Table 5.
Group | Model | Feature combination | Accuracy | Balanced accuracy | Sensitivity | Specificity | |
---|---|---|---|---|---|---|---|
1 | H vs. M-S | Neural Network | Tf + Pg + Pi + Fn + Pa + Cr + Td | 0.84 | 0.85 | 0.93 | 0.77 |
H vs. M-S | Random Forest | Tf + Pg + Fn + Td+ Ec + Cr | 0.86 | 0.88 | 0.93 | 0.82 | |
H vs. M-S | Support Vector Machine | Tf + Pg + Pi + Pa + Td | 0.78 | 0.81 | 0.93 | 0.68 | |
H vs. M-S | Regularized Logistic Regression | Tf + Pg + Pi + Cr | 0.81 | 0.83 | 0.93 | 0.73 | |
Average | 0.82 | 0.84 | 0.93 | 0.75 | |||
2 | H vs. Sli-M-S | Neural Network | Tf + Ec + Pg + Pa + Td | 0.69 | 0.69 | 0.74 | 0.64 |
H vs. Sli-M-S | Random Forest | Tf + Ec + Aa + Pg + Pa + Cr | 0.76 | 0.75 | 0.78 | 0.73 | |
H vs. Sli-M-S | Support Vector Machine | Tf + Cr + Pa + Pi + Fn | 0.67 | 0.66 | 0.87 | 0.45 | |
H vs. Sli-M-S | Regularized Logistic Regression | Tf + Cr + Pg + Pa + Aa + Fn + Pi | 0.71 | 0.71 | 0.83 | 0.59 | |
Average | 0.71 | 0.70 | 0.80 | 0.60 | |||
3 | H vs. Sli | Neural Network | Tf | 0.63 | 0.51 | 0.25 | 0.77 |
H vs. Sli | Random Forest | Tf + Pg | 0.73 | 0.66 | 0.50 | 0.82 | |
H vs. Sli | Support Vector Machine | Tf +Td | 0.63 | 0.51 | 0.25 | 0.77 | |
H vs. Sli | Regularized Logistic Regression | Tf + Aa + Td | 0.60 | 0.53 | 0.38 | 0.68 | |
Average | 0.65 | 0.55 | 0.34 | 0.76 |