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Chemistry in Times of Artificial Intelligence
Johann Gasteiger*®

Dedicated to the memory of Professor Rolf Huisgen who passed away on March 26, 2020, shortly before his 100" birthday.
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Chemists have to a large extent gained their knowledge by
doing experiments and thus gather data. By putting various
data together and then analyzing them, chemists have fostered
their understanding of chemistry. Since the 1960s, computer
methods have been developed to perform this process from
data to information to knowledge. Simultaneously, methods
were developed for assisting chemists in solving their funda-
mental questions such as the prediction of chemical, physical,
or biological properties, the design of organic syntheses, and

1. Introduction

Artificial Intelligence (Al) has entered many domains of society,
and artificial intelligence methods are used for such diverse
tasks as human speech recognition, successfully competing
with experts in strategic games (like chess and GO), and
autonomously operating cars. These methods essentially derive
their power by learning from data and are sometimes called
machine learning or even deep learning.

Chemistry has from the very beginning derived its knowl-
edge from data. Chemists have run experiments to obtain data
on chemical or physical properties, on chemical reactions, or on
biological activities. These data were then used to make
predictions by analogy or to derive models for the principles
that underly the data. To foster an understanding of chemistry
in students Rolf Huisgen has written a chapter “Mesomerie-
Lehre” for a textbook on laboratory experiments." It should,
however, be recognized that the concepts of inductive and
resonance effect contained in this chapter were not derived
from any theory but were an attempt to order the observations
and data on product distributions and reaction rates in electro-
philic aromatic substitution.

By doing experiments, chemists have amassed a huge
amount of data on chemical structures and their properties. In
1971, about one million substances were registered in the
Chemical Abstracts Service STN database and our supervisor
Rolf Huisgen gave us the impression that he knew whether a
compound was known or not-and we could not find a case
where he was wrong. While this may have been feasible with
one million compounds it is definitely not possible any more
now with 160 million organic and inorganic substances and 68
million protein and nucleic acid sequences in the CAS database.

This review will show how the methods of chemoinfor-
matics have made accessible this huge amount of data and
information and how these data can be converted into knowl-
edge to increase our understanding of chemistry and to
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the elucidation of the structure of molecules. This eventually
led to a discipline of its own: chemoinformatics. Chemo-
informatics has found important applications in the fields of
drug discovery, analytical chemistry, organic chemistry, agri-
chemical research, food science, regulatory science, material
science, and process control. From its inception, chemoinfor-
matics has utilized methods from artificial intelligence, an
approach that has recently gained more momentum.

accelerate chemical innovation. It will further be shown where
new methods from artificial intelligence are introduced into
various fields of chemistry to further assist in understanding
chemical data.

2. Learning in Chemistry

Fortunately, concomitant with this vast increase in chemical
data, computer technology arrived and rapidly became more
and more powerful. Thus, computers could be used to make
mathematical operations solving equations such as those
encountered in quantum mechanics (QM), the theory that
underlies chemistry. This allowed the calculation of physical
and chemical data by QM methods of increasing complexity.
This is deductive learning, learning from a theory to produce
data.

However, it was also realized that a computer operates on a
bit level and thus can be used for logical operations.
Furthermore, software can be developed that allow the
processing of data and information. Thus, computers can be
used for inductive learning (Figure 1): data can be put together
to generate information and many pieces of information can be
generalized to produce knowledge.

As an example, the measurement of the biological activity
of a compound is only of much use when the structure of the
compound is known; this is then information, putting the
activity data in the context of the chemical structure. Several
sets of structures and their corresponding biological activities

deductive inductive
learning learning A
know- 5 e
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measurements
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Figure 1. Deductive and inductive learning.
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can then be analyzed and generalized to produce an under-
standing, knowledge, of the relationships between structure
and biological activity.

2.1. Chemoinformatics

Starting in the 1960s, computer methods were developed that
allowed one to perform inductive learning in chemistry, a field
that later became known as Chemoinformatics.*® First, meth-
ods had to be developed for the computer representation of
chemical structures and reactions. Then, procedures had to be
utilized or developed for inductive learning, a field that was
coined as chemometrics and encompassed methods from
statistics and pattern recognition. Chemometrics methods were
applied to the analysis of data from analytical chemistry.”
However, work was also initiated to tackle quite difficult tasks
such as those embedded in the fundamental questions of a
chemist:
1) What structure do | need for a desired property?
2) How can | synthesize this structure?
3) What is the outcome of my reaction?

For answering a question on property predictions quantita-
tive structure property/activity relationships (QSPR and QSAR)
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were, and still are being, established.”® The challenge of

computer-assisted synthesis design was taken up early on.”
The third question needs automatic procedures for structure
elucidation.®”

These fundamental questions of a chemist have been the
driving forces of a lot of work in chemoinformatic in the last
few decades which will be reported in some of the following
chapters.

2.2. Artificial Intelligence

It was realized from early on that the development of systems
for property prediction, synthesis design, or structure elucida-
tion are quite demanding tasks and would require a lot of
conceptual work and state of the art computer technology.
Therefore, emerging methods from computer science found
their early applications in chemistry. This is true for methods
that were subsumed under the name of artificial intelligence
and publications with titles such as “Applications of Artificial
Intelligence for Chemical Inference” appeared in the context of
the DENDRAL project at Stanford University."” The DENDRAL
project developed methods for predicting the structure of a
compound from its mass spectrum. In spite of the collaboration
of some highly reputed chemists and computer scientists and a
lot of work put into its development, the DENDRAL project was
eventually discontinued. Many reasons might be found for that
decision, not the least that the field of artificial intelligence had
lost its promise and reputation in the late 1970s. In recent years,
a renaissance of artificial intelligence in general and of its
application in chemistry, in particular, can be observed. Several
reasons have contributed to this development: availability of
large amounts of data, increase in computer power, and new
methods for processing these data. As these methods all are
based on computer processing this field has also often been
referred to “machine learning”. There is no clear distinction
between these two terms although the term artificial intelli-
gence seems to be the more comprehensive one.

3. Databases

In the beginning, various forms of computer-readable chemical
structure representations were explored as a basis for process-
ing chemical structures and reactions and for building data-
bases. Linear notations were favored because of their concise
nature but they required the learning of a sizeable set of rules
for encoding. With the rapid development of computer
technology computer storage space became more easily and
cheaper available. This allowed the coding of chemical
structures in a manner that opened many desirable possibilities
for structure processing and manipulations.

Eventually the representation of chemical structures by a
connection table, i.e., by lists of atoms and lists of bonds
became the rule. This allows the representation of structure
information with atomic resolution and provides access to each
bond in a molecule. One linear code, however, the SMILES
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notation" is still in widespread use as it can easily be
converted into a connection table and is optimum for sharing
chemical structure information on the internet.

A molecular structure is essentially a mathematical graph.
For an appropriate storing and retrieving of chemical structures
many graph theoretical problems had to be solved such as
unique and unambiguous numbering of the atoms of a
molecule, ring perception, perception of tautomers, etc.'? A
connection table representation of a molecule allowed the
development of methods for full structure, substructure, and
similarity searching.

A major step forward in the processing of chemical
structures and the building of databases was the development
of methods that allowed the communication of structure
information with the computer in the language of the chemist,
i.e., in the form of 2D drawings of structures. So-called molecule
editors and molecule viewers have been developed that permit
the graphical input of chemical structures and reactions.!"”

With this arsenal of methods available, a variety of all-
important databases containing chemical information have
been built.”® Here only the most outstanding databases will be
mentioned. All new substances are registered in the Chemical
Abstracts Service Registry System presently containing 160
million organic and inorganic structures and 68 million
biosequences."” Physical and chemical (e.g. reaction) data on
chemical substances are stored in Reaxys, which combines
three former databases: Beilstein DB, Gmelin DB, and Patent
Chemistry DB."™™ This database contains about 500 million
experimental properties. A freely available database on chem-
ical reactions has been obtained by text mining from United
States patents (https://doi.org/106084/m9.figshare.5104873.v1).
An important database for drug design and development is the
Cambridge Structural Database (CSD) containing data on
experimentally determined 3D structures of organic and
organometallic compounds presently comprising slightly more
than one million structures.'™ Large as this number may sound,
it is minute compared to the number of known compounds
(less than 1% !). However, in an early application of chemo-
informatics it was shown how the known data can be used to
generate a method for the prediction of the 3D structure of any
organic molecule. The data in CSD (in 1990: 230,000 structures
as compared to 22,000,000 molecules in CAS Registry at that
time) were used to generate a procedure, CORINA, for the
calculation of the 3D structure of any organic molecule (more
than 99 % success rate).”

It is clear that these massive amounts of data that have
been accumulated by researchers can only be managed by
computer methods. Thus, access to databases is an essential
prerequisite for any planning of laboratory work - and any
analysis of data. Without databases modern chemical research
cannot be imagined anymore. It would have been worth the
effort of developing computer methods in chemoinformatics if
it had only resulted in databases. However, chemoinformatics
has achieved - and will achieve - much more as will be
demonstrated in the following chapters.
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4. Prediction of Properties

Many data on chemical compounds are quite difficult or even
impossible to calculate. This is particularly true for biological
data. In this situation an indirect approach has to be taken to
predict such data. In a two-step approach, first molecular
descriptors are calculated to represent a molecular structure.

Then, a series of known pairs of the descriptors of a
molecule and the property of interest for the chemical
compound are submitted to a mathematical procedure to
develop a model that can then be used for the prediction of
properties of additional molecules (Figure 2). This approach is
known as Quantitative Structure Property/Activity Relationship
(QSPR, QSAR).

Many different methods for the calculation of structure
descriptors have been developed."® They are representing
molecules with increasing detail: 1D, 2D, 3D descriptors,
representations of molecular surface properties, and even
taking account of molecular flexibility.

Also, quite a variety of mathematical methods for modeling
the relationship between the molecular descriptors and the
property of a compound are available. These are the inductive
learning methods and are sometimes subsumed by names like
data analysis methods, machine learning, or data mining."”
They comprise methods like a simple multi-linear regression
analysis, a variety of pattern recognition methods, random
forests, support vector machines, and artificial neural networks.
Artificial neural networks (ANN) try to model the information
processing in the human brain and offer much potential for
studying chemical data.?*?"

Figure 3 shows a simple artificial neural network consisting
of six input units for providing the molecular descriptors, four
neurons in the so-called hidden layer and one neuron for the
output of the result, in this case a property of the molecule.””

For establishing a relationship between the molecular
descriptors and the property, values, so-called weights, have to
be attributed to the connections between the neurons. This is
most often achieved by the so-called backpropagation
algorithm® by repeatedly presenting pairs of molecular
descriptors and their properties; these iterations quite often go
into the ten-thousands and more. An ANN has the advantage
that the mathematical relationship between the input units and
the output need not be specified or known; it is implicitly laid
down in the weights and can also comprise non-linear relation-
ships.
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Figure 2. The QSPR/QSAR approach.
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Figure 3. A two-layer artificial neural network.

It was tempting to envisage that with artificial neural
networks the field of artificial intelligence was awakening again
(cf. also title of ref.”). And in fact, in recent years terms like
deep learning or deep neural networks have appeared in many
a field including chemistry that provide a renaissance to the
domain of artificial intelligence.

Deep neural networks (DNN) have some quite complex
architectures with several hidden layers (Figure 4). This has the
consequence that many weights for the connections have to be
determined in order to avoid overfitting. Novel approaches and
algorithms had to be developed to obtain networks that have
true predictivity.”>*” Deep neural networks need a large
amount of data for training in order to obtain truly predictive
models. Most applications of DNN have been made in drug
design and in analysing reaction data (vide infra).

5. Analytical Chemistry

The characterization of chemical objects is the domain of
analytical chemistry. The objects can be compounds, samples
from archeology, food samples, explosives, medical plants, urine

hidden layer 1 hidden layer 3

input layer hidden layer 2

output layer

Figure 4. A deep neural network (observe that the network has been rotated
by 90 degrees compared to the one in Figure 3).
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samples, etc. These objects are investigated by a variety of
methods such as chromatography, spectroscopy, etc. generat-
ing a host of data. Already in the 1960s, computer methods
were developed, mainly from the domain of pattern recogni-
tion, to study such data.”’ These developments established the
field of chemometrics which has led to numerous studies and
still retains in many cases its name™® although it should now be
considered to be part of chemoinformatics. Already in the early
days of chemometrics the term artificial intelligence was also
used® and in 1995 suggestions were made for the use of
artificial intelligence in the clinical laboratory.””

Figure 5 shows the results of a study for finding out from
which of nine areas a sample of an Italian olive oil came from.
Each olive oil was characterized by its content of eight different
fatty acids. 250 samples of the available 572 samples were used
to train a self-organizing neural network (SONN). From the
additional 322 samples, 312 could correctly be predicted by the
SONN.”® It should be emphasized that a SONN is an
unsupervised learning method; no information from where the
oil sample came from was used in the training. The SONN only
projected the data from an eight-dimensional space into two
dimensions to generate the map of Figure 5. Closer inspection
of this map shows that it reproduces the map of Italy,
separating areas of northern Italy from southern Italy and even
isolating the island of Sardegna. Thus, new information, the
geography of Italy, was found because this is inherently
contained in the data, emphasizing the benefits of unsuper-
vised learning.

6. Computer-Assisted Structure Elucidation
(CASE)

It has already been mentioned that the DENDRAL project stood
as the first application of artificial intelligence in chemistry."”
Concomitant with the work at Stanford, two groups in Japan
and the USA worked on the development of a general
automatic system for the prediction of a chemical structure
from spectroscopic data.®® Work on this CHEMICS and the
SESAMI system was continued for several decades, achieving
remarkable results and progress. However, it is fair to say that

Figure 5. Classification of Italian olive oils.
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these two systems have not found universal usage. On the
other hand, work by Elyashberg®>” concentrating on the most
recent developments in NMR spectroscopy has ended up with a
system that is made commercially available by ACD/Labs and
has made remarkable achievements in structure prediction.?"
Applications of this system have led to the revision of the
structures for highly complex natural products and the
elucidation of structures deemed “undecipherable” by classical
NMR methods.**¥

Thus, CASE has matured to a point where it has become a
valuable tool for the experimental chemist solving problems
that would take him/her a very long time or even be unsolvable
to him/her (is that artificial intelligence?) One reason for this is
that a computer can exhaustively explore all possibilities
whereas a chemist tends to find a (non-optimum) solution as
rapidly as possible.

7. Reaction Prediction and Computer-Assisted
Synthesis Design (CASD)

The prediction of the outcome of a chemical reaction is one of
the fundamental questions of a chemist (see Section 2.1).
Quantum mechanical methods can be used to calculate
transition states and thus predict the course of a reaction.
However, influences on reactions by solvents or temperature
are hard if at all to calculate. In this situation recourse is being
made to searching in reaction databases to find the reaction of
interest or a similar reaction. With the largest reaction databases
CASREACT®? and REAXYSP® containing 123 million reactions
and 49 million reactions, respectively, there is always a fair
possibility that the desired reaction or a closely related one is
found. Reaction prediction is also an important task in
computer-assisted synthesis design (CASD) a fundamental
question for an organic chemist (see Section 2.1). In a CASD
system a target structure is given and a reaction that can
produce this molecule has to be suggested.

CASD had been taken up as a challenge from the very
beginning of chemoinformatics.” Several research groups had
embarked on the task of designing a CASD system: Ugi,®
Gelernter,®” Hendrickson,®¥ Gasteiger,®**” Funatsu.”" Although
many interesting results were obtained none of the systems
came into widespread use. Clearly, organic chemists were at
that time not yet prepared to accept computers for a domain
they liked to do by themselves.

Several decades had to pass until new attempts were made
for the development of CASD systems.*” These were largely
due to the availability of large reaction databases and the
development of novel search procedures.

Grzybowski realized that his approach of automatically
extracting reaction rules from a reaction database led in many
cases to suboptimum syntheses. He and his research group
therefore manually coded 20,000 reaction transforms and
introduced new network search algorithm. The resulting
Chematica program can successfully suggest new and interest-
ing syntheses schemes."*”
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A deep learning approach based on a natural language
processing architecture (Transformer) was taken to extract
reaction rules from a database of reactions of the US-Patent
Office and integrate this into RXN for Chemistry a program that
is made freely available by IBM Research in Ziirich.1***

Segler and coworkers“® applied a combination of three
different neural networks and a Monte Carlo search to extract
reaction transforms from a database of 12.4 million reactions
from Reaxys. The approach automatically generated successful
multistep syntheses.

Thus, recent work based on the combination of large
reaction databases with novel data processing algorithms has
provided CASD systems that are mature enough to assist
organic chemists in planning laboratory work.

An important question in organic synthesis is how easy or
difficult it is to synthesize a compound. This is particularly
important in drug discovery where de novo design methods
generate many novel structures. It is then up to the medicinal
chemist to select those molecules for further investigation that
are more easily synthesizable. Methods for calculating values
for concepts like synthetic accessibility®” or current
complexity®® have been developed that allow the chemist to
make selections which molecules should preferably be made.

8. Biochemical Pathways and Metabolic
Engineering

Reaction databases of particularly high interest are those that
gather the reaction and pathways occurring in living species.
BioPath.Explore™***"! has stored all the reactions and pathways
contained on the poster distributed by Roche®” in computer-
readable form as connection tables and with reaction sites
marked. Thus, a variety of standard chemoinformatics searches
can be performed on biochemical pathways.

Furthermore, interesting studies of high chemical signifi-
cance can be performed.®® Of particular interest are those
where chemoinformatics and bioinformatics methods are
simultaneously used. Thus in a study combining information on
annotated genomes in the PEDANT database®™ with informa-
tion extracted from the BioPath database and phenotypic traits
from diseases interesting insights were obtained (Figure 6).5%
As an example, the major pathways considered for periodontal
disease were found.®

In another approach, a chemical systems biology approach
for Reverse Pathway Engineering (RPE) was established by
combining chemoinformatics with bioinformatics methods. In
an application for the study of flavor-forming pathways in
cheese by lactic acid bacteria, the known and some novel
pathways could be derived.®

Much interest is centered on the redesign of pathways by
redirecting the action of enzymes to produce basic organic
chemicals. As an example, an optimized methanol assimilation
pathway was developed by utilizing promiscuous
formaldehyde-condensing aldolases in E. coli.”® Novel artificial

© 2020 The Authors. Published by Wiley-VCH GmbH


http://orcid.org/0000-0003-2036-7144

Chemistry

Reviews Europe
. E Chemical
ChemPhysChem doi.org/10.1002/cphc.202000518 Socteties Publishing
target-based ligand-based
PEDANT -
Annotated A SioRath
e ; ‘
genomes G T catabase de novo pharma-
ey L | design | e | cophore
‘ Metabolic / 5 ‘, !
[reconstruction : / st ¥ & ; \
—_J— thgi}gpzc ,\prolem ¥ lead Py ‘Iigand(s)/_
Pathway profile = \ A / T
. | docking — P sm;lamy
Attribute selection ~fe A/ 7| Searching
+ Pathway ranking ‘ ligand |

Relevant pathways

Figure 6. Combining information on genes with pathways and phenotypic
traits.

intelligence methods such as deep learning architectures are
applied to metabolic pathway prediction.””

9. Drug Discovery

Drug discovery is presently the most prominent field for the
application of chemoinformatics methods. All major drug
companies have divisions of chemoinformatics—whatever their
name-and drug companies are the largest employers of
chemoinformatics specialists. Furthermore, all the drugs devel-
oped in the last few years have benefitted from the use of
chemoinformatics methods in one way or other.

The field of computer-based drug discovery is far too huge
to be covered here. An overview is available.”® Quite many
books have appeared that deal with computer-assisted drug
discovery and development; in fact, so many excellent books
have been published that none will here be picked out for
recommendation. The reader is advised to search the internet
for a book that will meet his/her interest most.

The drug discovery and development process starts with
the identification and validation of a protein target, then has to
select a lead structure which has to be optimized and has to go
through preclinical testing to make sure that properties like
adsorption, solubility, distribution, excretion, and metabolism
(ADME) as well as toxicity have acceptable values. Only then
can a candidate be submitted to clinical development. The
chemoinformatics methods used in drug discovery can be
classified into ligand-based methods (when the 3D structure of
the protein target is not known) and structure-based methods
(when the protein structure is known) (Figure 7).

A more in-depth modeling of the biological activity of a
molecule needs its 3D structure, both for ligand-based and for
structure-based methods; fortunately, CORINA"” can also gen-
erate 3D models for virtual (not yet synthesized) molecules. The
methods include similarity search, pharmacophore searching,
virtual screening, de novo design, docking and scoring, active
site identification, xenobiotic metabolism prediction, ADME
properties and toxicity prediction.
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Figure 7. Some of the more important ligand-based and target-based
methods in lead searching.

Databases play an important role in the drug design
process, both databases of the compounds available in the
company as well as those of virtually generated structures.
Massive amounts of publicly available bioactivity data are
collected by the National Institutes of Health in the PubChem
database presently containing data on 103 million compounds
and 259 million bioactivity values.” With the drug design and
development process being so demanding both bioinformatics
and chemoinformatics methods should be used. Figure 8 is
illustrating this idea and should emphasize that there is not a
distinct separation between the bioinformatics and chemo-
informatics methods. Often, the same mathematical procedures
are used both in bioinformatics and in chemoinformatics. And,
it should not be forgotten that, in the end, a gene is a chemical
compound and the representation of a gene may eventually
benefit from representing it by chemoinformatics methods.

In recent years various artificial intelligence methods have
been introduced into drug development; a review has been
published.®™ The importance of artificial intelligence in drug
discovery may be emphasized by the fact that 230 startup
companies®’ have been founded that use Al in drug discovery -
and the list is further growing. Major drug companies such as

Merck® are also using Al. The Al company Exscientia and
Sumitomo Dainippon Pharma Co. have jointly developed a drug
candidate for obsessive- compulsive disorder that is now
entering phase 1 clinical trials. The development took only one

Chemoinformatics

drug lead

Figure 8. The role of bioinformatics and chemoinformatics in drug discovery.
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year as against an estimated 4.5years with conventional
research techniques; this amounts to massive savings.'”

10. Agricultural Research

Over the last decades, the requirements for the compounds
that are entered into the market as agrochemicals have
continuously increased. Society expects these compounds to
have low toxicity against humans and beneficial animals, low
bioaccumulation, and quite specific activities. This has led to a
situation where the development of a new agrochemical uses
much the same methods as drug discovery.*** Thus, both
ligand-based and structure-based methods are used. Further-
more, adverse effects like toxicity have to be estimated without
using animal testing. This has to be done not only for the
compound of interest but also for its metabolites and for
products of degradation in the environment. This has led to the
introduction of cell-based methods and the use of in silico
methods. Commercial programs, so-called expert systems, such
as DEREK®? have been developed to assist chemists and
toxicologists in estimating important properties of new com-
pounds to be used as agrochemicals. Even companies like
Bosch have entered the field of providing artificial intelligence
techniques and services in agriculture.”” To summarize, chemo-
informatics methods now play a major role in the development
of a new agrochemical.

11. Food Science

The quality of food has become of increasing concern to
society. The origin of food, the safety of food, the appearance
of food, the flavor or taste, and the contents of food additives
are some of the major topics investigated. Quite some chemo-
informatics methods have been applied to investigate these
topics. The field has grown to an extent that even the term
“food informatics” has been coined.®®* First, a variety of
databases have been built on properties of chemicals found or
of interest in food. An important term is to classify a compound
as GRAS (Generally Recognized As Safe). It was then inves-
tigated how the space of GRAS compounds overlaps with
EAFUS (Everything Added to Food in the US) compounds and
with the space of drugs as well as inhibitors of DNA meth-
yltransferase 1 (DNAMT1), showing that these inhibitors are well
separated from GRAS and EAFUS compounds and are therefore
not to be expected to be expected in food.**’”

The classification of Italian olive oils as an example for the
important identification of the origin of a food sample has been
mentioned in Chapter 5.2

Sensory properties of food such as taste (e.g. bitter or
sweet), flavor or scent are of high interests and models have
been built for the optimization of these properties. Further-
more, the properties of food additives (antioxidants, preserva-
tion compounds, or coloring agents) have to be closely
monitored in order to make sure that no compounds with
adverse effects are introduced into food. The available
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information has been analyzed with chemoinformatics methods
to build predictive models for the properties of these food
additives.

Machine Learning and Al methods are used in food industry
along the entire manufacturing chain including new recipes.”"”

12. Cosmetics Products Discovery

In recent years, chemoinformatics and bioinformatics methods
that have established their value in drug discovery such as
molecular modeling, structure-based design, molecular dynam-
ics simulations and gene expression have also been utilized in
the development of new cosmetics products.” Thus, novel skin
moisturizers and anti-aging compounds have been developed.

Legislation has been passed in the European Union with the
Cosmetics Directive” that no chemicals are any longer allowed
to be added to cosmetics products that have been tested on
animals. This has given a large push to the establishment of
computer models for the prediction of toxicity of chemicals to
be potentially included in cosmetics products.”

13. Regulatory Science

In addressing the concern of society about the harmful effects
of chemicals, the European Union has not only issued the
Cosmetics Directive (see chapter 12,7%) but has also passed the
REACH legislation on the Regulation, Evaluation, Authorization
and restriction of Chemicals.”™ The REACH legislation requires
companies that want to introduce large-scale production
chemicals into the market in Europe to provide a dossier that
shows that these chemical are not harmful to humans or
animals. Legislation similar to REACH has been introduced in
other countries such as Canada, USA, Japan, China. These laws
ask, among other things, for a lot of toxicity testing which is
time-consuming and costly. In this situation many approaches
to the prediction of toxicity, bioaccumulation, and degradation
in the environment have been and still are developed.”®””
Expert systems for the prediction of toxicity have been around
for quite a while but the availability of new high-quality data
has allowed the building of new models on toxicity prediction
of much higher quality and predictivity. Not surprisingly,
methods of machine learning and artificial intelligence have
been applied to toxicity prediction.”®’® Ref. 79presents a review
of the use of Al in toxicity prediction. Interestingly, the authors
showed that the predictive accuracy can be increased by
augmenting the chemical structure descriptors with human
transcriptome data.

14. Material Science

The prediction of the properties of materials is probably the
most active area of chemoinformatics. The properties that are
investigated range from properties of nanomaterials, materials
from regenerative medicine, solar cells, homogeneous or
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heterogeneous catalysts, electrocatalysts, phase diagrams, ce-
ramics, or the properties of supercritical solvents, and a few
reviews have appeared.®®®"” In most cases, the chemical
structure of the material investigated is not known and there-
fore other types of descriptors have to be chosen to represent a
material for a QSAR study. Materials could be represented by
physical properties such as refractive index or melting point,
spectra, the components or the conditions for the production
of the material, etc. Use of chemoinformatics methods in
material science are particularly opportune as in most cases the
properties of interest depend on many parameters and cannot
be directly calculated. A QSAR model would allow the design of
new materials with the desired property.

As the properties of materials are so hard to predict it is not
surprising that in many recent studies artificial intelligence
techniques have been applied in material science. For reviews
see refs. 24 and 82.

14. Process Control

The problem of the detection of faults in chemical processes
and process control have benefitted quite early on from the
application of artificial neural networks.?**'®*! An overall course
on the application of artificial intelligence in process control has
been developed by six European universities.®™ Chemical
processes rapidly generate a host of data on flow of chemicals,
concentration, temperature, pressure, product distribution, etc.
These data have to be used to recognize potential faults in the
process and rapidly bring the process back to optimum. The
relationships between the various data produced by sensors
and the amount of desired product cannot be explicitly given,
making it an ideal case for the application of powerful data
modeling techniques. Quite a few excellent results have been
obtained for such processes as petrochemical or pharmaceutical
processes, water treatment, agriculture, iron manufacture,
exhaust gas denitration, distillation column operation, etc.

15. Recent Publications

The field of artificial intelligence in chemistry is presently in very
active development as underscored by editorials that have
collected in the last few weeks publications on that topic. Ref
86, entitled “Computational Chemistry for Systems Chemistry”,
offers a Special Collection of nine publications. The Editorial
“Artificial intelligence in chemistry and drug design”®” is
followed by eight pertinent articles. The Editorial “Artificial
Intelligence in Chemistry"® collects six papers on that topic.

Not surprisingly, the advent of the CORONA virus has led to
a flurry of applications of artificial intelligence to data obtained
from the COVID-19 pandemia as a simple Google search will
indicate. Al techniques have also been used to discover drugs
that might be used against COVID-19 targets.®**"
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16. Conclusions and Outlook

Learning from data has always been a cornerstone of chemical
research. In the last sixty years computer methods have been
introduced in chemistry to convert data into information and
then derive knowledge from this information. This has led to
the establishment of the field of chemoinformatics that has
undergone impressive developments over the last 60 years and
found applications in most areas of chemistry from drug design
to material science. Artificial intelligence techniques have
recently seen a rebirth in chemistry and will have to be
optimized to also allow us to understand the basic foundations
of chemical data. It is clear that computer methods will increase
in playing a fundamental role in chemistry as emphasized by
the Swedish Academy of Sciences on the occasion of awarding
in 2013 the Nobel Prize in Chemistry to Martin Karplus, Michael
Levitt and Arieh Warshel: “Today the computer is just as
important a tool for chemists as the test tube.”®"
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