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Abstract: In pesticide risk assessments, semifield studies, such as large‐scale colony feeding studies (LSCFSs), are conducted
to assess potential risks at the honey bee colony level. However, such studies are very cost and time intensive, and high
overwintering losses of untreated control hives have been observed in some studies. Honey bee colony models such as
BEEHAVE may provide tools to systematically assess multiple factors influencing colony outcomes, to inform study design,
and to estimate pesticide impacts under varying environmental conditions. Before they can be used reliably, models should
be validated to demonstrate they can appropriately reproduce patterns observed in the field. Despite the recognized need
for validation, methodologies to be used in the context of applied ecological models are not agreed on. For the parame-
terization, calibration, and validation of BEEHAVE, we used control data from multiple LSCFSs. We conducted detailed visual
and quantitative performance analyses as a demonstration of validation methodologies. The BEEHAVE outputs showed
good agreement with apiary‐specific validation data sets representing the first year of the studies. However, the simulations
of colony dynamics in the spring periods following overwintering were identified as less reliable. The comprehensive
validation effort applied provides important insights that can inform the usability of BEEHAVE in applications related to
higher tier risk assessments. In addition, the validation methodology applied could be used in a wider context of ecological
models. Environ Toxicol Chem 2020;39:2269–2285. © 2020 The Authors. Environmental Toxicology and Chemistry
published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Potential risks of pesticides to bees are assessed through

standardized laboratory studies in which individual adult honey
bees or larvae are fed with pesticide‐spiked diets. These lower
tier risk assessment studies can be supplemented with higher
tier studies that aim to provide progressively more realistic
exposure and effects scenarios for honey bee colonies, in-
cluding semifield studies that combine controlled colony‐level
intake of a pesticide with free‐foraging colonies (Oomen
et al. 1992; Lückmann and Schmitzer 2019). Published studies
vary widely in design, including differences in study duration,

beekeeping activities, and exposure of the colonies to a pes-
ticide via feedings of spiked sugar syrup (Faucon et al. 2005;
Wu‐Smart and Spivak 2016) or pollen (Sandrock et al. 2014;
Dively et al. 2015). Large‐scale colony feeding studies (LSCFSs)
conducted for regulatory purposes in the United States include
a 6‐wk period of feeding of pesticide‐spiked sugar syrup and
the assessment of colony overwintering (Overmyer et al. 2018;
Thompson et al. 2019). Variations in their study design make it
difficult to statistically compare results between studies. In
addition, such studies are very cost and time intensive to
conduct, and high overwintering losses of untreated control
hives have been observed in some studies. Loss of control
colonies indicates that stressors other than pesticides (e.g.,
resource availability, weather, diseases and/or beekeeping ac-
tivities) likely influence colony dynamics and overwintering
survival, confounding the assessment of impacts caused by
pesticides. It is not uncommon that these factors lead to the
rejection of individual studies by regulatory agencies as evi-
dence in pesticide risk assessments.
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Mechanistic honey bee colony models could provide addi-
tional information in the risk assessment process (Becher
et al. 2013; Sponsler and Johnson 2017; Kuan et al. 2018). In
modeling approaches, study conditions can be fully controlled,
allowing for the systematic assessment of factors on study
outcomes. Accordingly, honey bee colony models like
BEEHAVE (Becher et al. 2014) could be used as tools to inform
study design. In addition, mechanistic models could be applied
to a wider range of environmental and colony management
scenarios than can be addressed in empirical studies.

To be acceptable as tools to complement higher tier risk
assessment of honey bees, models need to be thoroughly re-
viewed and tested (European Food Safety Authority 2014). The
European Food Safety Authority (EFSA; 2015) reviewed the
BEEHAVE model with respect to its acceptability for use in risk
assessment with an overall positive outcome. The lack of the
explicit representation of pesticide exposures and effects was
identified as the most important impediment to its application
in risk assessments. In addition, the EFSA recommended fur-
ther testing, sensitivity analysis, and validation of the model. In
this context, the opinion specifically called for the comparison
of BEEHAVE with data from field‐based studies, particularly
relying on data from untreated, that is, control, colonies that
were not used for model calibration. Such a comparison of
outputs from a model to independent empirical data, also re-
ferred to as validation, is a pathway to understanding model
performance in a context that was not explicitly used in the
development and previous testing of the model (Rykiel 1996;
Schmolke et al. 2010; European Food Safety Authority 2014).

It is recognized that validation of ecological models applied
in risk assessments should be conducted, particularly if data
sets for such an exercise are available (European Food Safety
Authority 2014). Methods have been discussed in the literature
(e.g., European Food Safety Authority 2018), and were rec-
ommended to be applied in the context of pattern‐oriented
modeling, that is, the assessment of multiple patterns that can
be observed in both model and empirical measurements
(Grimm and Railsback 2012; European Food Safety Authority
2014). However, quantitative indicators of model performance
are not commonly used for complex mechanistic effects
models, and there is no consensus about relevant indicators.
Comprehensive visual and quantitative model performance
analyses are more commonly conducted in other fields of en-
vironmental modeling (Harmel et al. 2014), and may inform
approaches applied to ecological models.

In the present study, we used the calibrated BEEHAVE
model to assess a range of visual and quantitative validation
methods described in the literature for various types of envi-
ronmental models. Accordingly, the validation effort we
present can provide insights into validation methods applicable
to ecological models in pesticide risk assessments. We present
the validation of the BEEHAVE model in the context of LSCFSs.
We had access to the untreated control data of 7 LSCFSs
conducted in North Carolina (USA) between 2014 and 2017.
We used the characterizations of the initial colony conditions,
the landscape composition around the study apiaries, the
weather, and the feeding of the untreated control colonies to

parameterize the model. We used the colony condition data
from 2 of the studies for calibration of the model. Data from the
remaining 5 studies served as the validation data set. The
validation effort specifically focused on assessing BEEHAVE
model validity with respect to its ability to 1) predict colony
dynamics of untreated controls across the study period de-
pendent on the conditions encountered by the study colonies,
and 2) represent varying control colony outcomes due to
impacts of external factors (e.g., beekeeping activities).

MATERIALS AND METHODS
LSCFSs

For the parameterization, calibration, and validation of the
BEEHAVE model, we used untreated control data from LSCFSs
conducted in North Carolina (Overmyer et al. 2018; Thompson
et al. 2019). In these studies, honey bee colonies were set up in
landscapes with low agricultural intensity and were fed un-
treated sugar syrup (controls) or sugar syrup spiked with dif-
ferent concentrations of a pesticide while being allowed to
freely forage in the landscape for nectar and pollen. The
studies were conducted following a similar general study de-
sign, although the specifics differed between studies. In all
studies, colonies were set up from bee packages in the spring,
grouped by size into apiaries. Average initial colony sizes
varied among studies. Twelve apiaries served as replicates with
2 untreated colonies in each apiary. The transport to the apiary
locations corresponded to the study initiation (between late
June and early July). The first treatment feeding was applied
within 6 d after study initiation. Over a period of 6 wk,
12 treatment feedings were applied to each colony by pro-
viding sugar syrup in a feeder integrated in each hive box. The
syrup volume provided per feeding differed between studies.
In all studies, colonies were also supplied with supplemental
(untreated) sugar syrup after the end of the treatment feedings.
Feeding timing, frequency, duration and feeding volume
and sugar concentration of the syrup supplied during these
supplemental feedings varied considerably between studies.

Colony condition assessments (CCAs) were conducted to
assess adult bee, egg, larva, and pupa numbers as well as
honey and pollen cells using visual estimation of frame cov-
erage (Imdorf et al. 1987). Depending on the study, 4 to
5 CCAs were performed after study initiation and prior to
winter. After the overwintering period, 1 to 2 CCAs were
conducted between March and April. Data from the CCAs
conducted after study initiation were used for comparison with
BEEHAVE simulations.

Uncertainty in empirical data
Visual estimation of frame coverage applied for CCAs is a

standard procedure for the assessment of colony condition but
does not provide very high precision in the reported meas-
urements (Imdorf et al. 1987). In addition, considerable varia-
bility in colony condition occurred within each study despite
similar initial setup and size of colonies, as well as near‐identical

2270 Environmental Toxicology and Chemistry, 2020;39:2269–2285—A. Schmolke et al.

© 2020 The Authors wileyonlinelibrary.com/ETC



location (within the same apiary) and hive management. Thus,
we estimated the measurement error and between‐colony
variability in adult bee numbers and honey stores. Using data
from Imdorf et al. (1987) as well as a data set from one LSCFS in
which adult bee numbers were assessed with 2 different
methods, the measurement error in adult bee numbers was
found to be dependent on colony size: more bees in a colony
meant larger absolute deviation between 2 colony measure-
ments. From the data presented by Imdorf et al. (1987), we
derived that measurements of adult bee numbers in a colony
are associated with an error of ±30.7%. Comparable studies for
measurements of honey stores were not available. However,
estimated volumes of single honey cells vary: with a range of
volumes of single cells of 277 to 360 µL, the honey content of a
full (capped) honey cell may vary between 382 and 500mg
(Schmickl and Crailsheim 2007; Bush 2011). In addition, a var-
iable percentage of honey cells may not be full, resulting in
variable estimates of total honey weight present in a colony
based on number of honey cells.

In the comparisons between simulation outputs and data
from LSCFSs, we applied ranges to the CCA data to account for
the uncertainties just described. The apiary‐specific simulations
were compared with the average and the range of subsequent
CCAs conducted with the 2 control colonies in the apiary. Adult
bee numbers and honey stores were used for comparisons
because they had the lowest relative measurement error and
were recognized as the most important endpoints of colony
health, particularly prior to overwintering (e.g., Genersch
et al. 2010; Austin 2014; Döke et al. 2015). This is consistent
with the science‐based recommendations for best management
practices for beekeepers suggesting that, among other efforts,
attempts to reduce overwintering losses should focus on en-
hancing colony strength and food stores in the fall (Steinhauer
et al. 2014). Uncertainty ranges for adult bee numbers and
honey stores were estimated from the CCA data of the 2 control
colonies in each apiary, resulting in apiary‐ (rather than colony‐)
specific ranges of empirical data (observations). We applied the
estimated measurement uncertainty to the 2 data points to
obtain the lower and upper limit of the apiary‐specific range.
Details on the calculations of the ranges of observations are
provided in the Supplemental Data (Section 1).

BEEHAVE model and version
The BEEHAVE model represents processes within a honey

bee colony and its interactions with the surrounding landscape
through foraging (Becher et al. 2014). The model was im-
plemented in NetLogo (Ver 5.31.; Wilensky 1999) and is pub-
licly available. A local sensitivity analysis was reported along
with the first publication of the model (Becher et al. 2014). For
the present study, we used the model version BEEHAVE_
BeeMapp2015. We applied a few changes to this BEEHAVE
version to 1) allow us to reset colonies to the colony conditions
from study data on a given date, 2) include the possibility to
feed simulated colonies on specified dates with defined
amounts of sugar, and 3) set the nursing efficiency of winter

bees corresponding to in‐hive bees rather than foragers (which
is used as the default in BEEHAVE). In addition, several pa-
rameters that were defined in the model code were transferred
to the interface of the model to allow the testing of different
parameter values. The changes applied to BEEHAVE and the
parameter settings applied are described in detail in the
Supplemental Data (Section 2). The BEEHAVE version used for
the present study, as well as all relevant input files and data, are
provided in GitHub in the Data Availability Statement.

Compilation of study‐specific inputs to BEEHAVE
Apiary‐specific input parameter sets were compiled for the

BEEHAVE simulations from specifications from the LSCFSs.
Inputs include the definition of temporally and spatially explicit
bee resource availabilities in the landscapes around the colo-
nies, daily foraging hours determined by weather, initial colony
conditions at study initiation, and colony feeding.

Landscape. Bee resource availabilities in the landscapes
around the hives were derived from land cover data. In-
formation on nectar and pollen availability by crop and semi-
natural land cover was compiled from the literature. Crops were
represented as resources if they were categorized as resources
for honey bees by the US Department of Agriculture (2015). For
the 5 crops represented (alfalfa, corn, sorghum/millet, soybean,
and tobacco), the amount of nectar, including its sugar content,
as well as pollen produced by single flowers was estimated
using reports from the literature following the approach of
Becher et al. (2016) and Schmolke et al. (2019). In addition,
flowering period and flower density were determined from lit-
erature sources. For all crops providing bee resources, the
default BEEHAVE gathering times for nectar and pollen were
applied (1200 s for nectar, and 600 s for pollen).

Land covers other than crops provide varying amounts of
bee resources for extended time periods. Seasonal resource
availabilities are dependent on the land cover type and flow-
ering plant composition. Specific information on floral re-
sources from the range of flowering plants occurring in the
region and their association with specific land cover types was
not available. Instead, we applied resource categories on a
monthly basis to each noncrop land cover type. Bee resource
categories were estimated based on data from pollen traps
fitted to colonies in the LSCFSs on a few different dates. The
estimation of bee resource availability (including nectar and
pollen gathering times) in noncrop land covers, particularly in
the spring when no data from pollen traps were available, was
identified as particularly uncertain, and included in the BEE-
HAVE calibration (see the Model calibration section). Details
about the estimation of bee resources in crop and noncrop land
cover types are provided in the Supplemental Data (Section 3).

Weather. Foraging times available to the simulated foragers
per day were derived from weather data. Yearly weather data
were retrieved from a single weather station (US National
Oceanic and Atmospheric Administration [NOAA] 2018) that
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was nearest to all apiary locations across the 7 studies. For the
determination of foraging hours, BEEHAVE uses the maximum
daily temperature and the sunshine hours. However, sunshine
hours are not measured routinely by US NOAA weather sta-
tions. Instead, we applied the simplifying assumption that no
foraging hours were available to bees on days with any re-
ported precipitation, and the full day length was available in
case no precipitation was reported for the given day with
maximum temperature ≥15 °C. The temperature threshold
corresponds to the threshold for foraging used in previous
BEEHAVE applications (Becher et al. 2014).

Initial colony conditions. We reset the simulated colonies to
the measurements reported in each LSCFS at its study initiation
date. Study initiation was chosen for the setting of colony
conditions in the simulations because colonies newly estab-
lished from packages may not initially display dynamics com-
parable to those of established colonies, feeding amounts and
locations prior to study initiation were not reported in all
studies, and colony transportation may impact colony dynamics
in undefined ways (Simone‐Finstrom et al. 2016).

In the simulations, initial colony conditions were set from
input files defining the date (day of year) of the study initiation,
the presence or absence of the queen (assumed to be present
in all colonies), number of eggs, larvae, pupae, and adult
workers, honey stores in kg, and pollen stores in g. Honey
stores were set assuming that each honey cell contains 500mg
of honey (Schmickl and Crailsheim 2007). A pollen cell
was assumed to contain 230mg of pollen (Schmickl and
Crailsheim 2007).

Colony feeding. In the LSCFSs, colonies were fed with sugar
syrup from top feeders integrated in the hive boxes. Feeding
occurred on specified dates, and various volumes of sugar
syrup with varying sugar concentrations were provided to the
colonies. For the simulation of sugar feeding in BEEHAVE, we
applied 2 assumptions: 1) sugar provided in the top feeder
represents a direct addition to the existing honey stores of the
colony, that is, no foragers are involved in the retrieval of the
sugar and the sugar is instantly available for consumption by
the colony; and 2) the sugar content of the syrup is decisive of
increase in honey stores. Syrup volume and concentration were
not considered explicitly but were calculated to reflect the
sugar (by weight) in the solution. Feeding schedules listing the
date (as day of year) of each feeding event and the sugar fed
(as honey equivalent in kg) were compiled as study‐specific
input files. Note that in study LSCFS_2016_1, varying quantities
of sugar syrup were fed to the colonies in the supplemental
feedings, and not all syrup was removed by the bees in all
cases. For the BEEHAVE simulations, we applied the highest
amount reported per feeding across control colonies.

Model calibration
The BEEHAVE model was designed based on the mecha-

nistic understanding of a honey bee colony, including many
processes along with their parameterizations reflecting a large

body of research conducted with honey bees (Becher
et al. 2013, 2014). By design, mechanistic models are more
flexible and robust for application to conditions not explicitly
considered during model development (Stillman et al. 2015)
than are statistical models that do not consider system func-
tioning. The calibration of a mechanistic model to a new setting
(e.g., geographical and climatic region) should focus on a small
subset of parameters that can be assumed to deviate from
original assumptions on an ecological basis (Rykiel 1996;
Grimm and Railsback 2012).

For the calibration of the BEEHAVE model to data of control
colonies in LSCFSs, we focused on a subset of parameters
according to the following criteria: 1) BEEHAVE default
parameter values that were identified as uncertain (e.g.,
nectar and pollen gathering times in noncrop land covers);
2) BEEHAVE default parameter values that were not likely to
apply to the climatic region where the LSCFSs were conducted
(e.g., parameters defining the seasonal egg laying rate); and
3) parameters that likely affect colony dynamics with initial
discrepancies between simulations and study data (e.g.,
nursing efficiency of winter bees). The identified parameters
according to these criteria are relevant to 4 submodels in
BEEHAVE: egg laying, pollen consumption, brood raising by
winter bees, and nectar and pollen availability and quality in
the landscape (Table 1).

Egg laying. The parameters of the egg‐laying function rep-
resent the seasonality of egg laying by honey bee queens.
Because the seasons are considerably longer in the study area
compared with the region for which the egg‐laying function
was developed (central Europe; Schmickl and Crailsheim 2007;
Becher et al. 2014), we expected a parameter change
necessary to successfully represent the LSCFS data.

Pollen consumption. Default pollen consumption rates in
BEEHAVE differ considerably from the assumptions in the bee
risk assessment tool BeeRex used by the US Environmental
Protection Agency (2014) due to different sets of literature
sources used for parameterization. Because the rates in BeeRex
are relevant in the context of bee risk assessments, we tested
the corresponding parameter assumptions in the BEEHAVE
calibration.

Pollen availability over the winter and winter bee
nursing. The pollen stores were observed to be lower in the
initial simulations compared with the LSCFS data, and low
pollen stores over the winter prevented successful brood
raising prior to resource availability in the landscape in the
model. Overwintering adult bees are represented as foragers in
BEEHAVE that have a lower efficiency in caring for brood than
in‐hive bees. This assumption was identified as uncertain be-
cause winter bees have been shown to experience a change in
their physiology that reverts the transition to foragers once
brood raising starts again in the late winter (Winston 1987). In
the calibration, we tested higher target pollen storage as
well as winter bee nursing efficiency set to the same level as
in‐hive bees.
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Resource definitions in the landscape. For noncrop land
covers, estimates of nectar and pollen availability, nectar sugar
concentration, and gathering times across the season were
uncertain. They were assumed to deviate from the BEEHAVE
default assumptions about a flower patch corresponding to a
mass‐flowering crop. We assumed that land covers with lower
resource quality, reflected by the noncrop resource category in
the present study, provide lower nectar and pollen availability,
lower nectar sugar concentration, and higher gathering times.
Several patterns of resource availability were tested (Table 1
and Supplemental Data, Section 4).

The calibration was conducted by assessing the impact of
changes in each parameter group on colony dynamics, and the
improvement of the seasonal patterns of adult bee numbers,
honey stores, brood numbers, and pollen stores compared
with CCA data from control colonies from 2 LSCFSs
(LSCFS_2015_1 and LSCFS_2015_2). The determination of best
match between simulations and CCA data ranges was con-
ducted by visually inspecting graphed apiary‐specific out-
comes. In addition, the number of mean BEEHAVE outputs that
fell within the apiary‐specific CCA data ranges for the fall (late
October) CCA was used for comparison between calibration
simulations. Additional details about the calibration are pro-
vided in the Supplemental Data (Section 4).

A calibration of BEEHAVE to a specific study type has not
been reported previously in the literature. A calibration using
quantitative indicators (such as used for the validation in the
present study) would require the a priori definition of indicators
from the LSCFS data that should be optimized with the model.
A large number of simulations would have to be conducted
with the model, for example, using a Latin hypercube ap-
proach, for which the BEEHAVE model is not currently set up.
Instead, the focus of the present study was on the validation of
BEEHAVE, and the validation methodology applicable.

Model validation
With the calibrated BEEHAVE model, we conducted apiary‐

specific simulations representing the validation data set
(LSCFS_2013_1, LSCFS_2014_1, LSCFS_2014_2, LSCFS_2016_1,
and LSCFS_2016_2). In total, untreated control colonies from 59
apiaries were simulated (with 10 repetitions each). Note that one
apiary from study LSCFS_2013_1 was excluded because it was
reported to be compromised during the conduction of the
study. The calibrated BEEHAVE model was applied using apiary‐
specific inputs for initial colony conditions (average conditions of
the 2 control colonies in each apiary), landscape composition
around each apiary, study‐specific sugar feeding schedules, and
year‐specific weather. Each apiary‐specific simulation was re-
peated 10 times with BEEHAVE to capture the stochastic proc-
esses in the model, including mortality and foraging (Becher
et al. 2014).

Visual model performance analysis. For the validation of
the model, the apiary‐specific predictions (BEEHAVE simu-
lation outputs) were compared with the observations (adult bee

numbers and honey stores reported for the control colonies in
the corresponding apiaries after study initiation). The first step
in assessing model performance involved visual inspections by
graphing observations and predictions together in multiple
ways (Ritter and Muñoz‐Carpena 2013; Harmetl et al. 2014;
European Food Safety Authority 2018). The graphical repre-
sentation can give insight into the temporal differences in
performance, the potential bias of model outputs, and the
distribution of deviations between observations and pre-
dictions. We graphed predictions and observations on a
timeline whereby we combined the data from the apiaries of
each study to limit the number of plots. In addition, we
graphed predictions against observations for each study, using
the average CCA data (from 2 control colonies) and the
average simulation data per apiary. These scatter plots provide
an overview of model performance and bias in predictions.
Distribution plots of deviations between predictions and ob-
servations visualize the distribution and bias of predictions.

Model bias. In a second step, systematic over‐ and under-
prediction (bias) was assessed (Moriasi et al. 2007; Ritter and
Muñoz‐Carpena 2013; Harmel et al. 2014). Bias was calculated
as the absolute (b) and relative (brel) difference between apiary‐
specific average observation and prediction:

b
n

P O
1

i

n

i i
1

= ( − )
=

∑

b
b
O

rel = ̅

where O are the observations, P the predictions and O̅ the
mean of the n observations.

For the observations, either the means of the 2 reported
colony measurements of the 2 control colonies in each apiary
were used, or the means of the upper and lower range of the
CCA data, as applicable. The absolute and relative bias values
were averaged across all CCAs conducted per apiary and
across all apiaries in each study.

Quantitative model performance analysis. In the third
step, quantitative indicators of model performance, or
goodness‐of‐fit indicators, were calculated. Various indicators
were introduced in the literature. Quantitative indicators pro-
vide a concise and comparable measure of model perform-
ance, but may indicate different levels of goodness‐of‐fit
depending on the data sets analyzed. Thus, it has been rec-
ommended to calculate 2 or more indicators for a better un-
derstanding of model performance (Moriasi et al. 2007;
Bennett et al. 2013; Ritter and Muñoz‐Carpena 2013; Harmel
et al. 2014). In Table 2, we list the 3 goodness‐of‐fit indicators
that we calculated for apiary‐specific simulations of each study,
and across the validation data set. For all 3 indicators, a value
of 0 indicates a perfect match between predictions and ob-
servations. Currently, no guidance exists on what may con-
stitute a good fit in complex ecological models. Where
available, we used threshold values for goodness‐of‐fit
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indicators proposed for other model types in the literature. For
normalized root mean square error (NRMSE), a threshold of
0.5 was proposed for acceptable performance of toxicokinetic‐
toxicodynamic models, which simulate toxic effects in in-
dividual organisms (European Food Safety Authority 2018). For
the RMSE‐standard deviation ratio (RSR), values ≤0.7 were
considered acceptable by Moriasi et al. (2007) for deterministic
hydrological models. No threshold for acceptable normalized
mean absolute error (NMAE) values was suggested in the
literature.

The goodness‐of‐fit indicators were designed to provide
insight into the performance of deterministic models compared
with empirical data without explicitly considering uncertainty.
In the literature, authors recommend the consideration of un-
certainty in data (observations) when assessing model
performance (Moriasi et al. 2007; Bennett et al. 2013;
Harmel et al. 2014). The degree of error inherent in the em-
pirical measurements should inform the criteria for model
performance.

For the present study, we established that the un-
certainties in the observations (CCA data) were considerable
and varied depending on the measured endpoint (see the
Uncertainty in empirical data section). In addition, BEEHAVE
includes stochastic processes, resulting in a range of outputs
from identical parameter settings. To represent the un-
certainty in the predictions, we calculated the error of the
mean of the repeat BEEHAVE simulations (n= 10) relative to
the range limits in the observations. If the mean of pre-
dictions was within the range of observations, no error was
assumed in any of the goodness‐of‐fit indicators for the
given pairwise comparison of prediction and observation. If a
prediction value was lower than the lower limit of the ob-
servation range, the error was calculated relative to the lower
observation range limit. Correspondingly for predictions
larger than the upper observation limit, the error was

calculated relative to the upper observation limit. Because
both observations and predictions were ranges of values, we
also applied area comparison statistics (adequacy and reli-
ability) to the validation data sets (Table 2) as indicators
comparing ranges rather than point values. Area comparison
statistics have been applied previously for the performance
analysis of several ecological models (Scholten and Van der
Tol 1994; Preuss et al. 2010; Gabsi et al. 2014). Adequacy
and reliability take a value of 1 for a perfect match, and 0 in
case of no overlap between observations and predictions.

The goodness‐of‐fit indicators and area comparison sta-
tistics were recalculated correcting for study‐specific bias, that
is, BEEHAVE simulation outputs were corrected by absolute
bias prior to applying indicator calculations. Accordingly,
4 versions of the indicators were calculated by comparing
1) means from apiary‐specific BEEHAVE simulations with CCA
data (treating both predictions and observations as determin-
istic); 2) bias‐corrected means from apiary‐specific BEEHAVE
simulations with CCA data; 3) means from apiary‐specific
BEEHAVE simulations with CCA data ranges; and 4) bias‐
corrected means from apiary‐specific BEEHAVE simulations
with CCA data ranges.

RESULTS
Model calibration

A comparison of BEEHAVE simulations prior to calibration
with the control colony data from the LSCFSs chosen as
calibration data sets revealed several discrepancies between
simulated and observed data. Egg production by the queen
ceased much earlier in the year in BEEHAVE compared with
the study colonies. High peak adult bee numbers in late
summer and high honey stores simulated in BEEHAVE
pointed to overestimation of resource availability in the
landscape, or too low foraging effort in collecting the

TABLE 2: Goodness‐of‐fit indicators and area comparison statistics applied to compare apiary‐specific predictions from BEEHAVE simulations with
observations from the validation data seta

Goodness‐of‐fit indicator Equation Remarks References

Normalized mean
absolute error (NMAE) n

O P
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O
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i

n
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= | − |

=
̅

=

∑
Other names used for the same indicator:

relative MAE, MARE
Bennett et al. 2013; Harmel

et al. 2014

Normalized mean square
error (NRMSE) O PRMSE
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=
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̅

∑
Indicator is very sensitive to outliers;

NRMSE ≤0.5 suggested acceptable
performance for TKTD models
(European Food Safety Authority 2018)

Bennett et al. 2013;
European Food Safety
Authority 2018; Harmel
et al. 2014

RMSE‐standard deviation
ratio (RSR) RSR RMSE
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∑

Indicator of how well the model explains
the variance in the observations;
indicator is sensitive to outliers

Moriasi et al. 2007;
Bennett et al. 2013

Adequacy (A) A
UL P UL O LL P LL O

UL O LL O

min , max ,
=

( ( ) ( )) − ( ( ) ( ))

( ) − ( )

Indicator takes a high value if the range
of observations falls within the range
of predictions

Gabsi et al. 2014; Preuss
et al. 2010; Scholten and
Van der Tol 1994

Reliability (R) R
UL P UL O LL P LL O

UL P LL P

min , max ,
=

( ( ) ( )) − ( ( ) ( ))

( ) − ( )

Indicator takes a high value if the range of
predictions falls within the range of
observations

Gabsi et al. 2014; Preuss
et al. 2010; Scholten and
Van der Tol 1994

aIn the equations, O are the observations, P the predictions, and O̅ the mean of the n observations. UL stands for upper limit and LL for lower limit of the ranges of
observations and predictions, respectively.
TKTD= toxicokinetic toxicodynamic.

BEEHAVE model validation—Environmental Toxicology and Chemistry, 2020;39:2269–2285 2275

wileyonlinelibrary.com/ETC © 2020 The Authors



resources. In addition, low pollen stores suggested that the
balance between foraging effort for nectar and pollen was
not reflective of foraging in the study colonies (see also
Supplemental Data, Section 4).

Testing several combinations of the parameter values within
a parameter group and across groups (Table 1) resulted in in-
creased match between simulations and CCA data in one
endpoint while reducing the match in another endpoint. We
concluded that a good match across all endpoints (adult bee
and brood numbers, honey and pollen stores) and dates
available for comparison may not be attainable. Subsequently,

the calibration effort was focused on achieving a good match in
adult bee numbers and honey stores. These 2 endpoints were
identified as most indicative of colony health (e.g., Genersch
et al. 2010; Austin 2014; Döke et al. 2015) and had the lowest
uncertainty in data reported from the studies. Fall was identi-
fied as a particularly important time of the year because colony
condition prior to overwintering is related to subsequent
overwinter survival (Abi‐Akar et al. 2020, this issue). The pa-
rameter combination that resulted in the best match between
apiary‐specific simulations and CCA data with the uncertainty
range applied is summarized in Table 3. In Table 3, we

TABLE 3: Calibrated parameter values used in BEEHAVE validation simulations, and observed impacts on BEEHAVE simulation outcomes of
alterations in parameter values applied in the calibration

Parameter group BEEHAVE parameter Calibrated valuea
Impact of parameter on BEEHAVE

simulation outcomes

Egg laying egg_laying_x1 385 Improved match with data: extension of
egg‐laying season led to higher adult
bee numbers in the winter and
increased spring colony growth

egg_laying_x2 15
egg_laying_x3 36
egg_laying_x4 155
egg_laying_x5 45
MAX_EGG_LAYING 1200 Slightly improved match with data:

decrease in maximum egg‐laying rate
led to slightly lower adult bee
numbers in summer and fall; reduced
egg‐laying rate may reflect higher
mortality in eggs in study colonies

Pollen consumption DAILY_POLLEN_NEED_ADULT_DRONE 0.0002 Improved match with data: pollen
consumption rates derived from
BeeRex (US Environmental Protection
Agency 2014) led to higher adult bee
numbers in the winter and increased
spring colony growth

DAILY_POLLEN_NEED_FORAGER 0.041
DAILY_POLLEN_NEED_IHBEE 6.5
DAILY_POLLEN_NEED_LARVA 6.53
DAILY_POLLEN_NEED_LARVA_DRONE 5.7

Brood raising by
winter bees

pollenStoreLasting_d 14 Improved match with data: increased
pollen collection increased winter bee
numbers and spring colony growth

WINTERBEE_NURSING FALSE No improved match with data: the
assumption of higher efficiency in
brood nursing by winter bees led to
more variable brood and adult
numbers in the spring but no
consistent improvement in match with
study data

Nectar and pollen
availability and quality
in the landscape

Forest/woodland spring resource
category

High spring resource
availability

Improved match with data: assuming
only high pollen availability in the
spring did not have clear impacts on
colony spring growth but assuming
high nectar and pollen moderately
increased spring growth

Sugar concentration (mol/L) in nectar
from noncrop sources

1 Improved match with data: lower sugar
concentration in nectar from noncrop
resources led to moderate decrease in
summer and fall honey stores as well
as small decrease in adult bee
numbers

Nectar and pollen availability in noncrop
resource categories

Exponential decline in nectar
and pollen availability with
declining resource category

No improved match with data: increase
in resource availability had only very
minor impacts on colony dynamics

Nectar/pollen gathering times (s) in
noncrop resource patches

Variable gathering time
scenario with highest

difference in gathering times
dependent on noncrop

resource category

Improved match with data: considerably
reduced adult bee numbers in
summer and lower honey stores due
to broader range of gathering times
dependent on noncrop resource
category

aBold values deviate from BEEHAVE default.
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also summarize the impact of each parameter group on the
simulation outcomes.

Model validation
Visual model performance analysis. For the validation of
the BEEHAVE model, we first graphed the model predictions
(BEEHAVE outputs) against the observations (CCA data) per
LSCFS (Figure 1). Temporal dynamics of adult bee numbers
and honey stores across the first study year suggest that
BEEHAVE captures well the empirical data for the 5 studies.
However, simulated adult bee numbers in the spring of the
second study year were not captured equally well.

In Figure 2, the means of the 10 repetitions conducted with
BEEHAVE were plotted against each mean of the CCA data
from the 2 control colonies in the corresponding apiary (no
ranges applied to the CCA data). The relationship between
apiary‐specific predictions and observations are visualized in
these scatter plots. In addition, scatter plots for 3 temporal data
subsets are presented: first study year (predictions and ob-
servations from 4 dates between 15 July and 2 November),
October (from the last date of CCA for each study, between
16 October and 2 November), and spring of the following year
(from 1–2 CCAs conducted after overwintering, between
6 March and 29 April). Predictions are scattered around the
observations irrespective of absolute adult numbers or honey

FIGURE 1: Adult bee numbers (left) and honey stores (right) across large‐scale colony feeding studies (LSCFSs) used for BEEHAVE validation.
Shaded areas show the range of BEEHAVE outputs across all apiaries and repetitions simulated (110 simulations for LSCFS_2013_1; 120 simulations
for all other LSCFSs). Dots represent the data reported from the colony condition assessments (CCAs). Lines with whiskers mark the range of CCA
data across all apiaries and with uncertainty range applied to observations. Vertical dotted lines mark the study initiation. (Note that in
LSCFS_2016_1, study initiation occurred over several days across apiaries.)
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stores. If the spring period (second study year) was removed,
the time of year also did not seem to influence the match be-
tween prediction and observation. In Figure 3, the distribution
of deviations between predictions and observations (pre-
dictions minus observations) is shown for the whole data set as
well as the temporal subsets. Apart from the CCAs from the
spring of the second study year, the deviations appear to be
normally distributed. The mean of the distributions for honey
was close to 0, suggesting no bias in predictions of honey
stores by BEEHAVE simulations. In contrast, distributions of
deviations for adult numbers are shifted to positive values, in-
dicating that BEEHAVE simulations systematically overpredict
adult bee numbers (bias).

From the visual model performance analysis, the spring
period was identified as a subset of the data for which BEE-
HAVE does not provide accurate quantitative predictions.

Accordingly, the quantitative model performance analysis was
focused on predictions and observations from the first study
year. Bias in the predictions was considered explicitly.

Model bias. Across the validation data set, BEEHAVE tended
to overpredict adult bee numbers (Table 4). For the honey
stores, no considerable bias was obvious across the validation
data set (−5% bias), but study‐specific biases varied consid-
erably. Because in many cases bias for both endpoints ex-
ceeded the recommended level of 5% (Harmel et al. 2014), we
calculated the quantitative goodness‐of‐fit indicators with and
without bias corrected. Goodness‐of‐fit indicators, particularly
the RSR are sensitive to bias, potentially leading to the re-
jection of a model that otherwise correctly predicts patterns in
the empirical data (Ritter and Muñoz‐Carpena 2013). In
Figure 4, goodness‐of‐fit indicators are presented with and

FIGURE 2: Scatter plots of apiary‐specific colony condition assessment data against BEEHAVE outputs across the 5 studies used for validation. The
means of the 2 control colonies/apiary in the studies are compared with the mean outputs from corresponding BEEHAVE simulations (10 repeti-
tions). The black line denotes a perfect match between predictions and observations. DOY= day of year; LSCFS= large‐scale colony feeding
studies.
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without correction for bias, demonstrating the impact of bias
on these indicators.

Quantitative model performance analysis. We compared
the MAE of the predictions with the corresponding ob-
servations, normalized to the average of the observations

(NMAE), the NRMSE, and the RSR (Figure 4). The goodness‐of‐
fit indicators are shown for each individual study and across the
validation data set for the first year of the studies. Previously
suggested thresholds for acceptable model performance are
included in the plots for comparison.

Goodness‐of‐fit indicators were improved by comparing
BEEHAVE simulations with CCA data ranges (representing the
uncertainty in the empirical data) rather than treating the CCA
data as deterministic (no range applied). Considerable variation
in goodness‐of‐fit indicators was observed between studies for
all 3 indicators applied. Considering the whole validation data
set (“validation” in Figure 4), BEEHAVE showed a better per-
formance predicting honey stores in the colonies compared
with adult bee numbers. Correcting for bias was important
for the studies in which high bias was observed (e.g.,
LSCFS_2016_2).

When calculated compared with the range of observations,
NRMSE values for adult bees were ≤0.5 for the first year with
the exception of study LSCFS_2016_2, which had the largest
bias (see Table 4). When bias was corrected, NRMSE also fell

FIGURE 3: Distribution plots of deviations between apiary‐specific colony condition assessment data and BEEHAVE outputs across the 5 studies
used for validation. The means of the 2 control colonies/apiary in the studies are compared with the mean outputs from corresponding BEEHAVE
simulations (10 repetitions). Deviations >0 correspond to overestimation by BEEHAVE; deviations <0 correspond to underestimation.

TABLE 4: Bias in simulated adult bee numbers and honey stores
compared with first‐year colony condition assessment data by studya

Adult bee numbers Honey stores (kg)

Study Absolute bias % bias Absolute bias % bias

LSCFS_2013_1 1587 19 –0.4 −5
LSCFS_2014_1 7209 43 0.2 1
LSCFS_2014_2 −79 0 1.4 17
LSCFS_2016_1 8032 57 6.4 41
LSCFS_2016_2 8610 62 −10.6 −28
aPositive numbers denote overpredictions by BEEHAVE, and negative numbers
correspond to underpredictions.
LSCFS= large‐scale colony feeding study.
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below the threshold for this study. For honey stores, NRMSE
values all fell below the threshold compared with the ob-
servation range.

Relative to the threshold suggested by Moriasi et al. (2007),
RSR values suggest lower performance ratings of BEEHAVE
than the previous indicators (NMAE and NRMSE). However,

when RSR was calculated comparing BEEHAVE outputs with
the uncertainty range of the CCA data and correcting for bias,
the indicator was below the suggested threshold of 0.7 for
most studies. Two cases of RSR for individual studies indicate a
model performance indicator above the threshold even after
considering the range in the CCA data and correcting for bias:

FIGURE 4: Goodness‐of‐fit indicators for adult bee numbers (left) and honey stores (right) comparing first‐year BEEHAVE outputs with large‐scale
colony feeding study (LSCFS) data across the validation data set, and by study (including studies used for calibration). Indicator calculation: Ia:
colony condition assessment (CCA) data (apiary‐ and CCA‐specific averages) compared with BEEHAVE outputs (average/not corrected for bias); Ib:
CCA data (apiary‐ and CCA‐specific averages) compared with BEEHAVE outputs (average/bias‐corrected). IIa: CCA data (apiary‐ and CCA‐specific
ranges) compared with BEEHAVE outputs (average/not corrected for bias); IIb: CCA data (apiary‐ and CCA‐specific ranges) compared with
BEEHAVE outputs (average/bias‐corrected). Thresholds for NRMSE and RSR proposed for other model types are shown as dashed horizontal lines.
NMAE= normalized mean absolute error; NRMSE= normalized mean square error; RSR= RMSE‐standard deviation ratio.

FIGURE 5: Area comparison statistics for adult bee numbers (left) and honey stores (right) comparing first year BEEHAVE outputs with large‐scale
colony feeding study (LSCFS) data across the validation data set, and by study (including studies used for calibration). Aa= adequacy, not corrected
for bias; Ab= adequacy, bias‐corrected; Ra= reliability, not corrected for bias; Rb= reliability, bias‐corrected.
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simulated adult bee numbers in LSCFS_2016_2, and honey
stores in LSCFS_2013_1.

Considering area comparison statistics, the adequacy of the
model predictions of adult bees as well as honey stores for the
first year was low for the whole validation data set as well as for
individual studies (A <0.25 for most studies; Figure 5). Cor-
recting for bias did not improve model adequacy considerably
in most cases. Model reliability was 0.6 across all validation
studies for adult bee numbers in the first year. Reliability in this
endpoint improved to 0.67 if bias was corrected (Figure 5). For
honey stores, the first‐year validation data set comparison in-
dicated a model reliability of 0.62 (0.71 with bias corrected).
The discrepancy between adequacy and reliability can be ex-
plained by smaller ranges of predictions compared with ranges
of observations.

DISCUSSION
The validation exercise presented in the present study

provides important insights that can inform the usability of
BEEHAVE in applications related to higher tier pesticide risk
assessments. Although BEEHAVE was developed based on
multiple literature sources reporting mainly on honey bee data
from experimental studies conducted in Great Britain and
Germany (Becher et al. 2014), the model is capable of closely
simulating patterns of untreated control colony dynamics ob-
served in LSCFSs conducted in North Carolina (southeastern
USA; e.g., Overmyer et al. 2018; Thompson et al. 2019). This
finding is far from trivial. The BEEHAVE model is mechanistic,
that is, it represents multiple interacting processes of the
complex functioning of a colony based on current under-
standing of honey bee biology. Still, the model is a sim-
plification of the real system (as is any model) and may not
capture multiple processes influencing honey bee colonies in
the field. Processes and variables not included in the model
may have been deemed of lesser importance for the ob-
servable dynamics of a single colony during model develop-
ment or may not be understood in the scientific literature. Thus,
it cannot be assumed that the model can simulate colony dy-
namics in varying climates, study designs, or environmental
conditions. Instead, the transferability of the model to such new
contexts has to be demonstrated.

Prior to validation, we calibrated BEEHAVE using untreated
control data from 2 of the 7 available LSCFSs. We did not
attempt to calibrate the model across the large number of
parameters included in BEEHAVE, but instead focused on a
small subset of parameters that we identified as important
based on longer foraging seasons in the southeastern United
States compared with Central Europe, uncertainties in land-
scape resource inputs, and observed deviations between initial
simulations (prior to calibration) and study data. A calibration
including more (or all) parameters in the model, the definition
of realistic ranges of parameters, and the a priori definition of
target model performance in various endpoints and time points
may have led to a closer match between simulation outputs
and data used for calibration. However, we were aiming to

conduct the validation with a limited calibration effort that
would be feasible in future applications. We focused on the
applicability of BEEHAVE to LSCFSs without extensive addi-
tional analysis of the model and its calibration, and how vali-
dation methodologies can be applied to honey bee colony
models in particular and complex ecological models in general.
Still, we would like to note several insights we gained about the
model during the calibration. Notably, using the pollen con-
sumption rates assumed by the US Environmental Protection
Agency (2014) instead of the BEEHAVE default assumptions
improved the match between simulated colony dynamics and
study data. In addition, uncertainties relating to resource
availability, represented by longer gathering times than used in
default BEEHAVE in patches not containing mass‐flowering
crops, led to a better match between simulations and study
data. Accordingly, field data on nectar and pollen gathering
times in different land cover types could improve parameter-
ization of the model and the assessment of landscape com-
position with respect to colony dynamics and may reduce the
calibration effort.

For the validation, we applied the calibrated model to
apiary‐specific conditions from 5 studies that were not included
in the calibration effort, and thus can be seen as independent
data sets within the context of LSCFSs conducted in North
Carolina. Visual and quantitative validation methods suggest
that the calibrated BEEHAVE model provides good predictions
of adult bee numbers and honey stores observed in colonies
across the first year of each study. However, predictions for the
following spring were not reliable.

A good correspondence between data from colony field
studies and BEEHAVE simulations has also been reported by
Agatz et al. (2019). Using visual comparisons between simu-
lation outputs and study data, the authors were able to show
that dynamics of adult bee numbers and brood were repro-
duced by BEEHAVE. As in the present study, landscape and
weather were represented in detail according to the location of
the bee hives and their surroundings. However, the field study
and corresponding simulations did not include overwintering,
so the performance of BEEHAVE in simulating spring colony
dynamics was not assessed in their study (Agatz et al. 2019).
Further evaluation of BEEHAVE with respect to overwintering
and spring colony dynamics may be necessary if it were to be
used for the accurate assessment of colony dynamics spanning
into a second study year.

Evaluation of goodness‐of‐fit to each LSCFS revealed that
the variability in model performance was dependent on the
study, because studies differed from each other in the specifics
of design and field conditions. In addition, variability in ob-
served colony conditions within each study was also larger than
in the BEEHAVE simulations. The variability in study data likely
has multiple sources that are not all fully captured by the
model. Uncertainties of the CCA methods used in the LSCFSs
are documented in the literature (Imdorf et al. 1987; Delaplane
et al. 2013). We used the documented uncertainties and
available data from one study to assess variability from this
source. Uncertainty in empirical CCA data is important to
consider when one is assessing model performance. The
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remaining variabilities between colonies experiencing very
similar conditions and management point to factors influencing
colony dynamics that are beyond what can be reasonably
controlled in a field‐based study. Large variability in outcomes
of overwintering success (Abi‐Akar et al. 2020, this issue) fur-
ther suggests that factors may be influencing colony dynamics
and overwintering success in LSCFSs that are currently not well
understood. Such factors and processes are not captured in
BEEHAVE because the model is based on current knowledge
about honey bee colonies, and on initial conditions and other
factors reported in the studies.

The improvement in model performance indicators if bias
was corrected points to a higher accuracy in the prediction of
temporal dynamics compared with absolute colony endpoints
by the model. Adult bee numbers were overpredicted by
BEEHAVE for most studies. Depending on the time of day
when the CCAs were conducted in the studies (not reported), it
is possible that adult bees were undercounted because a
subset of bees was actively foraging (Imdorf et al. 1987).
Mortality rates of the developmental bee stages assumed in
BEEHAVE could also contribute to this observed consistent
discrepancy.

Validation of ecological models has been recognized as im-
portant to demonstrate the acceptability of a model for use in an
intended context (Rykiel 1996; Schmolke et al. 2010; European
Food Safety Authority 2014). However, a methodology appli-
cable to validation of ecological models remains elusive. If
comparisons between model outputs and empirical data are
reported, they are commonly limited to a visual comparison.
Although visual comparison between empirical observations
and model predictions are recognized as an indispensable step
in model validation, the combination with quantitative validation
methods provide more comprehensive and less subjective in-
sights into model performance (Elliott et al. 2000; Bennett
et al. 2013). Various quantitative indicators have been applied to
specific ecological models (Elliott et al. 2000; Higgins et al.
2001; Preuss et al. 2010; Gabsi et al. 2014; Ashauer et al. 2016;
Focks et al. 2018), and the European Food Safety Authority
(2018) has suggested quantitative indicators for the validation of
the general unified threshold model of survival (GUTS) with
laboratory toxicity data. However, no common approach for
model performance analyses and validation has been in-
troduced for use across ecological models. In other fields, par-
ticularly hydrological modeling, quantitative model performance
analyses are more common, and comprehensive approaches to
model validation have been described (Moriasi et al. 2007;
Bennett et al. 2013; Ritter and Muñoz‐Carpena 2013; Harmel
et al. 2014). We adapted available validation approaches from
the literature and applied them to assess model performance of
BEEHAVE across apiary‐specific simulations.

The visual methods applied provide a comprehensive
overview of patterns in the predictions compared with ob-
servations (e.g., with respect to temporal system behavior).
These methods proved necessary in the present study to assess
model performance simulating colony dynamics in different
seasons. Because ecological systems and models may be
driven by different processes depending on season and/or

environmental triggers, model performance may vary across
different time periods. Timeline plots (compare to Figure 1) are
necessary for the first analysis of patterns. Scatter plots
(Figure 2) provide additional important information because
they can summarize the comparison between observations and
model predictions depending on each data point. These
graphical representations also provide important tools to
compare model performance across different endpoints (e.g.,
adult bee numbers and honey). Multiple endpoints are com-
monly considered in empirical ecological data sets, and eco-
logical models usually provide multiple outputs. Assessing
model performance across different endpoints increases our
understanding of model behavior and can identify endpoints
that are most accurately predicted. In summary, visual model
performance analyses can support model validity for qualitative
applications such as comparison of scenarios, but are limited in
assessing the accuracy of quantitative model predictions.

Quantitative indicators provide a systematic way of com-
paring model performance across multiple empirical data sets
such as observation data sets from multiple studies. In addition,
quantitative indicators could be used to compare perform-
ances of different models used to simulate the same empirical
data. The validation methodology applied to BEEHAVE could
inform validation methods in a wider context of ecological
models (Schmolke et al. 2010; European Food Safety Authority
2014). We explicitly addressed the uncertainty in the empirical
data prior to comparison with model outputs. Measurement
error and, particularly, variability in empirical data were iden-
tified as substantial in the context of CCAs. Ecological field
data in general may come with more variability than other
environmental data (such as hydrological data), and the analysis
of uncertainties in field measurements may need to be given
higher focus. Accordingly, quantitative indicators need to be
based on a thorough understanding of the model and the
patterns it can simulate because quantitative indicators alone
may be misleading if they are applied without considering
temporal and other sources of variability in empirical data sets
as well as model outputs (Ritter and Muñoz‐Carpena 2013).
Therefore, we recommend that quantitative indicators
should always be presented in the context of visual model
performance analyses.

Bias in model predictions should be considered because
patterns or seasonal dynamics are generally considered more
important to be reproduced by ecological models than exact
values in single endpoints and time points (e.g., Grimm and
Railsback 2012; Stillman et al. 2015). Bias correction can help
isolate discrepancies caused by a lack of prediction of temporal
dynamics rather than consistent over‐ or underprediction
(Harmel et al. 2014). However, the variability in bias observed in
the comparison with the 5 LSCFSs used for validation of BEE-
HAVE suggest that validation results should always be pre-
sented without correcting for bias first.

The goodness‐of‐fit indicators as used in the present
study may need to be reviewed for application to ecological
models including stochastic processes and their comparison
with data that are represented by a range. We used the
goodness‐of‐fit indicators to compare the means of repeat
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simulations with BEEHAVE with both the means and ranges
of apiary‐specific CCA data. For comparison of data ranges,
normalized error calculations (such as NRMSE and NMAE)
may be more informative than error measures addressing the
variance in the observations (RSR; other comparable in-
dicators have been suggested in the literature; Ritter and
Muñoz‐Carpena 2013). Previously suggested thresholds for
NRMSE and RSR may not be applicable across ecological
models. Instead, model performance criteria based on
quantitative indicators may be developed for a given model
or ecological application that reflect the objectives of the
application (Bennett et al. 2013).

In contrast to goodness‐of‐fit indicators, area comparison
statistics are designed for the comparison of 2 data ranges
corresponding to the range of repeat simulations with
BEEHAVE, and the CCA data range representing the un-
certainty in the empirical data. However, the limitations of area
comparison statistics may also need to be considered because
they do not consider the absolute values compared, that is, the
increase in data ranges with increase in mean values is not
accounted for. In addition, these indicators suggest complete
lack of model adequacy and reliability if observation and pre-
diction ranges do not overlap, irrespective of how far apart the
2 data sets are. This causes a particular problem with the in-
dicators if both compared ranges are small, that is, in case of
precise predictions and observations.

During calibration and validation of ecological models, it
should be further considered that these models are often
highly complex and include stochastic processes. Accordingly,
large sets of simulations for model calibration and validation
may be very time intensive if all parameters, their possible
ranges, and the stochasticity of a model are to be fully cap-
tured. The extent of calibration and validation effort should be
informed by its objectives in terms of expected model pre-
cision as well as its representation of variability in empirical
study data.

CONCLUSIONS
In the present study, the availability of control data from

7 LSCFSs presented a unique opportunity for the assessment of
the BEEHAVE model. The studies represent a distinct study
design that was not considered previously with BEEHAVE. This
also applies to the geographical (and climatic) region (North
Carolina) where all studies were conducted. We used data from
2 LSCFSs for calibration of the model, and the remaining 5 for
validation. The detailed visual and quantitative performance
analyses suggested that the calibrated BEEHAVE model pro-
vides good agreement with apiary‐specific data across the first
study year in the 5 validation study data sets. However, model
outputs did not match with observed colony conditions after
overwintering, assessed in the following spring. The visual and
quantitative validation methods applied may be useful to as-
sess performance of ecological models in general whereby
quantitative indicators should always be applied in combina-
tion with visual methods. We highlight the considerations

necessary to address variability and uncertainty in empirical
data for model validation as well as model stochasticity.

We recommend the calibrated BEEHAVE model as useful
tool to predict colony dynamics in LSCFSs prior to over-
wintering. A dependence on study conditions including
weather, landscape, initial conditions, and feeding can be fur-
ther explored with the model. Simulated outcomes are typically
less variable than observations from colonies in the field. Ac-
cordingly, predictions of colony sizes (number of adult bees
and honey stores) from BEEHAVE should not be used as pre-
cise predictions of properties of individual colonies, but as
predictions of trends across colonies that experience similar
conditions. In that respect, the model can be used to estimate
the relative impact of the different conditions on colony out-
comes at different times of the first year. For instance, con-
ditions and colony managements from the different studies can
be addressed systematically, and recommendations for study
designs resulting in defined outcomes (e.g., prior to over-
wintering) can be derived (Abi‐Akar et al. 2020, this issue).

Beyond the context addressed in the present study, the
successful validation of first‐year dynamics of LSCFSs suggests
that the model could also be a useful tool to simulate pesticide
exposure and effects if a pesticide module becomes available
and standard scenarios are established (Schmolke et al. 2019).
The suitability for the application to other field study designs
and geographical and climatic regions is also likely. However,
calibration for such altered contexts of application would still
be necessary, and context‐specific validation recommended.
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