Skip to main content
. 2020 Nov 16;10:571515. doi: 10.3389/fcimb.2020.571515

Table 5.

Validation of machine learning classification with new data set (n = 45, 22 healthy controls, 8 slight, 15 moderate or severe chronic periodontitis patients).

Group Model Feature combination Accuracy Balanced accuracy Sensitivity Specificity
1 H vs. M-S Neural Network Tf + Pg + Pi + Fn + Pa + Cr + Td 0.84 0.85 0.93 0.77
H vs. M-S Random Forest Tf + Pg + Fn + Td+ Ec + Cr 0.86 0.88 0.93 0.82
H vs. M-S Support Vector Machine Tf + Pg + Pi + Pa + Td 0.78 0.81 0.93 0.68
H vs. M-S Regularized Logistic Regression Tf + Pg + Pi + Cr 0.81 0.83 0.93 0.73
Average 0.82 0.84 0.93 0.75
2 H vs. Sli-M-S Neural Network Tf + Ec + Pg + Pa + Td 0.69 0.69 0.74 0.64
H vs. Sli-M-S Random Forest Tf + Ec + Aa + Pg + Pa + Cr 0.76 0.75 0.78 0.73
H vs. Sli-M-S Support Vector Machine Tf + Cr + Pa + Pi + Fn 0.67 0.66 0.87 0.45
H vs. Sli-M-S Regularized Logistic Regression Tf + Cr + Pg + Pa + Aa + Fn + Pi 0.71 0.71 0.83 0.59
Average 0.71 0.70 0.80 0.60
3 H vs. Sli Neural Network Tf 0.63 0.51 0.25 0.77
H vs. Sli Random Forest Tf + Pg 0.73 0.66 0.50 0.82
H vs. Sli Support Vector Machine Tf +Td 0.63 0.51 0.25 0.77
H vs. Sli Regularized Logistic Regression Tf + Aa + Td 0.60 0.53 0.38 0.68
Average 0.65 0.55 0.34 0.76