Skip to main content
. 2020 Nov 16;10:571515. doi: 10.3389/fcimb.2020.571515

Table 3.

Feature combinations and their predictive accuracy with different machine learning methods.

Group Model Feature combination Accuracy Balanced accuracy AUC (95% CI) Sensitivity (95% CI) Specificity(95% CI) Odds ratio(95% CI)
1 H vs. M-S Neural Network Tf+Pg+Pi+Fn+Pa+Cr+Td 0.93 0.91 0.96(0.95–0.98) 0.95(0.92–0.98) 0.87(0.78–0.95) 127.2(67.08–241.01)
H vs. M-S Random Forest Tf+Pg+Fn+Td+Ec+Cr 0.93 0.89 0.96(0.95–0.97) 0.96(0.92–0.99) 0.83(0.75–0.91) 117.2(61.56–223.04)
H vs. M-S Support Vector Machine Tf+Pg+Pi+Pa+Td 0.92 0.86 0.96(0.94–0.99) 0.97(0.95–1.00) 0.74(0.65–0.83) 92(48.03–176.33)
H vs. M-S Regularized Logistic Regression Tf+Pg+Pi+Cr 0.92 0.88 0.97(0.95–0.98) 0.97(0.95–0.99) 0.78(0.66–0.91) 114.6(59.16–222.12)
Average 0.93 0.88 0.96 0.96 0.81 112.75
2 H vs. Sli-M-S Neural Network Tf+Ec+Pg+Pa+Td 0.90 0.86 0.94(0.91–0.97) 0.93(0.90–0.97) 0.79(0.68–0.89) 50.0(29.71–84.07)
H vs. Sli-M-S Random Forest Tf+Ec+Aa+Pg+Pa+Cr 0.91 0.84 0.94(0.92–0.96) 0.95(0.91–1.00) 0.72(0.65–0.80) 48.9(28.71–83.14)
H vs. Sli-M-S Support Vector Machine Tf+Cr+Pa+Pi+Fn 0.89 0.79 0.94(0.91–0.96) 0.97(0.93–1.00) 0.61(0.53–0.70) 50.6(27.76–92.12)
H vs. Sli-M-S Regularized Logistic Regression Tf+Cr+Pg+Pa+Aa+Fn+Pi 0.90 0.80 0.94(0.91–0.96) 0.96(0.93–1.00) 0.64(0.59–0.69) 42.7(24.73–73.62)
Average 0.90 0.82 0.94 0.95 0.69 48.05
3 H vs. Sli Neural Network Tf 0.80 0.77 0.82(0.74–0.89) 0.67(0.55–0.80) 0.88(0.82–0.93) 14.89(7.67–28.91)
H vs. Sli Random Forest Tf+Pg 0.78 0.77 0.81(0.75–0.88) 0.71(0.57–0.84) 0.83(0.76–0.89) 12.00(6.42–22.26)
H vs. Sli Support Vector Machine Tf+Td 0.78 0.77 0.83(0.78–0.88) 0.72(0.55–0.89) 0.82(0.77–0.86) 11.70(6.33–21.68)
H vs. Sli Regularized Logistic Regression Tf+Aa+Td 0.79 0.78 0.82(0.77–0.87) 0.75(0.58–0.91) 0.81(0.73–0.90) 12.80(6.85–23.87)
Average 0.78 0.77 0.82 0.71 0.84 12.85

AUC, area under the curve; CI, confidence interval.