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Abstract

Recent advances in high-throughput technologies have enabled the profiling of multiple layers of a 

biological system, including DNA sequence data (genomics), RNA expression levels 

(transcriptomics), and metabolite levels (metabolomics). This has led to the generation of vast 

amounts of biological data that can be integrated in so-called multi-omics studies to examine the 

complex molecular underpinnings of health and disease. Integrative analysis of such datasets is not 

straightforward and is particularly complicated by the high dimensionality and heterogeneity of 

the data and by the lack of universal analysis protocols. Previous reviews have discussed various 

strategies to address the challenges of data integration, elaborating on specific aspects, such as 

network inference or feature selection techniques. Thereby, the main focus has been on the 

integration of two omics layers in their relation to a phenotype of interest. In this review we 

provide an overview over a typical multi-omics workflow, focusing on integration methods that 

have the potential to combine metabolomics data with two or more omics. We discuss multiple 

integration concepts including data-driven, knowledge-based, simultaneous and step-wise 

approaches. We highlight the application of these methods in recent multi-omics studies, including 

large-scale integration efforts aiming at a global depiction of the complex relationships within and 

between different biological layers without focusing on a particular phenotype.
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1 Introduction

Advances in high-throughput technologies have enabled the generation of vast amounts of 

data on multiple layers of a biological system, including DNA sequence data (genomics), 

RNA expression levels (transcriptomics), epigenetic alterations (epigenomics), protein 

abundances (proteomics), metabolite levels (metabolomics) and more. Considering each of 

these biological layers separately, numerous omics studies identified genes, proteins, and 

metabolites that associate with specific diseases or phenotypes of interest. For example, high 

levels of branched-chain amino acids and their degradation products have been found as 

hallmarks of type 2 diabetes [1]; in contrast, Alzheimer’s disease associates with low levels 

of these metabolites [2]. While the identified entities can serve as valuable biomarkers and 

provide insights into pathways involved in pathomechanisms, single omics studies do not 

take into account the complex interplay of various biological layers. However, disturbances 

of cross-omics interactions might play important roles in the development and clinical 

presentation of a disease [3,4]. Therefore, combining omics data from multiple biological 

domains (e.g. levels of transcripts, proteins, or metabolites) in multi-omics studies is a 

promising approach towards a more detailed molecular understanding of health and disease, 

as well as the chain of cause and effect, which is an essential requirement for guiding novel 

therapies [5]. For example, results from an integrated analysis of large genetic and 

metabolomic datasets by Lotta et al. [1] using a Mendelian Randomization approach, were 

consistent with a causal role of BCAA metabolism in type 2 diabetes and suggested the 

PPM1K gene (genetic variants therein being specifically associated with levels of BCAA in 

blood) as a potential drug target. PPM1K encodes the mitochondrial phosphatase that 

activates the branched-chain alpha-ketoacid dehydrogenase (BCKD) complex, the rate-

limiting enzyme in BCAA catabolism, and was only up-regulated in muscles of healthy 

subjects but not in patients with type 2 diabetes in a validation experiment. Although the 

availability of multi-omics data does not always allow for direct conclusions on causality, 

the combination of multiple layers of evidence in a multi-omics study has been 

demonstrated to provide more reliable results and mitigate the risk of false positive findings 

[6,7]. Beyond the value of multi-omics approaches for the investigation of particular 

diseases, large-scale multi-omics studies enable the systematic investigation of inter- (e.g. 

enzymatic conversion of metabolites) and intra-omics (e.g. protein-protein interactions) 

relationships independent of a specific phenotype.

In multi-omics studies, metabolomics and its sub-discipline lipidomics occupy a unique 

position and have received increasing attention in integrative analysis [8]. Metabolites are 

the downstream output of biological processes, carrying imprints of genomic, epigenomic, 

and environmental effects. They are often referred to as “the link between genotype and 

phenotype” [9] and have been implicated in numerous diseases, such as Alzheimer’s Disease 

[10], type 2 diabetes [11], and various types of cancer [12]. Furthermore, they carry 

integrated biological and medical signals in easily accessible biofluids (e.g., blood, urine), 
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making them attractive biomarker candidates [13]. Large-scale epidemiological studies have 

demonstrated the value of integrating metabolomics with other omics layers, such as 

genomics [14–17], transcriptomics [18] and epigenetics [19], providing insight into 

metabolic individuality and links to disease mechanisms [20,21]. For example, up to 62 

percent of variation in metabolite concentration levels in two population-based cohorts could 

be explained by common genetic variants [16]. Furthermore, it has been shown that DNA 

methylation affects metabolism [22]. This effect is partly driven by genetic variation, but 

further depends on environmental and lifestyle factors, enabling an adaptive response to 

regular (e.g., food intake) [23,24] and specific (e.g., disease) [25] challenges. Changes in the 

metabolome can, in turn, modulate the activity of genes and proteins, creating complex 

feedback mechanisms and interrelationships between omics layers [26]. Therefore, the 

integration of metabolomics with other omics layers provides exciting opportunities for the 

study of disease mechanisms and identification of novel therapeutic targets.

To enable the analysis of heterogenous datasets in multi-omics studies, a plethora of data 

reduction, manipulation, and integration techniques have been developed. Previous review 

articles have provided comprehensive method summaries for specific integration strategies 

such as network inference and analysis [27,28] or machine learning techniques [29–32], and 

have discussed important aspects of metabolite-centered studies [33–35]. However, most 

reviews concentrate on the integration of two different data types with respect to a specific 

phenotype of interest. In this review, we will provide an overview over a typical multi-omics 

workflow, focusing on integration methods that have the potential to combine metabolomics 

data with more than two omics and highlighting their application in recent multi-omics 

studies. We will distinguish between integration efforts that build prediction models [36–39] 

or identify diagnostic and prognostic biomarker candidates [39,40] for a specific disease 

phenotype or trait of interest, and global integration efforts that are initially not focused on a 

specific outcome. The latter approaches aim at the systematic integration of multiple omics 

datasets to provide a basis for generating testable hypotheses and gaining mechanistic 

insights into the pathophysiology of multiple complex diseases in post-integration analyses 

[41–43].

The choice of an appropriate integration strategy is not straightforward and heavily depends 

on the available data and study objective. Data dimensionality, heterogeneity, and lack of 

universal protocols additionally complicate this task. Generally, two major integration 

paradigms (Figure 1) have been described in the literature [27,35,44–46] and will be 

referenced throughout this review; (1) simultaneous and (2) step-wise integration. 

Simultaneous integration strategies use all available omics data at the same time and perform 

analysis in a single modeling step. Thereby, complementary information encoded in each 

omics layer, as well as correlations between the layers, are taken into account. Methods of 

this category require that the data was derived from the same biological samples or 

individuals, which poses still a major limitation regarding availability of such data due to 

funding or technical restrictions. Step-wise integration strategies, on the other hand, analyze 

omics datasets in isolation or in specific combinations and integrate the results in a 

subsequent step. This facilitates the integration of data and statistical results from different 

sources (e.g., different studies or knowledge bases), allowing the large-scale analysis of 

heterogeneous data in the absence of omics measurements for the same samples.
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This review will discuss central aspects of a typical multi-omics data integration workflow 

(Figure 1) and is structured as follows: (i) Data scenarios. Study design, sample preparation 

and subsequent data acquisition through high-throughput analytical platforms can lead to 

different data scenarios. (ii) Dimensionality reduction. After appropriate preprocessing of 

raw data collected on different omics layers, dimensionality reduction is often applied to 

reduce the number of variables (measured biological entities). (iii) Data integration. Data 

from different omics layers are analyzed and integrated using a method that is appropriate 

for the input data and research question of interest. (iv) Data interpretation. Post-integration 

inspection and further analysis of the integration results (e.g., statistical model or network) 

enable meaningful biological insights. We conclude with a short outlook on future directions 

for multi-omics research.

2 Data scenarios

Integrative multi-omics analyses combine several omics measurements, optionally along 

with additional phenotypes of interest, that are represented by either continuous (e.g., 

protein levels or metabolite concentrations) or categorical variables (e.g., gender or disease 

status). Naturally, each dataset comes in a separate data matrix where rows represent 

individual samples, and columns hold measurements of demographic, clinical, or biological 

entities (Figure 1). However, depending on the study objective and access to relevant data, 

there are three different data scenarios: (1) the different datasets are available for the same 

samples/individuals; (2) the datasets are available for an only partially overlapping set of 

samples/individuals; (3) omics data is distributed across mostly disjoint sets of samples.

In the first scenario, samples from a study are simultaneously subjected to the same multi-

omics screening processes or additional omics technologies are applied to initially collected 

samples in retrospect. Data from such studies will result in data matrices where the rows in 

every data matrix correspond to the same samples/individuals and columns hold 

measurements for each respective omics technology (e.g., metabolomics, transcriptomics, 

proteomics). This is the optimal scenario, as it allows application of any integration strategy, 

including simultaneous data integration that requires data matrices with matched samples 

[47].

However, complete multi-omics profiles are often not available or feasible to get for all 

samples/study participants. The reasons for this are manifold and include funding 

limitations, incompatibility of collected samples for certain omics analyses, or depletion of 

samples preventing application of novel technologies [35,47]. For example, although urine 

samples have proven very informative in metabolomics studies, they contain limited 

amounts of proteins and RNA, limiting their use in large-scale proteomics or transcriptomics 

studies [35]. Furthermore, in long-term studies or studies with rollover participants, both 

omics and phenotypic screenings applied at baseline may be adapted due to technological 

advances, falling costs for sample analysis, or evolving study objectives. For instance, the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudinal, multicenter study 

launched in 2004 to study biomarkers for early detection of Alzheimer’s Disease (AD) [48]. 

While large-scale metabolomics and lipidomics profiling is available for the study phases 

ADNI-1 and -GO/2, up to now (biosamples are still available) proteomics profiling was only 
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applied to a subset of ADNI-1 participants and gene expression profiling is only available 

for ADNI-GO/2. This leads to differing availabilities of omics profiles for participants 

across study phases.

Data resulting from such a study will only have partially overlapping samples for multi-

omics integration [47]. If the overlap of samples between data types is large enough for a 

sufficiently powered study, the removal of samples without full omics profiles can still 

enable simultaneous integration. However, application of such a list-wise deletion of 

individuals is prone to substantial loss of information [30][47]. In the worst case, this can 

introduce estimation bias by resulting in a sample set that is unrepresentative of the initial 

study population [49]. Nevertheless, simultaneous data integration strategies are emerging 

that can handle a moderate amount of samples with missing omics profiles (see Section 

4.2.2).

Due to the restrictions mentioned above, many multi-omics analyses use datasets that have 

not been collected from the same samples and originate from different sources. A special 

case of this scenario occurs if the sample sets for each data type were acquired in the same 

study but have minimal overlap. By integrating such omics measurements, data matrices 

consequently have mostly unmatched samples and variables as a starting point. For this data 

scenario, several step-wise integration strategies (discussed in Sections 4.1 and 4.2.1) have 

been developed that enable both multi-omics analyses in disjoint sample sets and inclusion 

of preexisting biological data. However, it is important to keep in mind that these types of 

analyses add another layer of data heterogeneity due to differing sample sizes, study 

protocols, and study demographics (e.g., age, sex, or ethnicity).

In summary, multi-omics datasets available for the same samples/individuals introduce less 

unwanted data heterogeneity and enable the application of any integration method. For 

datasets with only partially overlapping or completely disjoint sets of samples/individuals, 

the number of applicable integration methods is a bit more limited, but those that are 

available allow for almost infinite inclusion of data, enabling studies to yield maximal 

power.

3 Dimensionality reduction

Appropriate preprocessing of the raw data is a key prerequisite for any type of analysis, as 

technical artifacts and skewed data distributions can distort biological signals [50]. This 

process typically includes the removal of batch effects, normalization and imputation of 

missing values for each data type separately before integration [51]. The importance of study 

design and temporal ordering of sample collection [35,44,51,52], as well as guidelines for 

appropriate data preprocessing [30,51], have been discussed in previous reviews and are 

beyond the scope of this review. In the following, we will assume that the data subjected to 

integrative analyses was appropriately preprocessed and is of high quality.

The curse of dimensionality [53] is a central challenge in single-omics studies and even 

further aggravated in multi-omics studies, where the number of variables is substantially 

higher. With increasing dimensions (number of variables), distance measures become 
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meaningless, which is challenging for operations in this high-dimensional space, such as 

clustering [54,55]. Furthermore, samples are typically significantly outnumbered by 

measured variables, posing a challenge for most statistical learning methods. This can lead 

to an underdetermined mathematical system and increases the risk of overfitting classifiers 

or predictors [27]. Dimensionality reduction (DR) is a way to reduce the complexity of a 

dataset while increasing prediction stability, boosting statistical power of downstream 

analyses, and reducing the multiple testing burden. DR is performed by either extracting 

relevant variables (feature selection) or projecting data onto a lower-dimensional space 

(feature extraction) [30].

Feature selection often involves prior knowledge or a biological hypothesis that is used to 

reduce the number of considered variables. Popular approaches are, for example, to limit the 

analyses to genes, proteins and metabolites involved in certain pathways of interest, or to 

investigate entities that have been previously associated with a specific trait under study 

[41]. Such hypothesis-driven DR strategies can significantly boost statistical power but are 

naturally prone to bias towards biological entities that have been annotated through previous 

studies. Another knowledge-based approach is to construct new variables that are 

biologically meaningful, i.e., representative of functional groups such as pathways. For 

example, metabolites can be analyzed at the pathway-level by aggregating levels of all 

molecules assigned to a specific pathway (e.g., by using the average z-score of 

concentrations [56] or first principal component from a PCA [56–58]) to produce new 

pathway-based variables [59].

Feature extraction, on the other hand, is typically achieved by data-driven DR techniques 

such as Principal Component Analysis (PCA) [30,60]. PCA is classically applied to each 

omics dataset separately and transforms single-omics variables into a lower-dimensional 

subspace that maximizes the retained variance within the data by finding orthogonal linear 

combinations of the original variables. Therefore, PCA enables the use of a reduced set of 

features with minimal loss of information. Related approaches include clustering techniques 

(e.g., K-means [61] or hierarchical clustering [62]) followed by replacement of groups of 

similar variables by a cluster centroid [63]. Here, one popular approach is to cluster 

correlating biological entities such as metabolites, proteins or transcripts by using weighted 

gene co-expression network analysis (WGCNA) [64] on each dataset [65,66]. The identified 

clusters are then summarized by the first principal component from a PCA (“eigengene” or 

“eigenmetabolite”) on the abundance matrix of each respective cluster that is then used in 

downstream analyses (e.g. association with a specific phenotype, integration with other 

omics layers) with a reduced set of features [67]. A limitation of such data-driven 

approaches is that the interpretation of the derived associations or correlations requires the 

extracted features to be mapped back onto the original variables.

In summary, DR provides a way to limit the potential for overfitting and significantly 

reduces the multiple testing burden. Additionally, knowledge-based DR can increase 

downstream interpretability of analysis outcomes.
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4 Data integration

The growing interest in integrative analysis of multi-omics datasets has led to the emergence 

of various integration frameworks. In the following, we review the major concepts 

categorized into approaches that take into account external information (knowledge-based 

approaches) and approaches that primarily rely on intrinsic information (data-driven 

approaches) to infer dependencies across omics. Finally, we will discuss hybrid approaches 

(composite networks) that combine knowledge-based and data-driven integration.

4.1 Knowledge-based approaches

Knowledge-based integration strategies use external information from databases or scientific 

literature to establish relationships between biological entities. Results from previous 

analyses are either annotated using prior knowledge (e.g., using common functional terms) 

or mapped onto a reference network that connects different omics layers based on 

established knowledge. For example, metabolic networks, assembled based on biochemical 

knowledge, enable the connection of enzymes and metabolites through reactions. By 

mapping results from single-omics analyses onto such a network, findings can be integrated 

and interpreted in a multi-omics context, enabling the identification of pathways that are 

dysregulated at the gene, protein and metabolite level [68]. Furthermore, multi-omics 

measurements can be integrated into preexisting biological models to make them condition-

specific (e.g., deletion of inactive reactions) [69].

Prior knowledge that is used for this type of omics integration includes, but is not limited to, 

information on functional relationships (e.g., pathways or biological reactions), 

pharmacogenomic associations, and genome annotations. Depending on the source, this 

information is either based on experimental data [70], collected from scientific literature 

(manually or by using automated text-mining techniques) [71], or derived from 

computational prediction approaches [72]. As knowledge bases typically combine 

information from multiple sources, they can have varying levels of evidence. For example, 

STRING [71], a popular protein-protein interaction database, indicates the confidence of 

functional interactions between proteins by assigning scores that are based on the quality 

and type of supporting evidence coming from targeted experiments, co-expression analysis, 

genomic context predictions, or text-mining [73].

While many resources are specific to one omics type, such as STRING or the LIPID MAPS 

Structure Database (LMSD)[74] for lipid annotations, a number of databases have emerged 

that cover multiple biological domains (see Table 1). The Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [75–77] database, for instance, was released in 1995 as one of the first 

computational resources that linked the genome with higher-order functional information. In 

KEGG, manually compiled pathway maps enable researchers to view genes and proteins in 

the context of metabolic networks and pathways, such as sphingolipid metabolism or NF-

kappa B signaling. Nearly a decade later, additional curated and pathway-centered resources 

started emerging, such as Reactome [78,79] and Recon [80–82]. Reactome is a resource that 

is primarily focused on human biological processes and is built around reactions. Reactions 

are defined as an event that transforms an input to an output (both being biological entities 

such as proteins, lipids or nucleotides) and are further grouped into pathways depending on 
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their (temporal) relationships [78]. Taking this concept a step further, Recon3D [80–82] 

provides a genome-scale metabolic reconstruction that can be used for computational 

modeling (see Section 4.1.2 on constraint-based metabolic modeling). It also includes three-

dimensional (3D) structural data on metabolites and proteins and represents the most 

comprehensive human metabolic network model to date [82].

In order to utilize these resources for knowledge-based integration, platform-specific 

identifiers (IDs) of measured biological entities need to be mapped to the namespace of the 

respective target database. This task is challenging, as most resources have developed their 

own internal ID schemes and hierarchies, leading to a plethora of IDs across databases that 

refer to the same entity. Efforts have been made to enable cross-linking between ID schemes 

[82] and mapping tools are available online or through R packages, such as biomaRt [83] for 

genes or MetaboAnalystR [84,85] for metabolites. However, name ambiguities, ID 

multiplicity and the use of synonyms complicate this task [86] and can lead to significant 

loss of information if not handled carefully. This is especially challenging for metabolites 

and lipids due to differences in resolution between platforms and technologies [87]. For 

example, lipid sidechain composition and configuration are important determinants of the 

function of phosphatidylcholines (PC). However, many lipidomics techniques cannot 

distinguish between isobaric species sharing the same nominal mass [88] and annotate PCs 

at the lipid species level assuming even-numbered fatty acids, as they are more frequent, i.e., 

PC (731) with m/z 731 will most likely be labeled PC 32:1 and not PC O-33:1, although 

both are plausible [87].

Knowledge bases are under constant pressure to adapt to technological advances and 

incorporate novel research findings (e.g., the discovery of various types of regulatory RNA 

species) to accurately reflect the current state of science, which can lead to further 

discrepancies. For example, despite the fact that some platforms offer fatty acid side-chain 

resolving techniques, lipids are often not yet annotated at this level of detail [6] and this 

information will be lost when matching measured compounds to the namespace of a 

resource (e.g., PC 16:0_16:1 would simply be mapped to the KEGG identifier C00157 for 

phosphatidylcholine).

Nevertheless, when correctly employed knowledge bases provide a wealth of valuable 

information that can be exploited in multi-omics integration.

4.1.1 Set-based enrichment—Set-based enrichment is a commonly used, step-wise 

results integration strategy. It tests whether certain functional annotations are enriched in a 

list of interesting (e.g., differentially expressed or abundant) biological entities, which have 

been identified in preceding omics analysis. Biological entities are assigned to sets (also 

referred to as annotation terms) using information from knowledge bases to examine 

whether they are known to participate in the same biological pathways, are significantly 

changed in a specific disease, or are co-localized (e.g., in the same organelles, tissues or 

organs) [89]. For example, the annotation term “sphingolipid metabolism” in Reactome 

[78,79] includes metabolites such as sphingosine 1-phosphate and sphingosine, and genes 

such as SGPP1 (sphingosine-1-phosphate phosphatase 1) and SPHK1 (Sphingosine Kinase 
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1). Here, we focus on the most widely used approaches: overrepresentation analysis and 

functional set enrichment analysis.

Overrepresentation Analysis (ORA) aims at the identification of annotation terms that are 

overrepresented, i.e. terms that are more frequently assigned to the entities in the input list of 

interest than expected by chance [89]. This can be statistically tested by using a 

hypergeometric test such as one-sided Fisher’s exact test with subsequent correction for 

multiple testing [89]. In order to yield meaningful results, valid definition of the background, 

i.e., the set of entities that were measured in the analysis and assigned to each annotation 

term, is a key requirement [52] in order to correct for bias that arises due to unequal 

annotation coverage of different entities. This is a prominent challenge in metabolomics and 

lipidomics studies where analytical methods are typically biased towards molecules from 

certain chemical classes [52,87,88]. For multi-omics integration, ORA is typically 

performed separately on each omics level. By mapping omics, such as transcriptomics, 

proteomics or epigenomics, back to the gene-level, multiple omics types can be integrated 

alongside metabolomics data. The resulting P-values are combined into a joint enrichment 

P-value for each annotation term using Fisher’s method [90] or Stouffer’s method 

(unweighted [91] or weighted [92]) as implemented e.g. in the web-resources PaintOmics3 

[68], Integrated Molecular Pathway-Level Analysis (IMPaLA) [93], and MetaboAnalyst 

[84,94]. MetaboAnalyst additionally offers an integrative overrepresentation analysis in 

which both genes and metabolites are queried together by using annotation terms such as 

metabolic pathways from KEGG to define sets. A drawback of ORA is that it only considers 

the subset of measured entities that, for example, showed a significant change in levels 

between conditions. This makes it sensitive to the chosen significance cutoff, or any other 

inclusion criterion, that was used to determine the input set of biological entities. At the 

same time, ORA neglects information on the extent of change (e.g., measured through fold 

change) between conditions [34].

Functional Set Enrichment Analysis (FSEA) is another set-based enrichment method that 

addresses these ORA-associated limitations. It was originally developed for the analysis of 

transcriptomics data in Gene Set Enrichment Analysis (GSEA) [95], but has also been 

implemented for metabolites (Metabolite Set Enrichment Analysis or MSEA) [89] and lipids 

(LION/web) [96]. In contrast to ORA, these methods test all measured entities, not just a 

defined subset, and take into account their quantitative measurements. This enables the 

identification of annotation terms where only a few entities are significantly changed or 

where many entities are changed slightly but consistently [89]. Similar to ORA, an 

integrative analysis of several omics datasets is achieved by calculating a joint P-value from 

the individual single-omics analyses. This is, for example, implemented in the web-resource 

IMPaLA which uses Wilcoxon’s signed-rank test to perform FSEA using pathway 

annotations taken from 11 public databases [93].

The central limitation of both FSEA and ORA is that they are naturally restricted to entities 

that have been previously annotated. To this end, de novo enrichment methods, such as 

KeyPathwayMiner [97,98], have been proposed. These methods enable the discovery of 

uncharacterized pathways by extracting connected subnetworks with a high number of 

differentially regulated entities from predefined biological networks (e.g., knowledge-based 
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metabolic networks or data-driven correlation networks) [99]. This framework is 

theoretically applicable to multi-omics data by using pathway annotations or ontologies that 

include multiple layers of omics. So far, they have been predominantly used in gene-centric 

studies. For example, Soerensen et al. [100] demonstrated the benefits of using both GSEA 

and KeyPathwayMiner in an integrative enrichment analysis of genes associated with 

cognition in both epigenome-wide and transcriptome-wide association analysis. GSEA was 

able to replicate findings from previous studies by identifying a broad spectrum of enriched 

biological processes including gene sets involved in neurological functioning and cell cycle 

control. The use of de novo enrichment identified subnetworks of dysregulated entities that 

included genes not implicated by GSEA such as Ras And Rab Interactor 3 (RIN3) and 

Ataxin 2 (ATXN2). Interestingly, this approach also implicated amyloid beta precursor 

protein (APP) and the nuclear respiratory factor 1 (NRF1), two genes with functions relevant 

for cognitive health, that were not differentially methylated and expressed in this analysis.

4.1.2 Constraint-based metabolic modeling—Constraint-based metabolic models 

(CBMMs) enable the in-silico description and prediction of possible metabolic steady states 

by mathematically representing metabolic reactions in a stoichiometric matrix [101]. The 

stoichiometric coefficients of these reactions are used to constrain the flow of metabolites 

through the system, ensuring that, at steady state, the mass of any compound that is being 

produced must equal the total amount of what was consumed (flux balance) [102]. Genome-

wide metabolic models (GEMs), such as Recon3D, are typically constructed in a bottom-up 

approach [103] using genome annotations to automatically build a draft that contains all 

enzymatic reactions predicted to be available for an organism considering the proteins 

encoded in its sequenced genome. This draft is then refined through manual curation and 

constraint-based modeling (e.g. to identify and fill gaps in the reconstructed metabolic 

network) [104].

In the context of multi-omics integration, GEMs present comprehensive metabolic networks 

that can be used to link the results from single-omics analyses to other layers of biological 

information by projecting high-throughput data (e.g. transcriptomics, proteomics or 

metabolomics data) onto the network [105], analogously to what we described in Section 

4.1.1. For instance, GEMs can be used as the underlying biological network in de novo 
pathway enrichment analysis to identify subnetworks that are significantly enriched with 

dysregulated entities [106].

Furthermore, generic GEM drafts can be contextualized to a specific condition, tissue or 

individual by imposing additional layers of constraints that are inferred from experimental 

omics data [107,108]. COBRA (Constraint-Based Reconstruction and Analysis) [104,109] is 

a popular framework that has implemented multiple methods for the integration of omics 

data, including time-course metabolomics data [110] and transcriptomics and proteomics 

data [111,112]. Contextualized GEMs provide novel opportunities for metabolic 

engineering, drug target identification, and personalized therapies [105,107,113]. For 

example, Agren et al. [114] used proteomics data of hepatocellular carcinoma patients to 

construct personalized, cell-specific GEMs for the prediction of antimetabolites (drugs that 

are structural analogs of metabolites) that can prevent tumor growth. The authors identified 

nearly 150 antimetabolites, one-third of which were specific to individual patients. Despite 
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the small sample size (n=6) and restricting modeling to cellular effects, this study highlights 

the potential of refining GEMs using experimental omics data for personalized therapies. 

The recent emergence of whole-body metabolism (WBM) reconstructions [115] that 

currently model the human metabolism across 20 organs are expected to further advance this 

important field.

4.2 Data-driven approaches

Data-driven, multi-omics integration approaches use statistical models and machine learning 

techniques to infer relationships between and within layers of multi-omics data and in some 

cases a phenotype of interest. Without taking known biological relationships or annotations 

into account, most approaches rely on the analysis of correlation structures within the data 

itself. For multi-omics studies focusing on a specific disease or phenotype, common 

applications of data-driven methods include the training of predictors and classifiers, and 

identification of multivariate biomarker candidates. Independent of a specific phenotype of 

interest, the unbiased analysis of relationships between and within omics layers using data-

driven approaches enables a global perspective on interactions between biological entities. 

Using sufficiently large datasets, this approach has the potential to uncover unknown 

relationships (e.g. not represented in knowledge bases) and to characterize entities with 

unknown function.

In the following, we review a selection of step-wise and simultaneous integration strategies 

and highlight their application in metabolomics and lipidomics studies. A list of multi-omics 

integration methods and frameworks is provided in Table 2.

4.2.1 Step-wise integration—Step-wise strategies integrate datasets in a sequential 

manner. Here, individual omics layers are typically analyzed separately or in specific (lower-

order) combinations. In subsequent steps, the results from these analyses are integrated into 

a common framework. The following section will introduce ensemble approaches that are 

suitable for studying a specific phenotype or outcome of interest, as well as pairwise 

association-based strategies that enable systematic and large-scale integration without 

necessarily focusing on a specific disease or phenotype.

Ensemble integration strategies apply multivariate classification or prediction methods, such 

as k-nearest neighbors [116] or Elastic Net [36] to each dataset individually and then 

combine the ensemble of results using, e.g., majority voting schemes or stacked 

generalization to boost performance [117]. Although each dataset is modeled separately, 

these types of methods require omics data that was collected from the same samples as the 

predictions are ultimately combined in a global model. For example, Ghaemi et al. [36] built 

a multivariate model predictive of gestational age on samples from 17 pregnant women at 

three time points during pregnancy. The datasets included measurements from the 

immunome, transcriptome, microbiome, proteome and metabolome. Using the Elastic Net 

algorithm, the authors built multiple predictors (one for each omics dataset) and 

subsequently used their predictions as input for a final model. This stacked generalization 

strategy was able to significantly increase performance and ablation analysis [118] gave 

insights into the respective contribution of each dataset. Furthermore, subsequent analysis of 
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the top predictive features of each individual model, enabled the formulation of multi-omics-

informed hypotheses. Among other findings, the authors identified a strong correlation 

between pregnanolone sulfate and NF-kB signaling in myeloid dendritic cells and regulatory 

T cells, highlighting a potential regulatory role of this endogenous steroid in the functioning 

of specific immune cells during pregnancy.

Training the base models in ensemble approaches in an isolated fashion, i.e., on each omics 

dataset separately, has several consequences. On the one hand, interdependencies between 

variables of different omics datasets are not fully taken into account such that some cross-

omics interactions might be missed. On the other hand, the independence of the base models 

prevents datasets with a large number of variables from dominating the analysis.

The integration of pairwise association results is another step-wise integration strategy. In 

contrast to ensemble integration, this approach enables the global analysis of relationships 

between multiple omics layers by large-scale integration of data from multiple sources. A 

popular approach, which is centered around the concept of genetic variation as a driver of 

inter-individual variability, is QTL-based integration [7]. The basis for this integration 

technique are so-called quantitative trait loci (QTLs) [119]. QTLs are genetic markers (e.g., 

single nucleotide polymorphisms) that are significantly associated with the variation of 

quantitative molecular traits (e.g., the transcription level of a particular gene) [120]. They are 

identified in genome-wide association studies (GWAS) that make use of genome-wide 

genotypes of a large population of individuals that are tested in univariate analyses for 

association with molecular traits [120–122]. Besides QTLs of expression levels of genes 

(eQTLs) [123,124], major examples of investigated traits include abundances of proteins 

(pQTLs) [125,126] or concentrations of metabolites (mQTLs) [14,127]. For instance, Shin et 

al. [16] investigated genetic influences on more than 400 human blood metabolites in close 

to 8,000 individuals from two population-based cohorts. The result is a comprehensive atlas 

that links genetic variants in 145 loci to biochemical readouts, cataloging mQTLs 

influencing a wide variety of metabolic pathways.

After association analysis, variant annotation [128] or co-localization analysis [129,130] is 

used to functionally interlink entities from different omics by identifying overlapping QTLs 

(Figure 2C). This can be done on a genome-wide scale and with QTLs that have been 

identified in different studies or cohorts. QTL-based integration has been successfully 

applied in studies predicting the functional consequences of disease-associated variants, 

which are often located in non-coding regions of the genome [126,131,132]. For example, 

Chen et al. [132] systematically overlapped variants associated with autoimmune diseases 

with eQTLs as well as DNA methylation (meQTL), RNA splicing (sQTL) and histone 

modification (hQTLs) QTLs to identify cell-specific regulatory effects. Similarly, Suhre et 

al. [126] demonstrated the power of connecting GWAS-identified risk-variants to disease 

endpoints via blood proteome-derived pQTLs that overlapped with meQTLs, eQTLs, protein 

glycosylation QTLs, and mQTLs. Among other findings, this approach revealed a potential 

link between Alzheimer’s disease (AD) and mRNA splicing through linking protein levels of 

apolipoprotein E, a gene centrally linked to AD [133], and small ribonucleoprotein F via 

overlapping QTLs.
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Although this integration strategy only takes into account pairwise relationships, it facilitates 

the large-scale integration of omics datasets from different sources. This is especially 

valuable in settings where sufficiently large multi-omics studies in the same set of samples 

are not available. Furthermore, QTL-based integration only requires summary statistics 

(results of an association study), circumventing data sharing restrictions that may be present 

on datasets with patient information. Lastly, this approach can integrate results from 

independent GWASs on the same traits, providing an opportunity to build data confidence 

by independent replication. Similarly, meta-analysis methods [134] that statistically combine 

summary statistics from independent association studies on the same traits (e.g., multiple 

GWASs with metabolic traits) can be used to increase power and reduce false-positive 

findings. It is important to note that the concept of integrating pairwise-association results is 

not restricted to using the genome as an anchor but can be centered around any other omics 

layer, including the metabolome.

4.2.2 Simultaneous integration—Simultaneous integration strategies use all available 

omics datasets at the same time and integrate the information in a single modeling step. This 

has the advantage of taking into account correlations between entities within and across 

omics layers. In the following, we are reviewing approaches by categorizing them into 

single-block and multi-block strategies. Single-block integration strategies concatenate all 

available datasets to form one large data matrix (a “single block”) before applying any 

analysis method without consideration of heterogeneities between omics (e.g. in scale or 

variance). In contrast, multi-block integration strategies retain and account for the multi-

block structure of the data that is defined by the different omics datasets. Both strategies 

require that full multi-omics profiles are available for the same set of samples/individuals. 

Some methods enable imputation of missing single-omics profiles for a moderate amount of 

samples/individuals in a multi-omics context. These include MI-MFA (Multiple Imputation - 

Multiple Factor Analysis)[47] that uses hot-deck imputation [135] to replace missing omics 

vectors with observed values from a similar sample, and MOFA (Multi-Omics Factor 

Analysis) [138,139], a statistical framework that infers a low-dimensional data 

representation in form of (hidden) factors [136]. However, although imputation can increase 

power by extending the set of available observations, imputed values can never accurately 

represent the “true” unobserved measurements and should therefore always be interpreted 

with caution.

In order to integrate different omics datasets, single-block integration strategies simply 

concatenate the different data matrices into one large data matrix before applying a statistical 

analysis method. This enables the direct application of methods that are typically applied to 

single-omics datasets for tasks such as clustering (e.g., K-means clustering [61]), 

classification and regression (e.g., Random Forest [137], LASSO regression [138]) or 

projection (Partial Least Squares Discriminant Analysis (PLSDA) [139,140]). Correlation-

based strategies are another popular class of single-block methods, which aim at quantifying 

the relationships between biological entities by iteratively applying an association measure, 

such as Pearson’s Correlation Coefficient, to all pairwise combinations of the variables 

(measured biological entities). However, simple correlation measures cannot distinguish 

between direct and indirect effects [141]. For example, associations between mRNA levels 
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are quite frequently mediated by transcriptional co-regulation at the gene-level [142]. These 

confounded associations lead to a drastically inflated number of edges, resulting in dense 

networks with limited interpretability [41,142,143]. Gaussian Graphical Models (GGMs) 

[144] circumvent this problem by estimating full-order partial correlation coefficients, i.e., 

pairwise correlations between variables corrected against all other variables. This measure of 

conditional independence has been valuable to infer pathway relationships from single 

omics datasets [57,145,146]. However, GGMs assume multivariate normally distributed data 

and multi-omics datasets often include variables with different distributions, such as 

phenotypic data on gender or disease subtype [41,143]. An extension to GGMs that 

addresses this issue are Mixed Graphical Models (MGMs) [147–149], which can incorporate 

datasets with mixed distributions (e.g., continuous, discrete, and count variables) [143]. For 

example, Zierer et al. [41] inferred an MGM from a multi-omics dataset collected from the 

same individuals, including data on epigenomics, transcriptomics, glycomics, metabolomics, 

and phenotypic data. The authors used a Graphical Random Forest [149] method for the 

integration of 144 preselected features and explored the molecular underpinnings of age-

related diseases and co-morbidities. They identified seven network modules that reflect 

distinct aspects of aging, such as lung function, bone density, and renal function. 

Furthermore, they found that these modules are connected by distinct hubs, highlighting 

central molecules and potentially linked mechanisms that may drive co-morbidities, such as 

urate that connects renal disease with body composition and obesity.

Single-block integration ignores heterogeneities between data types which can lead to severe 

bias and other complications [30,32,150]. For example, metabolomics and transcriptomics 

data are generated by fundamentally different analytical technologies. This leads to values 

with different scale and variance as well as different noise distributions [51,151]. When 

clustering such datasets, the entities within a particular omics type will predominantly 

cluster together, reflecting intra-, instead of inter-, omics relationships [18,36,41,151]. 

Similarly, variance maximizing approaches, such as PCA and PLS, will capture these 

technical differences in their first component [151]. Additionally, the number of variables in 

each single omics dataset will in most cases be substantially different: a state-of-the-art 

genomics analysis will provide information on millions of genetic variants, transcriptomics 

measures tens of thousands of mRNAs, and proteomics and metabolomics technologies 

usually measure molecules in the range of thousands of molecules [51]. Analyzing such 

datasets simultaneously without accounting for the diverging numbers of features will 

introduce bias, as the data type with the most features will drive the results [152].

To circumvent this problem and ensure that every dataset has equal weight, variables can be 

scaled to unit variance with subsequent block scaling [151] by using, for example, the 

inverse number of variables in the respective dataset (“block”) to scale each variable. This 

was implemented in Multiple Factor Analysis [152,153], where data blocks are normalized 

prior to concatenation by using the inverse of the first squared singular value of a PCA on 

each data block as weight. However, different methods for variable scaling and block scaling 

can significantly influence the outcomes [151]. General caution is advised when 

concatenating datasets from different sources and special care should be taken to identify an 

integration method that combines and scales data appropriately [7,151].
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The need to account for heterogeneities between multi-omics datasets has led to the 

emergence of multi-block integration strategies that can take the block structure, i.e., groups 

of omics variables from different sources, into account [154]. Multi-block methods 

simultaneously model multiple data matrices and provide insights into the relationships 

between omics (blocks). Many of these approaches are extensions of established multivariate 

methods, such as Partial Least Squares (PLS). Examples include O2PLS [155,156] for the 

integration of two omics datasets and Multiple-Block Orthogonal Projections to Latent 

Structures (OnPLS) [157–159] for the integration of more than two omics datasets. OnPLS 

decomposes data from multiple omics data matrices into global, local and unique levels of 

variation [159]. Reinke et al. [160] demonstrated the potential of this approach using a small 

subset (n=22) of individuals from an asthma cohort. Here, six blocks of data - 

transcriptomics, metabolomics, three targeted assays (on sphingolipids, oxylipins, and fatty 

acids), and clinical variables - were integrated using OnPLS. Subsequent variable selection 

and visualization gave insights into cross-omics interactions, for example, by identifying a 

potential link between transcript levels of ATP6V1G1, a gene that has been associated with 

osteoporosis, and multiple metabolites that are dysregulated by inhaled corticoid steroids.

Other popular multi-block integration strategies include unsupervised methods such as 

regularized generalized canonical correlation analysis (RGCCA) and sparse generalized 

canonical correlation (SGCCA) [161], as well as the supervised framework Data Integration 

Analysis for Biomarker discovery using Latent cOmponents (DIABLO). DIABLO [39] is a 

multivariate classification method that extends SGCCA to a supervised analysis and 

prediction framework. It can identify key omics variables that drive the discrimination 

between phenotypic groups of interest and simultaneously builds a predictive model to 

classify new data [37,40,162–164]. For example, Qui et al. [40] integrated genomic, 

transcriptomic, epigenomic, and metabolomic datasets from patients with high and low bone 

mineral density (BMD). Using DIABLO, they identified a multi-omics biomarker panel for 

osteoporosis that includes 74 differentially expressed genes, 75 differentially methylated 

CpG sites and 23 differentially abundant metabolites. To gain further mechanistic insights 

into underlying disease mechanisms, the authors conducted a targeted QTL-based analysis in 

combination with Mendelian randomization. They were able to identify five biomarkers 

(ADRA2A, FADS2, FMN1, RABL2A, SPRY1) with a causal effect on levels of BMD. 

DIABLO and various other projection-based integration methods are implemented in the R 

package mixOmics [150] which is focused on data exploration, dimensionality reduction 

and visualization of multi-omics data.

Simultaneous integration strategies have been applied by relatively few studies so far, with 

mostly small numbers of samples/individuals. This is most likely due to the lack of larger 

available multi-omics datasets. Nevertheless, simultaneous integration, and especially multi-

block methods, are powerful tools that have the potential to fully exploit multi-omics data in 

integrative analyses.

4.3 Composite network approaches

Composite networks aim at capturing relationships between omics layers in heterogeneous 

networks by merging information from different knowledge-driven and/or data-driven 
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sources. This step-wise integration strategy is gaining increasing popularity due to its 

scalability and versatile applicability. In order to construct a composite network, the 

information from each knowledge-based (e.g., STRING, KEGG) or data-driven (e.g., 

correlation-based) component is stored and interconnected in accessible network structures 

(graphs) that are merged by overlaying common biological entities (Figure 2B–E). This can 

be accomplished by simple concatenation of the respective underlying edge lists, provided 

that there is some degree of overlap between the datasets and/or resources. The resulting 

network consists of nodes (biological entities such as genes, proteins and metabolites) 

connected by edges that model pairwise functional, biochemical or physical relationships 

[165]. Composite networks are per se not bound to a specific phenotype or disease of 

interest. Once built, they provide a comprehensive catalogue of inter- and intra-omics 

relationships that can be explored in post-integration analyses to identify and prioritize 

relevant entities in the neighbourhood of e.g. disease-associated genes within the network or 

to predict novel associations.

Composite networks can be built in a knowledge-based, data-driven or hybrid fashion. While 

knowledge-based integration allows the large-scale analysis of vast amounts of published 

information without requiring additional omics experiments [43], this approach is restricted 

to entities that have been annotated. Data-driven composite networks merge inferred 

information from experimental multi-omics data and, in contrast, can naturally only include 

the biological entities measured by the respective omics technology. By combining these two 

approaches, for example, by extending data-driven networks (e.g. built through QTL-based 

integration described in Section 4.2.1) with knowledge-based relationships (e.g., gene-

transcript-protein or drug-drug targets relations), it is possible to construct comprehensive 

multi-layered resources that facilitate the unbiased generation and exploration of multi-

omics hypotheses. HENA [166], a heterogeneous network-based dataset for Alzheimer’s 

disease (AD), is a recent example of this. Sügis et al. integrated data relating to AD, 

including GWAS results, protein-protein interaction, and gene co-expression networks, from 

public knowledge databases and experimental datasets. The resulting gene-centric network 

was subsequently analyzed using graph convolutional networks to identify disease-related 

genes, highlighting one of the many potential applications of composite networks. Future 

frameworks that additionally include metabolite data will provide even more comprehensive 

models for studying molecular mechanisms implicated in AD.

Although conceptually simple, the construction of composite networks is complicated at 

large due to the discussed challenges of ID mapping and compound identification (see 

Section 4.1), as well as differing data formats between resources, and considerations 

regarding statistical cut-offs and weighting of information types. Furthermore, the post-

integration analysis of these large and highly complex networks is not straightforward and 

requires sophisticated algorithms (further discussed in Section 5). Consequently, databases 

and frameworks that provide access to composite networks are attracting growing interest, 

such as ConsensusPathDB [167,168] and omicsNet [169,170].
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5 Post-integration analysis, visualization and interpretation

Post-integration analysis of inferred networks or multi-omics features through manual 

inspection or computational algorithms is key to gain biologically relevant insights and fully 

exploit the potential of multi-omics datasets. So far, a limiting factor has often been the 

ability to represent, comprehend and reproduce highly complex and multifactorial 

relationships across multiple biological domains [171].

For studies that are driven by a clear research question, interpretation can be straightforward. 

For instance, when building a predictor for a specific phenotype of interest, integration 

methods such as DIABLO (Section 4.2.2) result in a subset of interesting (in a statistical 

sense, e.g. most predictive, most significant) biological entities. This set of variables can 

then be subjected to downstream analyses to gain further functional insights or to investigate 

causality (e.g. via Mendelian randomization). Global integration efforts, on the other hand, 

enable exploratory analysis by systematically cataloging biological entities and their 

interactions without focusing on a specific phenotype or disease. Here, post-integration 

analysis through computational algorithms provides tools to identify patterns in the data and 

pinpoint interesting entities.

To this end, networks provide a flexible and intuitive mathematical framework to represent, 

visualize, and analyze these complex relationships [172]. Various techniques have been 

developed that facilitate the visual representation and exploration of networks in a human-

comprehensible form by arranging nodes and edges in specific layouts. For example, by 

grouping nodes together that are highly connected, modular patterns in the data become 

more visible [172]. However, with growing complexity and size, networks can quickly 

become very dense and difficult to comprehend [173]. Alternative representations of large 

networks, such as structural summary [174] or axis-based node-link representations [175] 

have been developed to mitigate these challenges and provide scalable layout alternatives 

[176].

In addition to providing intuitive visualization, networks enable the application of a rich 

toolbox of established graph algorithms to explore multi-omics networks and extract 

relevant information in an automated manner [177]. For example, multi-layer networks 

represent a promising mathematical framework, where layers of nodes (e.g., genes, proteins, 

metabolites) are connected by different edge types with varying degrees of connectivity 

(e.g., gene co-expression, trait association and protein co-abundance) [178,179]. Research 

fields such as graph theory and network science have developed various algorithms that can 

be applied to such heterogeneous networks, including random walk [43], module 

identification [180], or meta-path-based techniques [181]. This enables, for example, the 

prediction of novel edges [181], the identification of key players [182,183], or retrieval of 

interesting subnetworks (modules) [184–186]. Furthermore, native graph databases, such as 

Neo4j, represent an attractive framework for post-integration analysis as they enable the 

efficient storage and analysis of large amounts of semi-structured, diverse and highly 

connected data [187]. An extensive list of network-based multi-omics visualization tools and 

online resources is provided in Table 1.
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Even after successful identification of interesting entities or modules, the downstream 

functional interpretation and validation of such complex multi-omics findings is not 

straightforward. Direct replication as an important tool for identifying false positives [7] is 

often not an option due to the frequently limited availability of comparable and sufficiently 

powered omics studies. So far, validation of results has therefore often been performed using 

prior knowledge [171] to provide functional evidence, for example, through set-based 

enrichment (Section 4.1.1). However, with growing numbers of large-scale studies and 

efforts towards standardizing and indexing datasets across sources, such as the Omics 

Discovery Index (OmicsDI) [188,189], data-driven replication will become increasingly 

feasible in the future. Beyond that, it is often not possible to describe every finding from a 

multi-omics study in detail as results can be very complex and numerous. This consequently 

leads to biased or selective reporting of outcomes that are published [171]. To this end, the 

sharing of all results in easily accessible data repositories, such as NDEx [190], or dedicated 

supplemental web-servers [16,20,126], is becoming more popular as it enables the re-use of 

multi-omics results for further exploration or replication by other researchers.

6 Current trends and future perspectives

As highlighted in this review, various multi-omics integration strategies exist. Developments 

in research fields such as computer vision and natural language processing offer promising 

new directions for the unbiased integration of high-dimensional data. Recently, these fields 

have been transformed by the use of deep learning techniques, such as deep neural networks, 

which can handle vast amounts of data and are able to discover highly complex and relevant 

features [191,192]. In deep learning, multiple hidden layers enable the learning of new, 

highly complex data representations [191]. Furthermore, flexible architectures allow models 

to be tailored to many different problem domains, providing exciting new possibilities also 

for multi-omics integration studies [193,194]. For example, variational autoencoders (VAEs) 

[195] are popular representation learning methods that have been proposed for non-linear 

dimensionality reduction, unsupervised clustering and denoising of datasets [196,197]. They 

can be used to encode input data (e.g., different omics datasets) into a low-dimensional 

embedding, effectively integrating different omics types into a new latent representation 

[198]. A major limitation of deep learning algorithms, so far, has been their need for vast 

amounts of high-quality data and the complicated interpretation of model features 

[192,194,199]. However, the increasing availability of large multi-omics datasets and 

development of interpretable deep learning methods will enable more and more deep 

learning applications in the future [191,200].

Besides algorithmic innovations, the ongoing advances of analytical technologies will also 

provide novel opportunities and challenges for integrative studies. For example, spatial 

omics profiling has received increasing attention in the past few years due to the advent of 

high-resolution technologies to generate data in a fine-grained spatial resolution. This is 

particularly interesting for the cancer field, where there is increasing evidence that the tumor 

microenvironment, i.e., the collection of all stromal cells surrounding and supporting the 

tumor cells, plays a major role in prognosis and therapy [201]. For metabolomics, modern 

“Matrix Assisted Laser Desorption Ionization” (MALDI)-imaging mass spectrometry 

instruments can acquire metabolite profiles at almost single-cell resolution [202]. This rich 
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new type of data, composed of metabolites, samples, and two or more spatial dimensions, 

also requires innovative approaches for data processing, integration, and analysis. For 

example, single-cell metabolic profiles can be assigned and analyzed using the “SpaceM” 

method, which performs the interpolation of spatial measurement patterns onto microscopy 

images [203]. Similarly, new technologies and the corresponding computational methods 

allow for high-resolution protein profiling, e.g., using mass cytometry time of flight 

(CyTOF) instruments [204], and spatial transcriptomics data can be obtained by a growing 

number of sequencing and microarray-based techniques [205]. Future applications, where 

tissue samples or entire organs are analyzed in a sequential fashion with a combination of 

these techniques to generate spatial multi-omics datasets, promise unprecedented insights 

into the deep molecular biology of the systems under study.

7 Conclusions

The generation of vast amounts of biological data have generated exciting new opportunities 

to gain a systems view on molecular wirings across regulatory layers that define health and 

disease. However, the heterogeneous and high-dimensional nature of multi-omics datasets in 

combination with differing study objectives and data scenarios make the appropriate data 

integration strategy a case-by-case choice.

While knowledge-based strategies can guide integrative analysis by harnessing a large body 

of manually and experimentally validated information from databases and scientific 

literature, it is restricted to known or previously characterized biological entities and is not 

applicable for molecules with unknown function or identity. Data-driven methods, on the 

other hand, use statistical methods such as correlation or association analysis to infer 

relationships between omics layers. Although this can be prone to identification of spurious 

associations and success heavily depends on correctly preprocessed, high-quality data, data-

driven integration has the potential to discover novel as well as condition-specific 

interactions. In particular, multi-block integration methods that can simultaneously analyze 

datasets while taking into account inter-omics heterogeneity show exciting potential to fully 

exploit multi-omics datasets. To leverage the advantages of both approaches, network-based 

hybrid integration methods have emerged that enable the combination of knowledge-based 

and data-driven data integration. This facilitates the generation of highly complex multi-

omics interaction catalogues that can be mined in an automated fashion using graph 

algorithms.

With increasing availability of larger, high-quality datasets paralleled by the development of 

new omics technologies, the demand for powerful data analysis tools and standardized 

integration frameworks will continue to grow. The integrative analysis of these multi-omics 

data, enabled by publishing data in centralized data-repositories adhering to the FAIR 

Principles (Findable, Accessible, Interoperable and Reusable) [206], will finally allow 

researchers to promote the usability and reproducibility of their work and has the potential 

for achieving substantial advances in biomedical research and health care.
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Box 1. Glossary of important terms and concepts used throughout this 
review.

Integration method – A specific method/framework that performs data integration.

Integration strategy – Summary term for multiple data integration methods that follow 

the same principle.

Knowledge-based integration – Relationships between biological entities across and 

within omics are established using knowledge bases (extrinsic information).

Data-driven integration – Relationships between biological entities across and within 

omics are statistically inferred from multi-omics datasets (intrinsic information).

Simultaneous integration – Integration strategies that take into account all available data 

by merging the data and performing a single method on the concatenated matrix.

Single-block methods – Multivariate methods that perform simultaneous integration and 

do not take into account heterogeneities between the different omics datasets.

Multi-block methods – Multivariate methods that perform simultaneous integration and 

can take into account the block structure of multi-omics data by modelling each block 

separately.

Step-wise integration – Integration strategies that analyze omics datasets separately and 

integrate the results or models in a subsequent step.

Biological entity – Refers to a measured biological molecule such as protein, metabolite, 

lipid but also includes single nucleotide polymorphisms (SNP) and epigenetic alterations.
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Highlights

• multi-omics studies can unravel the complex molecular underpinnings of 

diseases

• data availability and study aims influence the selection of the integration 

strategy

• knowledge-based integration can enhance the biological interpretability of 

results

• data-driven integration can infer relationships between uncharacterized 

molecules

• network-based, hybrid integration strategies combine the strengths of both
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Figure 1. Multi-omics workflow.
A typical multi-omics analysis can generally be broken down into 4 steps. (i) Data 
generation. Study design, sample preparation and subsequent data acquisition through high-

throughput analytical platforms lead to different data scenarios. (ii) Data preprocessing and 
dimensionality reduction. Raw data collected on different omics layers is preprocessed 

appropriately and dimensionality reduction can be applied to reduce the number of variables 

(measured biological entities). (iii) Data integration. Data from different omics layers are 

analyzed and integrated using data-driven, knowledge-based or hybrid integration 

approaches. The choice of method depends on the input data and research question of 
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interest. (iv) Data interpretation. Post-integration visualization and analysis of the 

integration results (e.g., statistical model or network) can identify novel biomarker 

candidates, generate testable hypothesis or reveal meaningful biological relationships.
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Figure 2. Multi-omics integration through composite networks.
A. Different layers of a biological system that can be profiled using high-throughput 

technologies and are frequently integrated in multi-omics studies. B. Simultaneous 
integration. Correlation structures within and across omics datasets are analyzed using 

statistical methods. C. QTL-based integration. Using the genome as an anchor, quantitative 

trait loci (QTLs) identified in genome wide association studies (GWASs) are overlaid to 

establish links between different omics layers. D Knowledge integration. External 

information from metabolic databases or scientific literature is used to establish relationships 

between biological entities. E. Composite networks. By merging the networks inferred in 

(B-D) on common entities, comprehensive multi-omics catalogues can be constructed. These 

heterogenous networks can be mined in post-integration analysis using established graph 

algorithms.
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Table 1.

A selection of network-based multi-omics knowledge bases, visualization tools and online resources.

Network 
visualization Analysis tools

Project 
omics data 

onto 
network

Biological 
entities Implementation Reference

BioCyc x Enrichment analysis 
Flux analysis x genes proteins 

metabolites online [206]

KEGG x - x genes enzymes 
metabolites

online KEGGscape+ 

CytoKegg+ [76]

Reactome x Enrichment analysis ID 
mapping x

proteins 
metabolites 

diseases

online 

ReactomeFIViz+ [78]

Recon3D x x genes metabolites online [82]

PathwayCommons x Enrichment analysis - proteins 
metabolites drugs online R CyPath2+ [207]

WikiPathways x - - genes proteins 
metabolites

online WikiPathways
+ [208,209]

NDEx x Neighborhood search - various** online CyNDEx-2+ [190,210,211]

PaintOmics3 x
Clustering Correlation 
analysis Enrichment 
analysis ID mapping

x genes proteins 
metabolites online [68]

MetaboAnalyst x
Enrichment analysis ID 
mapping Shortest path 

analysis
x genes metabolites online R [84]

OmicsNet x
Clustering Enrichment 
analysis Shortest path 

analysis
x

genes proteins 
TFs miRNAs 
metabolites

online [169]

MetExplore x

Enrichment analysis 
Flux analysis ID 

mapping Shortest path 
analysis

x genes enzymes 
metabolites online [212]

ConsensusPathDB x
Clustering Enrichment 
analysis Shortest path 

analysis
x genes proteins 

metabolites online [167]

PathMe Viewer x Shortest path analysis genes proteins 
metabolites online [213]

MetScape x Correlation analysis 
Enrichment analysis x genes enzymes 

metabolites MetScape+ [214,215]

**
no restrictions

+
Cytoscape Application [216]
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Table 2.

A selection of multi-omics data integration frameworks and methods.

Requires 
matching 
samples

Integration 
strategy Implementation Reference Description

KNOWLEDGE-
BASED

IMPaLA no enrichment online [93] Integrated Molecular Pathway Level Analysis 
(IMPaLA) enables joint pathway analysis.

COBRA - constraint-based 
modelling

MATLAB Python 
Julia [69,104] The COnstraint-Based Reconstruction and 

Analysis (COBRA) Toolbox.

PathMe - composite 
network online Python [213] Integrates KEGG, Reactome and 

WikiPathways into a unified abstraction.

DATA-DRIVEN

KeyPath wayMiner no de novo 
enrichment

online Cytoscape 
software [97,98] Extracts all maximal connected sub-networks 

which enriched for dysregulated entities.

MI-MFA partially imputation/
ensemble

R code in 
supplementary [217]

Uses multiple imputation (MI) to enable the 
application of multiple factor analysis (MFA) 

to multi-omics data with partially missing 
single-omics profiles.

MOFA partially imputation R Python [218,219]

Unsupervised integration framework that 
infers a low-dimensional data representation 
and enables the imputation of missing omics 

profiles.

causalMGM yes single-block online [220]

Learns a causal (i.e., directed) graph using 
variable selection with subsequent application 

of a mixed graphical model (MGM) PC-
Stable algorithm.

omicade4 yes single-block R [217] Projection-based method that performs 
multiple co-inertia analysis.

xMWAS yes single-block online R [221]
Uses (sparse) Partial Least Squares regression 
to perform pairwise correlation analyses and 

build a heterogenous network.

mixOmics yes multi-block R [150]

Collection of unsupervised and supervised 
multivariate methods, including sparse 

generalized canonical correlation analysis 
(SGCCA) and Data Integration Analysis for 

Biomarker discovery using Latent 
cOmponents (DIABLO).

OnPLS yes multi-block Python [158,159]
Projection-based integration method that 

decomposes global, local and unique levels of 
variation.
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