAP1 Loss Supports a Diagnosis of Intrahepatic Cholangiocarcinoma: (A) This liver tumor 

was originally misinterpreted as a well-differentiated neuroendocrine tumor based on its 

organoid architecture and monomorphous cytomorphology. (B, C) Absent BAP1 nuclear 

staining, with intact staining in non-neoplastic hepatocytes and endothelium, supports the 

correct interpretation of intrahepatic cholangiocarcinoma. Up to 25% of intrahepatic 

cholangiocarcinomas are BAP1-inactivated.
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Image 16. 
Immunohistochemical Work Up of Squamous Cell vs. Urothelial Carcinoma: (A) This tumor 

in the rectum was initially diagnosed as a squamous cell carcinoma based on the 

combination of (B) positive p40 and (D) negative CK20 staining. (C) CK7 staining was also 

performed. (E) I added a GATA-3, which demonstrates diffuse, moderate-to-strong staining. 

Although anogenitourinary squamous cell carcinomas can express GATA-3, the extent of 

staining in this case is most in keeping with urothelial carcinoma, and, in fact, this patient 

had a history of bladder cancer. CK20 staining is only seen in 50% of urothelial carcinomas, 

and CK7 staining is more common in urothelial (>90%) than squamous cell (30%) 

carcinoma. Uroplakin II (or S100P)-positivity would also support a diagnosis of urothelial 

carcinoma.
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Image 17. 
Non-Neuroendocrine Carcinoma with Occult Neuroendocrine Differentiation: (A) This 

undifferentiated colon cancer was initially diagnosed as “poorly differentiated carcinoma 

with neuroendocrine features” based on this chromogranin A (B); (C) MLH1 immunostain 

highlights the correct diagnosis of MSI-H undifferentiated colon cancer. (D) Breast cancer 

with occult neuroendocrine differentiation with staining for synaptophysin (E) and GATA-3 

(F). I found this breast cancer by screening tissue microarrays with chromogranin A and 

synaptophysin; 4% of 105 tumors demonstrated this extent of positivity. These tumors 

should be diagnosed and managed as non-neuroendocrine carcinomas.
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Image 18. 
Immunohistochemical Features of Pheochromocytoma/Paraganglioma: (A) This metastatic 

paraganglioma expresses (B) GATA-3, while (C) SDHB expression is absent (note intact 

staining in endothelium). (D) In this case, absent tyrosine hydroxylase staining supports a 

diagnosis of paraganglioma over pheochromocytoma, although 40% of paragangliomas are 

tyrosine hydroxylase-positive. SDH-deficiency in this case raises the possibility of 

hereditary paraganglioma-pheochromocytoma.
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Image 19. 
Morphologic Clues to Well-Differentiated Neuroendocrine Tumor Site of Origin: (A) 

Midgut tumors demonstrate predominantly nested architecture, often with a secondary 

pseudoglandular growth pattern; serotonin granules may be conspicuous, as in this example. 

(B) Rectal tumors are often trabecular, with the cords typically folding back upon 

themselves like a paperclip. (C) Somatostatin-expressing periampullary tumors generally 

demonstrate extensive pseudoglandular architecture and are, thus, apt to be misdiagnosed as 

adenocarcinoma, especially in crushed, small biopsies. Pancreatic tumors demonstrate a 

range of morphologies including (D) nested, (E) trabecular, and (F) pseudoglandular. (G) 

Metastatic bronchopulmonary tumors often demonstrate spindle cell morphology.
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Image 20. 
TTF-1 and CK20 in Poorly Differentiated Neuroendocrine Carcinoma: (A) Small cell lung 

cancer demonstrating homogenous TTF-1 expression (B) and CK20-negativity (C). (D) 

Merkel cell carcinoma demonstrating TTF-1-negativity (E) and CK20-positivity (F). TTF-1-

positivitiy is seen in 80-90% of small cell lung carcinomas, 40% of extrapulmonary visceral 

small cell carcinomas, and only rarely (and weakly) in Merkel cell carcinoma. In contrast, 

90% of Merkel cell carcinomas express CK20, while they only rarely (and weakly) express 

TTF-1. Other than frequent expression by carcinomas of major salivary gland origin (60%), 

CK20-positivity is fairly specific for Merkel cell carcinoma.
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Image 21. 
Poorly Differentiated Neuroendocrine Carcinomas Demonstrate Marked Transcription 

Factor Lineage Infidelity: (A) This small cell carcinoma of endometrial origin was found to 

express (B) p63, (C) CDX2, (D) c-Myc, (E) SALL4, and (F) PAX8, among others. Note that 

the PAX8-positvity is no more extensive than positivity for any of the other markers. Poorly 

differentiated neuroendocrine carcinomas tend to express multiple transcription factors 

independent of site of origin.

Bellizzi Page 189

Adv Anat Pathol. Author manuscript; available in PMC 2020 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Image 22. 
Merkel Cell Carcinoma Polyomavirus Large T Antigen Expression in Merkel Cell 

Carcinoma: CM2B4-positivity in the Merkel cell carcinoma illustrated in Image 20D. 

Merkel cell carcinoma polyomavirus-positivity is seen in >75% of non-Australian tumors. It 

tends to correlate with CK20-positivity, which somewhat limits its diagnostic value.
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Image 23. 
p53 and Rb Immunohistochemistry in Poorly Differentiated Neuroendocrine Carcinoma: (A) 

Small cell lung cancer demonstrating (B) null pattern p53 staining and (C) loss of Rb protein 

staining. Biallelic inactivation of TP53 and RB1 is the molecular genetic hallmark of small 

cell lung cancer and is frequently seen in extrapulmonary visceral small cell carcinomas, as 

well. Although null pattern p53 staining is shown in this example, missense and gain-of-

function mutations, resulting in diffuse, strong p53 staining, predominate in small cell lung 

cancer on the order of 3-4:1.
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Image 24. 
Triple-Negative Malignant Neoplasm: (A) This large nasal cavity mass was referred to me as 

it was (B) keratin AE1/AE3, (C) CD45, and (D) SOX10 “triple-negative.” (E) EMA-

positivity led to my “aha (a hof?) moment,” and I requested a (F) CD138, (G) MUM1, and 

(H) kappa and (I) lambda light chains, supporting the diagnosis of anaplastic plasma cell 

neoplasm. This diagnosis led to a bone marrow examination, which demonstrated myeloma. 

EMA-positive/CD45-negative hematolymphoid neoplasms, including plasma cell neoplasm, 

anaplastic large cell lymphoma, ALK-positive large B-cell lymphoma, and plasmablastic 

lymphoma, are apt to be misdiagnosed as undifferentiated carcinoma. Before settling on a 

diagnosis of carcinoma in an “EMA+ only” neoplasm, a hematopathology work up directed 

at this differential is indicated.
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Table 1:

Next-Generation Immunohistochemical Markers Discussed in This Review

Marker Useful in Diagnosis of: Next-Generation IHC 
“Qualifications”

PAX8 Müllerian, renal, and thyroid carcinoma; thymic neoplasms (with polyclonal 
antibody); pancreatic origin of well-differentiated neuroendocrine tumor (with 
polyclonal antibody)

Lineage-restricted transcription factor

MDM2/CDK4 Well- and dedifferentiated liposarcoma Protein correlate of molecular genetic 
event

GATA-3 Breast and urothelial carcinoma; also expressed by pheochromocytoma/
paraganglioma, choriocarcinoma, mesonephric carcinoma, parathyroid tumors, 
and pituitary gonadotroph and TSH-expressing tumors; often expressed by 
mesothelioma, chromophobe renal cell carcinoma, and cutaneous epithelial 
neoplasms; variably expressed by yolk sac tumor

Lineage-restricted transcription factor

ERG Vascular neoplasms; also expressed by subsets of prostate cancer, Ewing 
sarcoma, and acute leukemia; antibodies to N-terminus label epithelioid sarcoma

Lineage-restricted transcription factor

Islet 1 Pancreatic origin of well-differentiated neuroendocrine tumor Lineage-restricted transcription factor

PAX6 Pancreatic origin of well-differentiated neuroendocrine tumor Lineage-restricted transcription factor

SALL4 Germ cell neoplasia; also expressed by hepatoid adenocarcinoma; may be 
frequently expressed by rhabdoid and Wilms tumor; aberrant expression in a 
significant minority (20-30%) of serous, gastric, urothelial, and biliary 
carcinomas

Lineage-restricted transcription factor

SOX10 Melanocytic, nerve sheath, and myoepithelial tumors; also often (60%) 
expressed by triple-negative breast cancer

Lineage-restricted transcription factor

INI1/SMARCB1 
(loss)

Epithelioid sarcoma; malignant rhabdoid tumors of soft tissue, kidney, and CNS, 
and medullary carcinoma of kidney; subset of epithelioid MPNST, myoepithelial 
carcinoma of soft tissue, and extraskeletal myxoid chondrosarcoma

Protein correlate of molecular genetic 
event

p40 Squamous, urothelial, and myoepithelial tumors; myoepithelial/basal cell marker 
in breast and prostate

Lineage-restricted transcription factor

ATRX (loss) Diffuse astrocytoma and pancreatic origin of well-differentiated neuroendocrine 
tumor

Protein correlate of molecular genetic 
event

SATB2 Colorectal origin of adenocarcinoma, lower GI origin of well-differentiated 
neuroendocrine tumor, and possibly cutaneous origin of a poorly differentiated 
neuroendocrine carcinoma; osteoblastic lineage; BCOR-rearranged sarcoma

Lineage-restricted transcription factor

OTP Bronchopulmonary origin of well-differentiated neuroendocrine tumor Lineage-restricted transcription 
factor; identified through gene 
expression profiling

Rb protein (loss) Poorly differentiated neuroendocrine carcinoma; spindle cell/pleomorphic 
lipoma, cellular angiofibroma, and mammary-type myofibroblastoma

Protein correlate of molecular genetic 
event

SMAD4 (loss) Pancreatic origin of adenocarcinoma; also frequently lost in colorectal cancer Protein correlate of molecular genetic 
event

BAP1 (loss) Mesothelioma (especially epithelioid) and intrahepatic cholangiocarcinoma; loss 
in ocular melanoma and renal cell carcinoma prognostically adverse

Protein correlate of molecular genetic 
event

SF1 Adrenal cortical and sex cord-stromal neoplasms Lineage-restricted transcription factor

NKX3.1 Prostate cancer Lineage-restricted transcription factor

INSM1 Neuroendocrine neoplasms Lineage-restricted transcription factor
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Table 2:

Broad Tumor Classes with Associated Screening Markers

Broad Tumor Class Screening Markers When to Consider Confirmatory Markers

Carcinoma Broad-spectrum keratin 
(e.g., AE1/AE3, 
OSCAR); EMA, 
EpCAM (i.e., MOC-31, 
Ber-EP4), Claudin-4

Always See additional sections of this review

Hematolymphoid CD45 Always; “triple-negative” neoplasm CD45-negative lymphoma: panel to include 
CD43, CD79a, MUM1, ALK, CD30

Melanoma SOX10 or S-100 Always Melan A, HMB-45, tyrosinase

Sarcoma None Spindle cell morphology; tumor in 
mediastinum, retroperitoneum, or 
somatic soft tissue

Unclassified malignant neoplasm in the 
mediastinum, retroperitoneum, paratestis: 
MDM2/CDK4 (dedifferentiated 
liposarcoma) Epithelioid neoplasm defying 
typing: ERG (angiosarcoma), INI1 
(epithelioid sarcoma)

Germ cell SALL4 or PLAP Tumor in the mediastinum, 
retroperitoneum, or gonads; “triple-
negative” neoplasm; keratin-positive 
neoplasm defying typing/site of origin 
assignment

Seminoma: OCT4, KIT, D2-40 Embryonal 
carcinoma: OCT4, CD30 Yolk sac tumor: 
AFP, glypican-3 Trophoblastic tumors: β-
HCG, GATA-3, inhibin, PD-L1

Mesothelioma None (diagnostic 
consideration in keratin-
positive tumors)

Tumor in the pleura or peritoneum Diagnostic markers: calretinin, WT-1, 
D2-40, CK5/6, BAP1 (loss)

Pheochromocytoma/
paraganglioma

None Epithelioid morphology; “triple-
negative” malignant neoplasm; 
general neuroendocrine marker-
expressing tumor defying site of 
origin assignment

GATA-3, PHOX2B, tyrosine hydroxylase
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Table 3:

Estimated Annual Cancer Incidence Stratified by Broad Tumor Class

Tumor Type Estimated Annual Incidence % of All Incident Cases

Carcinoma 1,335,410 80%

Hematolymphoid 174,250 10%

Melanoma 94,810 6%

Sarcoma 16,490 1%

Germ cell tumor 10,422 0.6%

Mesothelioma 3,300 0.2%

Pheochromocytoma/paraganglioma 2,608 0.2%

Other and unspecified primary sites 31,810 2%

Tables 3–5 are based on American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society; 2018;(538) mesothelioma 
incidence is based on Teta et al;(38) pheochromocytoma/paraganglioma incidence is based on an estimate of up to 8 cases per 1 million 
population(39)
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Table 4:

Estimated Annual Carcinoma Incidence Stratified by Histotype

Tumor Type Estimated Annual Incidence % of All Incident Cases

Adenocarcinoma 1,046,444 77%

Squamous cell carcinoma 165,900 12%

 Squamous cell carcinoma, non-HPV-mediated 112,810 8%

 Squamous cell carcinoma, HPV-mediated 53,090 4%

Urothelial carcinoma 91,544 7%

Neuroendocrine tumor/carcinoma 60,494 4%

 Neuroendocrine carcinoma 49,406 4%

 Neuroendocrine tumor 11,088 0.8%
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Table 5:

Estimated Annual Adenocarcinoma Incidence Stratified by Site of Origin

Tumor Type Estimated Annual Incidence % of All Incident Cases

Breast 268,670 26%

Prostate 164,690 16%

Colorectum 140,250 13%

Lung 124,036 12%

Mullerian 84,358 8%

Pancreatobiliary 72,331 7%

Kidney 58,806 6%

Thyroid 53,990 5%

Upper GI tract 44,566 4%

Hepatocellular carcinoma 34,747 3%
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Table 6:

Keratin and EMA Expression by Soft Tissue and Bone Tumors

Tumor Type Keratin EMA

Tumors of Soft Tissue

Adipocytic tumors

Chondroid lipoma +

Pleomorphic liposarcoma + +

Fibroblastic/myofibroblastic tumors

Desmoplastic fibroblastoma +

Calcifying aponeurotic fibroma +

Lipofibromatosis +

Dermatofibrosarcoma protuberans (DFSP) +

Solitary fibrous tumor (SFT) + +

Inflammatory myofibroblastic tumor (IMT) +

Myxoinflammatory fibroblastic sarcoma (MIFS) +

Low-grade fibromyxoid sarcoma (LGFMS) +

Sclerosing epithelioid fibrosarcoma (SEF) +

Smooth muscle tumors

Leiomyosarcoma (LMS) +

Skeletal muscle tumors

Embryonal rhabdomyosarcoma (ERMS) +

Alveolar rhabdomyosarcoma (ARMS) +

Pleomorphic rhabdomyosarcoma + +

Spindle cell/sclerosing rhabdomyosarcoma +

Vascular tumors

Epithelioid hemangioma + +

Pseudomyogenic hemangioendothelioma +

Epithelioid hemangioendothelioma (EHE) + +

Angiosarcoma + +

Gastrointestinal stromal tumor (GIST) +

Nerve sheath tumors

Schwannoma +*

Neurofibroma +

Perineurioma +** +

Dermal nerve sheath myxoma + +

Solitary circumscribed neuroma +

Meningioma +

Hybrid nerve sheath tumor +

Epithelioid malignant peripheral nerve sheath tumor (EMPNST) +
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Tumor Type Keratin EMA

Tumors of uncertain differentiation

Acral fibromyxoma +

Ectopic hamartomatous thymoma +

Angiomatoid fibrous histiocytoma (AFH) +

Ossifying fibromyxoid tumor (OFMT) +

Myoepithelial tumors of soft tissue + +

Synovial sarcoma + +

Epithelioid sarcoma (ES) + +

Desmoplastic small round cell tumor (DSRCT) + +

Extrarenal rhabdoid tumor + +

Undifferentiated/unclassified sarcoma + +

Tumors of Bone

Chondrogenic tumors

Chondroblastoma +

Dedifferentiated chondrosarcoma +

Osteogenic tumors

Conventional osteosarcoma + +

Ewing sarcoma +

Notochordal tumors

Chordoma + +

Epithelial tumors

Adamantinoma + +

Tumors of undefined neoplastic nature

Osteofibrous dysplasia +

*
represents cross-reactivity with GFAP(539);

**
keratin-positivity is confined to the sclerosing variant(540)
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Table 7:

Morphologic Patterns and Associated Diagnostic Considerations

Pattern Principal Diagnostic Considerations Initial Screening Panel

Epithelioid Carcinoma, melanoma, lymphomas composed of 
large cells

Broad-spectrum keratin, CD45 SOX10

Round cell (small) Sarcoma, lymphoma, small cell carcinoma CD99, NKX2.2, desmin, myogenin, CD45, TdT chromogranin, 
synaptophysin, broad-spectrum keratin

Spindle cell Sarcomatoid carcinoma, sarcoma, spindle cell/
desmoplastic melanoma

Broad-spectrum keratin, p40, SMSA, desmin, SOX10

Anaplastic Anything Broad-spectrum keratin, CD45, SOX10
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Table 8:

Coordinate Expression of CK7/CK20

Site or Tumor Type CK7 CK20

Prostate, HCC, AdCC, RCC, SCC, NET, visceral NEC, germ cell − −

Lung, breast, Müllerian, thyroid, bladder, upper GI, pancreatobiliary, mucinous ovarian + −

Bladder, upper GI, pancreatobiliary, mucinous ovarian, occasional colon (especially rectum), occasional lung + +

Colon, Merkel cell, occasional upper GI − +

Key: HCC, hepatocellular carcinoma; AdCC, adrenal cortical carcinoma; RCC, renal cell carcinoma; NET, well-differentiated neuroendocrine 
tumor; NEC, neuroendocrine carcinoma; SCC, squamous cell carcinoma; GI, gastrointestinal
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Table 9:

SMAD4 Loss in Adenocarcinoma Stratified by Anatomic Site

Site Frequency of Loss

Pancreas 58% (19/33)

Appendix 27% (6/22)

Colorectal 17% (86/522)

Cholangiocarcinoma 16% (6/37)

Lung 10% (2/21)

Esophagus 4% (2/53)

Breast 3% (8/266)

Stomach 2% (1/45)

Non-serous ovarian 2% (1/42)

Papillary thyroid 0% (0/20)

Hepatocellular carcinoma 0% (0/12)

High-grade serous ovarian 0% (0/26)

Endometrial 0% (0/122)

Kidney 0% (0/33)

Reference: Ritterhouse L, et al.(290)
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Table 10:

Additional Site Specific Considerations

Site Additional Considerations

Mediastinum Lung is principal consideration, regardless of TTF-1 result
Thymic neoplasm: PAX8 (polyclonal), p40; KIT, CD5 (the latter two in thymic carcinoma)
Germ cell neoplasm: SALL4
Well- and dedifferentiated liposarcoma: MDM2/CDK4

Pleura Mesothelioma: calretinin, WT-1, D2-40, CK5/6, BAP1 (loss)

Peritoneum Müllerian adenocarcinoma: PAX8
Mesothelioma: calretinin, WT-1, D2-40, CK5/6, BAP1 (loss)

Retroperitoneum Renal cell carcinoma: PAX8
Adrenal cortical carcinoma: SF1, melan A, calretinin, inhibin, synaptophysin
Germ cell tumor: SALL4
Liposarcoma: MDM2/CDK4

Somatic soft tissue Always consider sarcoma, even if keratin-positive

Bone Blastic metastasis: prostate (PSA, PrAP, NKX3.1), breast (GATA-3)
Lytic metastasis: kidney (PAX8), thyroid (thyroglobulin in TTF-1/PAX8 co-expressing tumor)
Mixed metastasis: lung (TTF-1)
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Table 11:

“Triple-Negative” Malignant Neoplasms

Tumor Type Additional Diagnostic Markers

Sarcomatoid carcinoma Additional broad-spectrum epithelial markers including high-molecular weight cytokeratin, 
p40

Poorly differentiated neuroendocrine carcinoma Chromogranin, synaptophysin, TTF-1, Rb

Adrenal cortical carcinoma SF1, melan A, synaptophysin, calretinin, inhibin

Sarcoma MDM2/CDK4 (esp. undifferentiated malignant neoplasm); SMA, desmin; CD34 (rarely 
expressed by carcinoma); additional dictated by morphology

Follicular dendritic cell sarcoma CD21, CD23, CD35

Acute lymphoblastic leukemia/lymphoma TdT, CD34, CD43

ALK-positive large cell lymphoma ALK, CD30

Plasma cell neoplasm (anaplastic) CD79a, CD138, MUM1, kappa/lambda light chains

Classical Hodgkin lymphoma CD30, CD15, PAX5

Plasmablastic lymphoma CD79a, CD138, MUM1, EBV EBER

Follicular dendritic cell sarcoma CD21, CD23, CD35

Melanoma (including dedifferentiated) Melan A, HMB-45, BRAF V600E

Germ cell tumor SALL4

Pheochromocytoma/paraganglioma Chromogranin, synaptophysin, GATA-3
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Table 12:

Expression of Broad-Spectrum Epithelial Markers, p63/p40/TTF-1, and SMA/Desmin in Sarcomatoid 

Carcinoma

Marker All Sites(541, 
542)

Bladder(444, 543–
551)

Breast(552–558) Head and 
Neck(543, 549, 
559–565)

Lung*(543, 566–
570)

Skin(571–573)

p63 65% (212/325) 53% (26/49) 78% (83/106) 64% (41/64) 50% (10/20) 73% (32/44)

AE1/AE3 64%** (305/477) 87% (55/63) 71% (76/107) 55% (58/105) 97% (57/59) 67% (8/12)

CAM5.2 64% (229/358) 77% (46/60) 26% (15/58) 31% (18/58) 93% (137/148) 58% (7/12)

34βE12 53% (62/116) 39% (14/36) ND 58% (15/26) ND 100% (12/12)

EMA 47% (130/278) 64% (35/55) 31% (29/93) 23% (12/53) 76% (42/55) ND

p40 30% (48/159) ND 58% (21/36) 54% (20/37) 8% (7/86) ND

CK5/6 17% (31/179) 27% (6/22) ND 25% (2/8) 14% (17/122) ND

MOC-31 16% (11/68) 0% (0/11) ND 4% (3/19) 12% (8/38) ND

SMA 32% (57/181) 23% (12/52) 71% (15/21) 46% (6/13) 28% (16/57) 8% (1/12)

Desmin 8% (17/222) 8% (6/74) 0% (0/15) 15% (2/13) 11% (9/82) 0% (0/12)

*
TTF-1 positivity was reported in 40% (65/161) of lung tumors;(543, 566–568, 570)

**
excluding one outlier study that only examined keratin AE1/AE3 expression in esophageal sarcomatoid carcinoma (23%; 19/82),(574) the 

overall sensitivity of keratin AE1/AE3 is 72%
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