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Abstract

Dantrolene, an FDA approved drug to treat malignant hyperthermia and muscle spasm, has been 

demonstrated to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediated 

toxicity of host cells. Ryanodine receptor overactivation and associated disruption of intracellular 

Ca2+ homeostasis play important roles in SARS-CoV-2 infection and replication of host cells. 

Dantrolene, as an inhibitor of RyRs, is expected to ameliorate these detrimental effects of SARS-

CoV-2 in host cells. Additionally, dantrolene has also been shown to inhibit multiple cell or organ 

damage induced by hypoxia/ischemia, mitochondria damage, oxidative stresses, inflammation, 

impairment of autophagy and apoptosis, etc., which are often the causes of severity and mortality 

of COVID-19 patients. We have repurposed that dantrolene has a high potential at treating 

COVID-19 patients and reducing its morbidity and mortality.
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Introduction

The epidemic of coronavirus disease 2019 (COVID-19) caused by the novel severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) has lasted more than half a year with 
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varied population-level case fatality ratio ranged between 2–8%1, though much lower after 

adjusting for demography and under-ascertainment, which is still higher in aged groups (≥60 

years: 6·4%, ≥80 years: 13·4%)1. Nevertheless, there is still a lack of powerful drugs to treat 

COVID-19 patients, even with the promising drug Remdesivir, a nucleotide analog with 

broad-spectrum antiviral activity2. Furthermore, randomized clinical trials have also shown 

disappointing findings of other drugs, including hydroxychloroquine3 and lopinavir-

ritonavir4. In the setting of the absence of robust drug and vaccine, it may be beneficial to 

develop drugs that can reduce the infection and replication of SARS-CoV-2 and severity of 

the symptoms5, protect the organs, ameliorate the deterioration6 and reduce mortality in the 

critically ill COVID-19 patients7. Considering its plausible ability to inhibit SARS-CoV-2 

virus cytotoxicity of host cells8, cytoprotection9, and organ protection10 in a wide variety of 

models of stress and disease, we propose that dantrolene, an FDA approved drug to treat 

malignant hyperthermia and muscle spasm, could be repurposed as a potential adjuvant drug 

for the treatment of COVID-19 patients.

1. Potential and Proposed Mechanisms of dantrolene to inhibit SARS-CoV-2 Infection 
and/or Replication in the Host Cells

Infection and replication of SARS-CoV-2 (Figure 1) in the host cells initially require binding 

of the S1 domain of the virus spike protein (S protein) to angiotensin-converting enzyme 2 

(ACE2) on the plasma membrane, followed by fusion with the plasma membrane mediated 

by S2 domain of S protein to make its entry11,12.

The cleavage and activation of S protein by protease, especially cathepsin L13, provides a 

preliminary priming step of these enveloped viruses14. Meanwhile, cathepsin L promotes 

activation of the ryanodine receptors (RyRs)15, which results in an abnormal increase in 

cytosolic Calcium ions (Ca2+) concentration heightening the activity of Ca2+-dependent 

cathepsin L16. Further, the endosomes containing the virus enter cytosol via endocytosis12, 

and the high Ca2+ concentration in the mature endosome activates cathepsin L14,17. These 

processes finally release the virus RNA into the cytosol. Dantrolene inhibits the abnormal 

and excessive activation of RyRs and restores the intracellular Ca2+ homeostasis9, which 

breaks the pathological feedback between the cathepsin L and the Ca2+ and prevents the 

entry of the virus.

It was suggested that S-mediated membrane fusion was Ca2+-dependent (Figure 1)18. The 

Ca2+ binding to fusion peptides via conserved negatively charged residues are required to 

trigger the fusion process18. To promote fusion, the virus needs additional Ca2+ which is 

imported from the ER via RyRs (Figure 1) to the endosomes. So it is intriguing to note that 

amiodarone, a drug that blocks endosomal/lysosomal Ca2+ channels, inhibits SARS-CoV 

entry after endosomal uptake19. Commonly used Ca2+ channel blockers showed therapeutic 

effects in COVID-19 patients20. Dantrolene may inhibit calcium influx from extracellular 

space and elevation of cytosolic Ca2+ primarily by reducing the capacitive calcium entry 

(CCE). The ability of dantrolene to inhibit L-type Ca2+ channel or NMDA glutamate 

receptor is not fully clear. Therefore, it is not surprising to demonstrate that SARS-CoV 

entry was inhibited by Ca2+ chelators such as BAPTA-AM at the cytosol and endosomes18. 

The critical initiation of infection and subsequent virus replication depends on the presence 
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of Ca2+, especially the intracellular Ca2+ concentration14,18. Dantrolene is expected to 

ameliorate SARS-CoV-2 mediated over activation of RyRs and associated disruption of 

intracellular Ca2+ homeostasis (Figure 1)9. These effects, in turn, are expected to inhibit the 

SARS-CoV-2 virus infection of the host cells. Likewise, inspiring news demonstrated the in 
vitro antiviral cytotoxicity activity of dantrolene against SARS-CoV-2, in clinically relevant 

concentrations and duration, with minimal cytotoxicity of dantrolene itself8. Furthermore, 

the abnormal increase in cytosolic Ca2+ concentration via over activation of RyRs on the ER 

membrane enhances the calcineurin’s activity, which promotes NF-AT nucleus translocation 

and transcription, leading to the subsequent promotion of virus replication in the cytosol 

(Figure 1)16. So, as an antagonist of RyRs, dantrolene is theoretically expected to inhibit the 

replication of SARS-CoV-2, although it needs to be investigated in future studies.

2. Proposed Mechanisms of Dantrolene to Reduce Cell Stress and Damage

1) Dantrolene Reduces Pathological Inflammation—Both SARS-CoV-2 and 

SARS-CoV are characterized by a pathological inflammatory response. The host 

inflammatory response is a major cause of tissue damage and subsequent mortality. 

Increased inflammatory response and elevated levels of cytokines (IL-1β, IL-6, IL-8, 

MCP-1, IP-10, TNFα, IFNγ, et al) have been observed in patients with COVID-19, which 

implied potential of a cytokine storm21–24. In an animal study, the cytokine and IFNγ were 

also detected in the lungs of the SARS-CoV-2-infected animals, which suggested that 

SARS-CoV-2 triggered the innate immune response and the activation of inflammation25. 

Furthermore, the SARS-CoV E protein forms a Ca2+ permeable channel in ERGIC/Golgi 

membranes. The channel activity alters Ca2+ homeostasis within cells and boosts the 

activation of the NLRP3 inflammasome, which leads to the overproduction of IL-1β26. The 

development of an uncontrolled inflammatory response can thus lead to detrimental 

outcomes such as diffused alveolar damage and fibrosis, progressive respiratory failure, and 

multiple organ damage and dysfunction. Additionally, inflammation and SARS-CoV 

proteins cause ER stress, which consequently leads to dysregulation of Ca2+ 

homeostasis27,28.

Intracellular Ca2+ signalling is essential in the release of pro-inflammatory cytokines and the 

elevation of the intracellular Ca2+ has been suggested to be a critical event in sepsis29. 

Calcium influx may play a partial role in promoting the plasma levels of cytokines, because 

the calcium channel blockers have been demonstrated to ameliorate excessive 

inflammation30. Subsequently, calcium channel blockers have been proposed to treat 

COVID-19 patients31. With its ability to ameliorate Ca2+ dysregulation by inhibiting over 

activation of RyRs (Figure 1), dantrolene has been demonstrated to suppress plasma and 

tissue concentration of IL-632, IL-833, IL-1β, TNF-α34,35, and IFN-γ36 in vivo and in vitro. 

Consequently, dantrolene inhibited ER-mediated Ca2+ release and ameliorated ER stress37.

2) Dantrolene Reduces Pathological Oxidative Stress—Oxidative stress 

generated from SARS-CoV-2, might further exacerbate the pro-inflammatory epigenetic 

changes and result in a vicious circle of cytokine response. At the same time, response to 

SARS-CoV-2 infection, DNA methylation defect exacerbated by oxidative stress will further 

enhance viral entry through epigenetic de-repression of ACE2 and increased ACE2 
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expression38. As for SARS-CoV, oxidative stress-sensitive genes were upregulated in 

peripheral blood mononuclear cells of patients39. Alterations of reactive oxygen species 

(ROS) production that are caused by respiratory viral infections are implicated in 

inflammation, lung epithelial disruption, tissue damage, and even pulmonary fibrosis40.

Given SARS-CoV induced oxidative stress cell damage, anti-oxidative treatment may play a 

role in the SARS-CoV treatment. Dantrolene was reported to protect cells against oxidative 

stress by elevating the levels of GSH and GSH/GSSG41,42. Calcium release from the ER was 

associated with the generation of ROS43, which was inhibited by dantrolene via lowering 

mitochondrial superoxide, ROS44.

3) Dantrolene Inhibits Cell Death By Apoptosis—Apoptosis is induced as one of 

the host antiviral responses to limit virus replication and production during viral infections. 

Lymphopenia was common in SARS-CoV-2 infected patients, probably due to lymphocyte 

apoptosis21,24,45. Also, laboratory research in peripheral blood mononuclear cells 

demonstrated that TP53, an important gene in the process of apoptosis, showed an 

increasing trend in patients infected with SARS-CoV-224. In SARS-CoV-2 infected animals, 

apoptosis has been found in the respiratory tract and TUNEL staining showed the diffused 

signals in the lungs, bronchiolar lumen cell debris, and collapsed alveolar walls25. The 

release of Ca2+ from ER has been proposed to be involved in the induction of apoptosis by 

oxidative stress, which is also a pathological process induced by SARS-CoV-243.

Apoptosis contributes to SARS-CoV-2 virus pathogenesis, and inhibition of apoptosis may 

protect host cells against damage. Abnormal Ca2+ release from the ER and consequent 

increase in cytosolic and mitochondria Ca2+ levels play pivotal roles in inducing cell 

apoptosis in a variety of cell types46. Thus, dantrolene can suppress apoptosis through 

inhibiting RyR-mediated abnormal and excessive Ca2+ release47,48. Moreover, dantrolene 

can ameliorate apoptosis by directly inhibiting nuclear condensation and fragmentation49,50.

4) Dantrolene Ameliorates Impairment of Autophagy—SARS-CoV has the 

potential to inhibit the autophagy process. An analysis of a relatively wide database of 

SARS-CoV-2 genomes of worldwide isolates representative of COVID-19 has revealed two 

synonymous mutations, of which one is non-structural viral proteins 6 (NSP6)51. NSP6 is a 

common component of both α and β-coronaviruses, which locates to the ER and generates 

autophagosomes52. It has been shown that NSP6 and ER binding may favor coronavirus 

infection by compromising the ability of autophagosomes to deliver viral components to 

lysosomes for degradation53,54. Thus, this would limit autophagosome expansion and 

activity55. Moreover, overexpression of membrane-associated papain-like protease PLP2 of 

SARS-CoV and MERS-CoV led to blockage of autophagosomes-lysosomes fusion and 

suppression of the autophagic flux56. It has been shown that high cytosolic Ca2+ 

concentration suppressed vesicle fusion, and calcium channel blockers can promote 

autophagosome-lysosome fusion57. Dantrolene, as a calcium channel blocker, through 

inhibition of the RyRs in ER, has been reported to promote autophagy activity by inducing 

autophagy induction58,59 and, therefore, potentially ameliorating the impaired autophagy 

function mediated by SARS-CoV-2 viruses.
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3. Dantrolene Potentially Ameliorates the Multiple Organ Damages in COVID-19 Patients

COVID-19 typically demonstrates severe progressive lung injury, multi-organ failure, and 

death3,60,61. Although SARS-CoV-2 initially infects the lungs and causes lung damage, the 

virus eventually reaches many organs, resulting in multiple organ damage62. Critically ill 

patients are typically found to have systemic multiple-organ damage and dysfunction63,64.

1) Lung—Acute respiratory distress syndrome (ARDS) is often seen in critically ill 

COVID-19 patients, which is usually life-threatening because it is associated with 

progressive hypoxia and associated multiple organ damage3,60,65. Pulmonary hypertension 

(PH) is a recognized consequence of AR-DS and a severe condition with a very poor 

survival rate66,67, which was presented in COVID-19 patients68. Pulmonary vasoconstriction 

due to hypoxia and inflammation constitutes the majority of the underlying mechanisms of 

PH69. It has been proposed that the correction of abdominal pH by reducing hypoxic 

pulmonary vasoconstriction could benefit COVID-19 patients.

RyRs play an important role in hypoxia-induced Ca2+ release and contraction70, which 

contributes significantly to the development of pulmonary hypertension71. Chronic hypoxia 

increases RyR2 expression and further induces pulmonary hypertension72. Dantrolene can 

inhibit hypoxia-induced Ca2+ release in the pulmonary arterial smooth muscle cell and 

vasoconstriction of the pulmonary artery70,73,74, which reverses the hypoxic 

vasoconstriction75. In light of this beneficial effect, dantrolene may be a potential adjunctive 

countermeasure.

Moreover, in the airway smooth muscle, RyRs also mediate the Ca2+ response and thus 

bronchoconstriction, which can be attenuated by dantrolene76. This potentially mitigates the 

high airway pressure, which might result in the pneumothorax of COVID-19 patients77.

2) Cardiovascular System—Cardiac injury in COVID-19 patients was more likely 

related to multiple stress factors rather than direct damage by the virus68. Therefore, the goal 

is to minimize the myocardial ischemia and ischemia-reperfusion injury (IRI) in these 

patients.

Cytosolic Ca2+ overload plays a major role in the development of irreversible injury during 

myocardial ischemia, while the abnormal Ca2+ release from the sarcoplasmic reticulum 

contributes to this damage significantly78. Dantrolene reduced ischemic injury even at 

concentrations that did not affect contractile performance in the heart79. In vitro studies 

showed that dantrolene attenuated the lethal cellular injury80, reduced infarct damage79–81, 

protected cardiac function79,82,83, and was even antiarrhythmic83 under IRI.

Cardiac arrhythmia and associated cardiac arrest are often seen in COVID-19 patients3. In 

heart failure, arrhythmogenic Ca2+ release and chronic Ca2+ depletion arise due to the 

altered function of the RyR Ca2+ release channel84. Dantrolene has been demonstrated to 

have antiarrhythmic effects against Ca2+ overload mediated arrhythmias85,86, while at the 

same time preserving inotropy84. Dantrolene can also improve survival after ventricular 

fibrillation by mitigating impaired Ca2+ handling in animal models87, and prevent 

catecholaminergic polymorphic ventricular tachycardia88.
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3) Brain—The expression and distribution of ACE2 in the brain89 suggest that the SARS-

CoV-2 may cause some neurologic manifestations through direct90 or indirect 

mechanisms91. The infection itself has also been described as a risk factor for stroke92. The 

ischemia of the brain seems to be a severe threat to COVID-19 patients.

One approach to protect the brain against ischemia is to reduce the tissue’s functional 

activity to preserve energy for the metabolic processes that are essential to viability93. The 

neuroprotective effect of dantrolene, which inhibits abnormal Ca2+ release from ER, and 

then contributes to the large reversible reductions in O2 consumption, glycolysis, and 

electrophysiological function93, appears rather consistent across multiple cells and animal 

models of neurological injury that include excitotoxicity94–98, oxygen-glucose deprivation 

(OGD), forebrain ischemia104–107, focal ischemia108, global ischemia109,100, and traumatic 

injury111. In humans, dantrolene is capable of attenuating cerebral vasospasm112 and 

providing neuroprotection113.

4) Liver—Many patients with COVID-19 range from differing degrees of liver damage 

and function abnormality61. Pneumonia-associated hypoxia and immune-mediated 

inflammation, such as cytokine storm, might contribute to liver injury or even develop into 

liver failure in patients who are critically ill114.

It was reported that dantrolene offered significant functional and structural protection of the 

ischemic liver, by decreasing TNF-α but increasing IL-10 and was also associated with 

better liver function tests and less necrosis during ischemia in rat livers115.

5) Kidney—Kidney failure may be part of whole-body events in COVID-19 patients62. 

Renal ischemia/reperfusion injury is a common cause of acute renal failure116 and induces 

renal tubule apoptosis, which is associated with the elevation of the cytosolic calcium 

concentration117. The renal tubular cell injury can be attenuated by dantrolene118.

6) Pathological Inflammation and Cytokine Storm—In COVID-19, higher plasma 

levels of cytokines including IL-6, IL-2, IL-7, IL-10, granulocyte-colony stimulating factor, 

interferon-γ–inducible protein, monocyte chemoattractant protein, macrophage 

inflammatory protein 1α, and TNF-α were found in ICU patients, which implied that a 

cytokine storm occurred21,61. For COVID-19 patients, cytokine storms are a major reason 

that some require intensive care and ventilation. Dantrolene has been shown to inhibit 

various cytokine release and inflammation in various animal models34–36. It was reported 

that dantrolene decreased TNF-α in the lung (26.1%), liver (29.4%), and spleen (35.4%) and 

IL-1α in the lung (30.0%) and liver (25.4%)34. These beneficial effects of dantrolene make 

it potentially effective at ameliorating cytokine-mediated pathological inflammatory reaction 

and associated cytokine storm in COVID-19 patients.

Conclusions

In such a global pandemic, little is known for certain. Besides direct antivirus treatment, 

attention should also be paid to reducing the severity of the symptoms, protecting the organs, 

and ameliorating the deterioration. Based on previous studies illustrating the dantrolene 
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protective effects against SARS-CoV-2 virus cytotoxicity in host cells, cell or organ damage 

induced by hypoxia/ischemia, mitochondrial damage, oxidative stresses, inflammation, 

impaired autophagy function, etc., we propose that dantrolene might be a potential 

repurposed drug for the treatment of COVID-19 patients (Figure 2), with an expectation to 

assist in reducing mortality. Further studies at the varied molecular, cellular, animal, and 

patient levels are important and recommended.
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Figure 1. 
Dantrolene might inhibit infection and replication of SARS-CoV-2 and associated pathology. 

Cathepsin L, a protease on the plasma membrane of host cells, increases Ca2+ release from 

the endoplasmic reticulum (ER) via the ryanodine receptors (RyRs). The associated 

elevation of cytosolic Ca2+ concentration, in turn, increases cathepsin L activity. Cathepsin L 

promotes virus fusion with host cells by cleaving and activating the spike (S) protein. High 

levels of extracellular and cytosolic Ca2+ concentrations are also necessary for virus fusion 

and endocytosis. Cathepsin L in the endosome, under the condition of a high level of Ca2+ 

concentration, promotes virus RNA release into the cytosol. On the other hand, the increased 

cytosolic Ca2+ concentration due to the overactivation of RyRs activates calcineurin, which 

dephosphorylates NF-AT and translocates into the nucleus for promoting transcription and 

virus replication. Excess Ca2+ release from ER via overactivation of RyRs in AD cells 

results in depletion of ER Ca2+ and associated ER stress, as well as the overloading of 

mitochondria with Ca2+ and associated mitochondria damage. All of the above pathologies 

eventually result in impaired ATP production, oxidative stress damage, apoptosis, and 

cytokine storm, leading to final host cell damage. Dantrolene inhibits the infection and 

replication of the SARS-CoV-2 virus and host cell damage by inhibiting abnormal and 

excessive activation of RyRs and restoring the intracellular Ca2+ homeostasis.
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Figure 2. 
Dantrolene is expected to protect cell and organ damage induced by multiple pathological 

stresses in COVID-19 patients.

JIANG et al. Page 16

Eur Rev Med Pharmacol Sci. Author manuscript; available in PMC 2020 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Potential and Proposed Mechanisms of dantrolene to inhibit SARS-CoV-2 Infection and/or Replication in the Host Cells
	Proposed Mechanisms of Dantrolene to Reduce Cell Stress and Damage
	Dantrolene Reduces Pathological Inflammation
	Dantrolene Reduces Pathological Oxidative Stress
	Dantrolene Inhibits Cell Death By Apoptosis
	Dantrolene Ameliorates Impairment of Autophagy

	Dantrolene Potentially Ameliorates the Multiple Organ Damages in COVID-19 Patients
	Lung
	Cardiovascular System
	Brain
	Liver
	Kidney
	Pathological Inflammation and Cytokine Storm


	Conclusions
	References
	Figure 1.
	Figure 2.

