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Abstract

Free-text problem descriptions are brief explanations of patient diagnoses and issues, commonly 

found in problem lists and other prominent areas of the medical record. These compact 

representations often express complex and nuanced medical conditions, making their semantics 

challenging to fully capture and standardize. In this study, we describe a framework for 

transforming free-text problem descriptions into standardized Health Level 7 (HL7) Fast 

Healthcare Interoperability Resources (FHIR) models.

This approach leverages a combination of domain-specific dependency parsers, Bidirectional 

Encoder Representations from Transformers (BERT) natural language models, and cui2vec 

Unified Medical Language System (UMLS) concept vectors to align extracted concepts from free-

text problem descriptions into structured FHIR models. A neural network classification model is 

used to classify thirteen relationship types between concepts, facilitating mapping to the FHIR 

CONDITION resource. We use data programming, a weak supervision approach, to eliminate the 

need for a manually annotated training corpus. Shapley values, a mechanism to quantify 

contribution, are used to interpret the impact of model features.

We found that our methods identified the focus concept, or primary clinical concern of the 

problem description, with an F1 score of 0.95. Relationships from the focus to other modifying 

concepts were extracted with an F1 score of 0.90. When classifying relationships, our model 

achieved a 0.89 weighted average F1 score, enabling accurate mapping of attributes into HL7 

FHIR models. We also found that the BERT input representation predominantly contributed to the 

classifier decision as shown by the Shapley values analysis.
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1 Introduction

The problem-oriented medical record (POMR) was a significant change in how the clinical 

patient record was structured.[1] Introduced in 1968, this strategy involves using concise 

descriptions of a patient’s current health concerns to serve as indexed headings into the 

larger medical chart.[2] These summary level “problem descriptions” describe complex 

clinical conditions with important supporting context such as severity/stage, body location, 

related or contributing conditions, and so on, and are an integral part of the POMR as a 

whole.

By orienting the record around clinical problems, the POMR is by definition predicated on 

the ability to accurately and succinctly describe a patient’s pertinent issues.[3] Furthermore, 

it also places a greater burden on ensuring that problems are described comprehensively and 

in a standardized way.[4] Although these challenges pre-dated the widespread 

implementation of the electronic health record (EHR), the structure inherent in EHRs did not 

alleviate issues regarding how clinical problems are represented.[5] Specifically, while the 

expressiveness of free-text is required by clinicians to convey their impressions and 

reasoning regarding a patient’s problems,[6] structured representation and standardization 

are beneficial for processing and analytics.[7]

Codification, or the assignment of codes or terms from a controlled terminology, is a 

common strategy for capturing and standardizing the semantics of a clinical problem. This 

can be done by the clinician directly, but requires significant time and effort[8] and adds to 

an already full clinical workload.[9] Alternatively, this coding may be accomplished using 

automated or semi-automated Natural Language Processing (NLP) techniques. Even if 

automated, codification often fails to capture the entirety of the clinician’s intent, a situation 

known as the “content completeness problem.”[10,11] This issue is rooted in the fact that 

natural language descriptions of medical problems are often too expressive to be fully 

represented via a finite set of terms.[12]
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The content completeness problem is of particular importance to clinical problem 

descriptions, as it has been shown empirically that clinical problems often cannot be 

sufficiently described by a single concept, but instead require a set of concepts to capture 

modifiers and other related context.[13–15] To account for this, logical models can be paired 

with codification to create a more robust standard for data representation and exchange.[16] 

Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR), an emerging 

specification for representing clinical data, is a prominent example of this type of 

standardization.[17] FHIR specifies several models (or “Resources”) for many types of 

healthcare data, including representations specifically suited for clinical problems.

The goal of this study is to introduce a framework for encoding free-text clinical problem 

descriptions using HL7 FHIR. Our methods focus on combining machine learning 

techniques with rule-based methods and domain-specific knowledge bases to map free-text 

problem descriptions to FHIR-based structured representations.

2 Background and Significance

The standardization of free-text clinical problems has long been a focus of research. Concept 

extraction, or mapping text mentions to standardized terminologies or ontologies, is a 

fundamental clinical NLP task and an important step towards a standardized problem 

representation. Prominent implementations such as MetaMap[18] and Clinical Text Analysis 

and Knowledge Extraction System (cTAKES)[19] have been widely adopted and used for a 

variety of standardization applications.[20]

While concept extraction is an essential first step, further standardization may be applied by 

organizing the extracted concepts into logical structures that better capture their full context 

and semantics. The Medical Language Extraction and Encoding System (MedLEE)[21] 

accomplishes this using frames,[22] or structures that link concepts to their modifiers and 

related terms. Similar notions of combining, or “post-coordinating” concepts are natively 

built into the Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT) 

ontology via the SNOMED CT compositional grammar.[23]

In their most structured form, clinical problems may be represented via common information 

models.[24] Efforts such as the Clinical Element Model (CEM)[25] and the Clinical 

Information Modeling Initiative (CIMI)[26] aim to define a standard set of attributes and 

modifiers for clinical data exchange. HL7 FHIR is the latest of these efforts, and for this 

study the CONDITION resource of the FHIR specification is the chosen target for clinical 

problem representation.

The use of NLP to extract information from clinical text as FHIR resources is a growing 

field of study,[27–29] driven in part by the increasing prominence of FHIR in the healthcare 

information landscape.[30] The NLP2FHIR project, based on several Unstructured 

Information Management Architecture (UIMA)[31] tools, extracts a broad range of FHIR 

resources from unstructured clinical notes.[32] In contrast to the broader scope of 

NLP2FHIR, our study exclusively focuses on encoding summary level problem descriptions 

into FHIR CONDITION resources. While care was taken to ensure our techniques could 
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generally be applied to other free-text clinical data (such as procedures, labs, medications, 

and so on), the nuances of those transformations are beyond the scope of this work. While a 

focus on clinical conditions narrows our purview, several new challenges are introduced:

• Although free-text problem descriptions are generally terse, they are surprisingly 

expressive, and routinely encompass semantics outside the bounds of single 

concepts from a controlled terminology or vocabulary.[14,15]

• They are often phrased as collections of medical terms, which generally have 

quite different grammatical and linguistic characteristics as compared to the 

larger clinical note narrative.[33] Specifically, these problems are generally 

represented as noun phrases as opposed to full sentences.

• It is known that non-standard grammar, sentence structure, and word usage, or 

non-canonical text, poses significant problems for NLP model reuse.[34] As 

stated, these problem descriptions do not follow a canonical notion of grammar 

or structure – and complex noun phrases have proven to be especially difficult 

for many NLP parsing tasks.[35,36] Given this, existing NLP models may 

perform poorly when applied to these problems.

Our main contribution in this study is a standardization framework for clinical problem 

descriptions using HL7 FHIR, an expansion of our previous work on codifying problems 

using the SNOMED CT compositional grammar.[37] We extend this previous study in the 

following areas: First, we update our target representation to the FHIR CONDITION resource to 

take full advantage of the growing FHIR healthcare ecosystem. Next, we increase the 

performance of our previous methods through the addition of training techniques based on 

incorporating rule-based methods, weak labeling, and distant supervision. This was 

necessary to make our previous methods more resilient to the linguistic heterogeneity seen 

in real-world clinical text – a main limitation of our previous work. Finally, we add a 

thorough analysis of our model features using the latest neural network explainability 

methods, giving us important insight into what model features are important and why.

3 Methods and Materials

We define our clinical problem description standardization task as such: Given a free-text 

description of a patient’s clinical problem, output an HL7 FHIR CONDITION resource 

representing the codified problem and all relevant modifiers and context. We account for the 

specific challenges of processing problem descriptions using three general methodological 

foci: (1) an emphasis on leveraging existing pre-trained models to maximize transfer 

learning, using fine-tuning where necessary, (2) the incorporation of rule-based methods 

with neural network models to avoid manual training data annotation, and (3) the usage of 

recent advances in neural network explainability to examine the importance of the features 

in our model. Our methods are broadly segmented into five subtasks that gradually build an 

increasingly structured and standardized representation of the clinical problem. Figure 1 

highlights the high-level steps of the standardization framework, the details of which are 

explained further below.
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3.1 Preprocessing: Dependency Parsing

Dependency parsing is the formalization of text into a graph of words and their syntactic 

relationships. It is an important input into many clinical NLP tasks such as concept 

extraction,[38] semantic parsing,[39] and negation detection,[40] and contributes 

prominently to several of the subtasks described in our methods below.

For all clinical problem dependency parsing we used the spaCy NLP platform with a custom 

parsing model fine-tuned from the pre-trained ScispaCy Biomedical model.[41] To fine-tune 

the model, we manually annotated 141 problem descriptions with their correct dependency 

parses. To keep the amount of manual annotation as low as possible, we used data 

augmentation, a strategy to increase the size and heterogeneity of training data. While many 

NLP data augmentation algorithms focus on expanding synonyms,[42,43] we used 

SNOMED CT to expand SNOMED CT QUALIFIER VALUE terms matched in the text, similar 

in concept to what Kobayashi describes as “contextual augmentation.”[44] For example, 

given a problem “severe contusion”, we recognize that the term severe is a child of the 

SNOMED CT concept 272141005|Severities|. Given this, we can expand this training 

example with other Severities, yielding “mild contusion”, “moderate contusion”, and so on. 

With data augmentation, we expanded our training set to 349 entries.

3.2 Subtask: Focus Concept Selection

We define the “focus concept” of a problem description as the semantic root, or primary 

concept from which the remaining concepts are either directly or indirectly connected. As 

summary level problem descriptions are primarily noun phrases, we hypothesize that the 

ROOT word of the dependency parse will align with the focus concept, a hypothesis based 

primarily on the work of Spasić et al.[45] Representing our text as a set of tokens S, this step 

aims to learn a function that inputs the problem description tokens S and outputs the root 

token r such that r ∈ S. This technique closely aligns with methods used in our previous 

work to select the focus concept for a SNOMED CT expression.[37] Note that this approach 

assumes each problem description primarily describes one and only one clinical problem. 

While a single problem description may contain several mentions of different conditions, 

signs, or symptoms, it is assumed that all serve to modify or add context to a single focus 

problem. Other formats of problem descriptions, such as concatenations of multiple, 

unrelated problems (for example: “Tonsillitis; fracture of the femur”) are beyond the scope 

of this subtask.

3.3 Subtask: Concept Extraction

We extracted concepts from the text using MetaMap,[18] a tool based on the Unified 

Medical Language System (UMLS)[46] used to link free-text mentions of biomedical 

concepts to their corresponding UMLS concepts via Concept Unique Identifiers (CUIs). 

Given problem description text S composed of s1,…,s|s| tokens, we used MetaMap to 

implement the mapping S↦E where E is a set of UMLS concepts.

3.4 Subtask: Untyped Directed Relation Extraction

It has been shown by Reichartz et al.[47] that using a dependency parse tree can be an 

effective way to extract semantic relationships between entities in text. Several biomedical 
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relation extraction systems leverage the dependency parse tree, incorporating it into a wide 

variety of model architectures including rule-based approaches,[48,49] kernel-based 

methods,[50,51] and recently deep learning models.[52,53] The goal of this subtask is 

similarly to extract a set of untyped, directed entity relationships between a source and target 

entity, or (e1,e2). We implemented this by connecting pairs of entities via their shortest path 

in the dependency parse. Entities e1 and e2 are considered connected if (1) a path exists from 

e1 to e2, and (2) no other entity exists on the path between them.

3.5 Subtask: Relation Classification

Classifying relationships between biomedical concepts is an important task with wide-

reaching applications,[54] with use cases including chemical-disease relations,[55,56] 

disease-symptom relations,[57] and protein–protein relations.[58] In this subtask we aim to 

classify the untyped relationships extracted via the Untyped Directed Relation Extraction 

subtask, or r(e1,e2), where r represents the relationship type, and e1 and e2 represent the 

source and target entity, respectively. Further details regarding the methodology for this 

subtask are detailed below.

3.5.1 Relation Type Selection—We selected twenty-one relation types for inclusion in 

this study. Relation types were chosen via satisfaction of one or more of the following 

criteria: (1) they can be directly mapped to an attribute of the FHIR v4.0.1 CONDITION 

resource, (2) they are associated with a standard FHIR CONDITION extension, or (3) they are 

included in prominent clinical data models other than the FHIR specification. This was done 

to give our classifier a broader semantic range given that the FHIR specification allows for 

extensibility. Relationship types that did not come directly from the FHIR specification were 

obtained via a survey of the following models: the Clinical Element Model (CEM) - 

ClinicalAssert model,[25] the openEHR - Problem/Diagnosis archetype,[59] and the Clinical 

Information Modeling Initiative (CIMI) FindingSiteConditionTopic logical model.[26]

Table 1 shows these relationship types and their mapping to the FHIR model. Note that as 

shown in the table, some map directly to attributes in the FHIR CONDITION resource, some 

map to standard FHIR extensions, and some have no direct mapping to FHIR at all. For 

those with no FHIR mapping, the standardization framework(s) from which they were 

selected are listed.

3.5.2 Relation Classification Model Architecture—An artificial neural network 

model was chosen for the relation classification task. The architecture consists of a fully-

connected neural network with one hidden layer containing 256 nodes using ReLU 

activation functions. The output layer of this network contains one node for each relation 

class (see Table 1) using softmax activation functions. Dropout rates of 0.5 were used to 

prevent overfitting. The ultimate output of the model is a probability for each relationship 

class. We used the Keras framework[60] to implement our model.

A variety of input representations ranging from text embeddings to facets of the extracted 

UMLS concepts were selected as input features. Special emphasis was placed on 

incorporating features based on pre-trained, domain-specific models where transfer learning 

could be leveraged. The full feature set is described below.
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Source/Target Entity Text Embedding (BERT): We transformed text into a suitable input 

format via Bidirectional Encoder Representations from Transformers (BERT),[61] a deep 

learning-based language representation aimed at capturing the semantic intent of words in 

context. We specifically used the pre-trained ClinicalBERT model, a BERT-based model 

trained on clinical notes.[62] For each of the source and target entities we obtained a 768-

dimensional vector using mean pooling of the second-to-last BERT layer. BERT embeddings 

were incorporated into our pipeline via the bert-as-service project.[63]

Source/Target Entity Concept Embedding (cui2vec): We incorporated vectors from the 

extracted source and target entity concepts using cui2vec, a UMLS concept embedding 

model.[64] The concept embedding of cui2vec was used specifically for transfer learning of 

UMLS semantics into our model. The UMLS concepts of the source and target entities were 

mapped to 500-dimensional vectors from a pre-trained cui2vec model.[64]

Dependency Parse Shortest Path: The shortest path through the dependency parse between 

the source and target entities is hypothesized to be helpful in determining their semantic 

relationship.[50] Furthermore, it has been shown that incorporating this as a feature in a 

machine learning model can improve relation extraction performance.[65] A BERT vector of 

the path was used to represent this feature.

Source/Target Entity Semantic Type: For both the source and target concepts extracted 

during the Concept Extraction step, MetaMap also assigns concepts one or more of the 127 

UMLS semantic categories called semantic types.[66] These categories were used as 

features to represent the high-level semantics of the concepts.

Source/Target Entity Semantic Type Group: The source and target entity semantic types 

are additionally grouped into fifteen even broader categories called semantic groups,[67] 

representing the coarsest level of semantics in our feature set.

3.5.3 Data Programming—We merged rule-based and neural network NLP approaches 

by using data programming,[68] a technique for creating a weakly-labeled training data set 

given a set of “labeling functions,” or domain-specific rules crafted by subject matter experts 

or other domain-specific oracles. We used the Snorkel framework to train a generative model 

from our labeling functions, and used that model to generate training data for the 

downstream neural network model.[69] Data programming allows us to address two main 

challenges: (1) we avoid the cost and time of using specially trained clinical informaticians 

to hand-annotate training data,[70] and (2) we incorporate domain knowledge via symbolic 

approaches and distant supervision,[71,72] highlighting the importance of leveraging 

domain expertise via rule-based approaches.[73,74] For our data programming 

implementation, we created approximately thirty labeling functions using both hand-crafted 

rules and distant supervision using SNOMED CT. Our neural network training data set was 

generated by applying the generative data programming model to 100,000 problem 

descriptions extracted from a large clinical corpus.[14]

3.5.4 Interpretability & Feature Attribution—Shapley values are a mechanism to 

quantify the contributions (in terms of gains or losses) of members of a coalition cooperating 
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toward a common goal.[75,76] Shapley values have been applied to determining feature 

importance of machine learning models,[77] and are used here to gain insight into our 

relationship classification model.

Feature attribution can be cast as a game theory problem as such: First, given a set of model 

features F, assume we wanted to determine the contribution of some feature j where j ∈F. 

Next, we generate a subset of F as S such that does not include the feature of interest j. We 

test the contribution of feature j by measuring its contribution v(S ∪ {j}) ― v(S) where v 
denotes the characteristic function, or the total contribution of a set of features toward the 

end goal. In our case, the characteristic function input is a set of features, and the output is 

the probability of the chosen relationship label. By repeating this for all subsets of F such 

that S ⊆ F\{j}, we compute the Shapley value ϕj as:

ϕj(v) = ∑
S ⊆ F \{j}

S !( F − S − 1)!
F ! (v(S ∪ {j}) − v(S))

We then explain the approximate contribution of a feature φj by averaging all Shapley values 

over a random sampling of n training samples.[78]

φj = 1
n ∑

i = 1

n
ϕj

(i)

3.6 Subtask: Alignment to HL7 FHIR

Table 1 shows the basic mappings of our chosen relation types to the FHIR CONDITION 

resource. Any relationship that does not map directly to a FHIR CONDITION attribute will be 

added as a FHIR extension, and the CONDITION.CODE attribute of the FHIR CONDITION 

resource will be set to the focus concept extracted via the Focus Concept Selection subtask. 

FHIR alignment also involves mapping each extracted UMLS concept to SNOMED CT. To 

do this, we used the UMLS Metathesaurus to find the SNOMED CT concept associated with 

the given UMLS concept. If the UMLS concept maps to more than one SNOMED CT 

concept, each SNOMED CT concept will be added as a FHIR CODING for the particular 

FHIR attribute.

3.7 Evaluation & Experiments

Six hundred problem descriptions extracted from a large clinical notes corpus were manually 

annotated by three annotators. Annotation consisted of finding the focus concept of the 

problem (i.e. the primary disease or finding), all related diseases, findings, or modifiers, and 

the relationship types that connect them (see Table 1). BRAT,[79] a freely-available 

annotation tool, was used to conduct the annotation. Inter-annotator agreement was 

measured via Krippendorff’s alpha score.[80] We conducted the following experiments to 

analyze the performance of our framework.

3.7.1 Untyped Directed Relation Extraction & Focus Concept Selection—
Because both Untyped Directed Relation Extraction and Focus Concept Selection subtasks 
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are based on dependency parsing, we evaluated them in tandem. For Untyped Directed 

Relation Extraction, we evaluated the effectiveness of using dependency parsing to 

determine related concepts (regardless of relationship type). We used the evaluation corpus 

detailed above with the following experiment: First, we extracted from the evaluation corpus 

all annotated relationships and retained a list of all source/target tuples. Then, we compared 

the annotated relationships with those asserted from the dependency parse. Figure 2 

illustrates this test. In this example, Dependency Parse A produces three incorrect 

relationships, while Dependency Parse B fully corresponds to the human-annotated 

example.

In our Focus Concept Selection subtask, we hypothesize that the ROOT dependency of the 

dependency parse will correspond to what a human annotator would specify as the focus 

concept of the problem description. We tested this by running our dependency parse model 

on each problem description in the evaluation set and measuring the accuracy with which the 

dependency parse ROOT dependency corresponds to the human-annotated focus.

We further hypothesize that performance for both tasks above will increase as the 

dependency parse model is increasingly tuned to the domain. To test this, we ran the above 

evaluations using four dependency parse models. First, we evaluated two unmodified pre-

trained models: (1) the Default spaCy English model, and (2) ScispaCy Biomedical, a spaCy 

model specifically trained on biomedical data sets.[41] Next, we evaluated two fine-tuned 

models as described in the Dependency Parsing step: (1) ScispaCy Biomedical fine-tuned 

with 141 annotated dependency parses from a random set of problem descriptions, and (2) 

that same fine-tuned model plus data augmentation.

3.7.2 Relation Classification & Data Programming—To test the ability of our 

framework to determine the correct semantic relationship type between entities, we next 

evaluated the performance of our relation classification model. We specifically tested 

whether or not the data programming approach can effectively be used to train a neural 

network model. First, we evaluated the performance of our data programming rule-based 

model on the test set. Next, we trained the neural network classifier via data generated from 

the data programming model. Finally, we compared the performance of the two models. We 

hypothesize that the neural network model will have better performance than the rule-based 

model.

4 Results

The gold standard annotation of the evaluation set of six hundred problem descriptions by 

the three annotators resulted in 1553 relationship annotations and 2057 focal concept/

modifier entity annotations. We recorded Krippendorff’s alpha inter-annotator agreement 

scores of 0.79 for the relationships and 0.94 for the focal concepts. In the case of annotator 

disagreement, simple majority vote was used to adjudicate. As a result of class imbalance in 

the evaluation set, results from any relationships with less than fifteen supporting evaluation 

annotations are not reported in this study.
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Tables 2 & 3 show the results of the Focus Concept Selection and Untyped Directed 

Relation Extraction subtasks. Both focus concept and untyped directed relation F1 scores are 

the highest when using the domain-specific fine-tuned dependency parse model. Note that 

while fine-tuning resulted in a large performance boost, data augmentation had little if any 

positive performance impact.

Table 4 shows the F1 scores for the neural network relationship classification model for all 

relationship types supported by more than fifteen annotated relationships in the test set.

Figure 3 contrasts the F1 scores of the trained neural network model as compared to the data 

programming rule-based model used to create the training data. This figure highlights the 

amount of improvement gained via data programming when using the rule-based model as a 

baseline.

Table 5 shows the Shapley values for the nine relation classification model features. BERT 

vectors are shown to have the most impact, and features of the target entity contribute more 

to the model than the source entity. Shapley values for each of the individual relationships 

under test are shown in Figure 4. While BERT vectors are prominent, there are some 

differences to be noted in feature importance across classes – notably, that the dependency 

parse shortest path contributes almost exclusively to two relationship classes and relatively 

little to others.

5 Discussion

The use of dependency parse-based methods for finding the focus concept and untyped 

entity relations of problem descriptions was an effective approach, as shown by Tables 2 & 

3. Furthermore, these tables show that performance was significantly increased by fine-

tuning the pre-trained ScispaCy Biomedical parsing model. This reinforces our first 

methodological focus of emphasizing transfer learning and fine-tuning, as a significant 

increase in performance was achieved with a relatively small cost of manual training data 

annotation. Conversely, our data augmentation algorithm did not yield a noticeable change 

in performance. Kobayashi also reported minimal improvement with a similar non-synonym 

word replacement augmentation technique,[44] leading us to conclude that more exploration 

is needed to determine if data augmentation can be successfully applied to this task.

Given the extracted untyped entity relationships, Table 4 shows that our neural network 

model was able to classify the correct relationship type with an overall 0.89 weighted 

average F1 score. Although performance on several relationship types surpassed a 0.9 F1 

score, some variation in performance across different types is noted. Specifically, the 

classifier struggled with the more semantically open-ended relationship types such as 

associatedSignAndSymptom.

Figure 3 shows that data programming can be an effective technique for augmenting a rule-

based approach, as the neural network classifier was able to outperform the data 

programming rule-based classifier. This pairing of a rule-based system with a neural 

network model eliminated the need for creating a human-annotated training data set, a 

significant savings of time and effort. It also adds evidence that our second methodological 
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focus of incorporating rule-based methods and knowledge bases is both an effective and 

pragmatic technique for this task.

Figure 4 and Table 5 show that BERT features dominate the Shapley value analysis of the 

system. It is of interest to note, however, that for two attributes dueTo and 

occurredFollowing, the “Dependency Parse Shortest Path” feature dominates, as shown in 

Figure 4. Qualitative analysis of the results shows that these two relationship types generally 

have indicative words between the two entities, for example “right-sided [CHF]source caused 
by chronic [pulmonary embolism]target” and “chronic low thoracic [pain]source after 
[fall]target”. This also reinforces the shortest path hypothesis[50] in that the words between 

source and target entities in the dependency parse tree primarily contribute to their 

relationship type. Also of note is the relatively small importance of the cui2vec vectors when 

compared to the BERT representations. This observation is in line with similar findings of 

Kearns et al.[81] Given our last methodological focus of explainability, we can use these 

insights in the future to improve our model. For example, we may use the findings in Table 5 

to justify the removal of low-impact features, simplifying our architecture. More 

importantly, we know that feature importance in our model is not evenly distributed between 

relationship types – some features such as “Dependency Parse Shortest Path” may have low 

average overall impact but are critical to certain relationships. This will be an important 

consideration as we expand our model to different relationship types.

From an implementation perspective, the methods described in this framework are intended 

to be generalizable to any data set of clinical problem descriptions. Given the data 

programming approach, large-scale annotation of training of data is not necessary, but 

adaptation to a particular context or data set does include the following steps:

• Implementation of labeling functions. Our data programming approach is 

heavily dependent on accurate labeling functions to produce the training data set. 

Implementers of this framework should expect to create a set of labeling 

functions using rules or heuristics specific to their data.

• Fine-tuning the dependency parse model. An accurate dependency parse 

model is an important facet of our approach. While Tables 2 & 3 show that 

reasonable performance can be obtained using freely available pre-trained 

models, at least a small amount of fine-tuning is recommended to account for 

data set specific variations in problem description phrasing or structure.

6 Conclusion

In this study we have described a framework for standardizing free-text clinical problem 

descriptions using HL7 FHIR. We have demonstrated that by leveraging domain-specific 

knowledge bases and rules, we were able to combine data programming and neural networks 

to achieve higher performance than via a rule-based approach alone, all while minimizing 

the need for human-annotated training data. We also examined the feature set of our model 

and found that BERT language representations contribute significantly more to model 

performance compared to cui2vec’s concept-based vectors. These methods ultimately allow 

for the alignment of free-text clinical problems into the HL7 FHIR CONDITION resource. All 
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source code for this framework is available via https://github.com/OHNLP/clinical-problem-

standardization.
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Highlights

• A multi-faceted framework for standardizing free-text clinical problem 

descriptions

• Data programming helps to eliminate the need for manually annotated 

training data

• Fine-tuning of existing pre-trained models improves performance

• BERT embeddings are critical for classifying concept-to-concept relations

• Shapley value analysis shows different relations rely on different model 

features
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Figure 1: 
The high-level processing steps for encoding a free-text clinical problem description into an 

HL7 FHIR CONDITION Resource.
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Figure 2: 
An example of the evaluation of an annotated problem description. We evaluate the ability of 

our dependency parsing model to learn the correct (untyped) relationships. When compared 

to the human-annotated example (top), Dependency Parse A reflects poor alignment, while 

Dependency Parse B corresponds completely.
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Figure 3: 
Relation classification results compared to the rule-based data programming baseline model.
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Figure 4: 
Contrasting the Shapley values for the nine source and target entity features of the relation 

classifier for each of the evaluated relationship types. Note that negative Shapley values 

indicate that the feature had a detrimental contribution.
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Table 1:

The set of twenty-one relation types considered in the Relation Classification subtask with their mappings to 

the FHIR CONDITION resource.

Relation Type FHIR Mappings

Base FHIR Condition

clinicalStatus Condition.clinicalStatus

verificationStatus Condition.verificationStatus

severity Condition.severity

bodySite Condition.bodySite

stage Condition.stage

Standard FHIR Extensions

dueTo condition-dueTo

ruledOut condition-ruledOut

occurredFollowing condition-occurredFollowing

associatedSignAndSymptom condition-related

laterality BodyStructure

anatomicalDirection BodyStructure

Non-FHIR Attributes

course CIMI:FindingSiteAssertion - clinicalCourse

OpenEHR:Problem/Diagnosis Archetype - Course label

periodicity CIMI:FindingSiteAssertion - periodicity

exacerbatingFactor CIMI:FindingSiteAssertion - exacerbatingFactor

interpretation CIMI:FindingSiteAssertion - interpretation

findingMethod CIMI:FindingSiteAssertion - method

historicalIndicator CEM:ClinicalAssert - historicalInd

OpenEHR:Problem/Diagnosis Archetype - Current/Past?

certainty OpenEHR:Problem/Diagnosis Archetype - Diagnostic certainty

CEM:ClinicalAssert - likelihood

risk CEM:ClinicalAssert - riskForInd

negatedIndicator generic negation modifier

otherwiseRelated any other non-specified relationship
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Table 2:

Evaluation results from the Focus Concept Selection subtask.

model precision recall f1-score

ScispaCy Biomedical + fine-tuning + data augmentation 0.95 0.94 0.94

ScispaCy Biomedical + fine-tuning 0.96 0.94 0.95

ScispaCy Biomedical 0.70 0.68 0.69

Default spaCy English (baseline) 0.68 0.66 0.67
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Table 3:

Evaluation results from the Untyped Directed Relation Extraction subtask.

model precision recall f1-score

ScispaCy Biomedical + fine-tuning + data augmentation 0.89 0.90 0.90

ScispaCy Biomedical + fine-tuning 0.88 0.9l 0.89

ScispaCy Biomedical 0.84 0.70 0.76

Default spaCy English (baseline) 0.84 0.65 0.73
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Table 4:

Relation classification results of the neural network model trained via data programming.

relation type precision recall f1-score # annotations

laterality 0.99 0.99 0.99 167

anatomicalDirection 0.96 0.96 0.96 25

interpretation 0.94 0.94 0.94 18

historical 0.97 0.90 0.94 81

bodySite 0.98 0.90 0.94 235

certainty 1.00 0.87 0.93 45

severity 1.00 0.80 0.89 41

stage 0.95 0.83 0.88 23

course 0.76 0.85 0.80 41

occurredFollowing 1.00 0.66 0.79 29

dueTo 0.89 0.66 0.76 38

clinicalStatus 1.00 0.47 0.64 68

associatedSignAndSymptom 0.50 0.81 0.62 43

— — — — —

micro avg 0.92 0.85 0.89 854

macro avg 0.92 0.82 0.85 854

weighted avg 0.94 0.85 0.89 854
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Table 5:

Shapley values for the nine features input into the relation classifier.

Shapley value % total contribution

Target Vector (BERT) 0.715 78.71

Dependency Parse Shortest Path 0.1057 11.64

Target Vector (cui2vec) 0.0634 6.98

Source Vector (BERT) 0.0163 1.8

Target Semantic Type 0.0041 0.45

Target Semantic Type Group 0.0013 0.14

Source Vector (cui2vec) 0.0012 0.13

Source Semantic Type 0.0009 0.1

Source Semantic Type Group 0.0004 0.05
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