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On April 2, 1986, a symposium comprised of multidisciplinary preclinical and clinical 

scientists and physicians was convened and the proceedings published.1 It addressed 

neuroendocrine disorders of the gastroenteropancreatic (GEP) systems and introduced 

preclinical and clinical applications of the somatostatin peptide analogue SMS 201–995 

(octreotide [Sandostatin]). Three years later, in 1989, octreotide was the first Food and Drug 

Administration (FDA)-approved drug for the symptomatic control of carcinoid syndrome 

and the watery diarrhea syndrome of the pancreatic neuroendocrine tumor (NET), VIPoma.2 

Now 30 years later, octreotide, and the recently FDA-approved agent lanreotide, continue as 

first-line therapies for all symptomatic NETs. Furthermore, the isotopie radiolabeling of 

octreotide specifically targets somatostatin receptors overexpressed on NETs and has 

heralded yet another FDA-approved diagnostic-therapeutic strategy termed theranostics, 

which allows an octreotide derivative to act as a radiodiagnostic molecular imaging agent 

and a radiotherapeutic product for the treatment of malignant endocrine tumors.3,4

To better understand the context of these developments, and the pivotal role native 

somatostatin and its long-acting analogues play in normal peptide regulation and 

neuropeptide excess associated with NETs, we delineate and define distinct eras in the 

history and discovery of gastrointestinal (GI) endocrinology. The major periods of gut 

endocrinology include: the physiology (“juice”) era, the clinical era, the peptide chemistry 

era, and the peptide diagnostic and therapeutic era.5

Building on the historical milestones recently addressed in reviews by O’Dorisio5 and 

Oberg,6 we address and expand on the two reviews where appropriate. Regarding 177Lu-

DOTA(tyr)-octreotate and 90Y-DOTA-(tyr)-octreotide therapy in childhood and adult NETs, 

we highlight the collaboration between academia and industry in basic science and the 

clinical research that advanced LUTATHERA (Lu-177-dota-tate) to FDA approval as 

standard of care therapy for low-grade NETs.4 Examples of new radioisotopes and therapy 

compounds currently in development for diagnosis and therapy for high-grade NETs are also 

discussed.
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Endocrinology began in 1902 with the physiology era, with the discovery of the “blood-

borne chemical messenger” secretin by Bayliss and Starling.7 They demonstrated that HCI 

placed into canine duodenum resulted in the secretion of alkaline pancreatic juice. They 

called this substance “secretin” and later coined the term “hormone” derived from the Greek 

military word Opuaw, which means “I arouse/excite to activity.”5

In 1905, Edkins,8 a prominent physiologist, described a potent gastric acid secretagogue 

subsequently termed “gastrin.” It was not until 1961 that Gregory and Tracy9 identified the 

multigastrin forms confirming its biologic properties described by Edkins. Physiologists Ivy 

and Eldberg10 described their observation on hormone-mediated gallbladder contraction. 

They noted that the extract from dog proximal small intestine when injected intravenously 

into another dog was associated with gallbladder contraction. A second pair of physiologists, 

Harper and Raper,11 found that dog small intestine extract was associated with gallbladder 

contraction and pancreatic juice release and termed it “pancreozymin.” For a time, the 

abbreviation CCK/PZ was used. It was ultimately determined that pancreozymin was indeed 

cholecys-tokinin (CCK). This highlights the insensitivity of the bioassay techniques at the 

time, and the tremendous impact that radioimmunoassay (RIA) was to have on the 

neuroendocrine field.

A few years before the discovery of CCK, Banting and Best12 were able to stabilize sheep 

insulin and achieve glucose homeostasis in pancreatectomized dogs. Shortly after insulin 

stabilization, a patient with insulin-dependent diabetes mellitus was successfully treated with 

the extracted sheep insulin. This and other key insulin milestones were reviewed by the 

endocrinologist Forsham13 in 1982. In the United States, large-scale insulin production was 

achieved thanks to the strong collaboration between academia and industry (Eli Lilly) and 

NOVO-Nordisk in Europe. Diabetes mellitus represented a peptide-deficient state of the 

enteropancreatic axis as opposed to the excess peptide hormone production by functional 

NETs.

During the era of physiologic discovery, morphologists, anatomists, and pathologists were 

working to identify the GEP cells responsible for the secretion of these newly identified 

peptide hormone substances. Table 1 lists the key investigators who helped define the 

neuroendocrine cells of the GEP axis.5,6

By 1950 it was clear that, within the GEP system, there were many unexplained control 

systems and a larger number of different neuroendocrine cells and their secreting products 

and actions that were yet to be recognized. A prominent gastrophysiologist, Grossman,22 

worked diligently to assign hormone and neuroenne action to the previously described 

substances, such as CCK and secretin. Until that time, the extracted peptide material was 

crude and only partially purified. This affected bioassay interpretation and assignment of the 

actual neuropeptides responsible for the observed actions. One example was the 

identification of incretin, a substance residing in the small intestine, released by a glucose 

load and affecting additional insulin secretion in a hormonal fashion. Moore23 is credited 

with the first physiologic observation of a small intestinal extract that lowered blood sugars 

in the presence of an increased glucose load into the duodenum. It is now accepted that 
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incretin is caused, in part, by the two GI peptides glucose-dependent insulinotropic peptide 

(GIP) and glucagon-like peptide-1.24

The peptide chemistry era was ushered in with two remarkable discoveries in the 1950s and 

1960s. The first was the development of column chromatography, which used cross-linked 

dextran gel for gel filtration of substances based on particle size and cross-linking and 

molecular weight.25 The resin columns used different size beads, which excluded extracts of 

different molecular weights and purification. The purification of gastrin from Zollinger-

Ellison tumors by Gregory and Tracy in 1961 was an excellent example of the purification 

by column chromatography.5 Furthermore, Jorpes and Mutt from the Karolinska Institute in 

Stockholm, Sweden, purified several GI peptides extracted from porcine intestine using 

large-diameter columns.26,27 It has been estimated that the combined efforts of Gregory, 

Jorpes, and Mutt led to the purification of more than 14 GI neuropeptides that included GIP, 

vaso-active intestinal peptide (VIP), pancreastatin, and neuropeptide Y, and peptide tyrosine.

The second critical discovery was the development of RIA by Yalow and Berson in 

1959.28,29 With highly purified GI peptides being rapidly produced, RIA used highly pure 

peptide standards in competitive protein binding curves with a short wavelength isotope, 

iodine 125- Kev 30, offering for the first time high peptide sensitivity and specificity 

measurements. Shortly after the initial description of RIA, McGuigan30 published the 

gastrin RIA. With the development of high-titer peptide antibodies for RIA, antibodies 

directed against peptide-secreting neuroendocrine cells using the immunohistochemical 

(IHC) methodology was simultaneously developed. Two active investigators in 

neuroendocrine clinical research in the mid-1970s were the endocrinologist S.R. Bloom and 

pathologist J.M. Polak. Together they identified by RIA and IHC many GI neuroendocrine 

secreting cells,31–33 and made a great contribution to GI neuroen-docrinology by the 

mid-1970s. The United States had also developed RIAs for the newly identified 

neuropeptides. The Mayo Clinic developed commercial neuropeptide RIAs under the 

supervision of V.L.W. Go. Also, The Ohio State University/University Reference Laboratory 

performed CLIA-certified GI neuropeptide RIAs under the supervision of S. Cataland and 

T.M. O’Dorisio. The most durable commercial neuropeptide RIA laboratory in the United 

States is the Inter Science Institute, which will soon celebrate 50 years of performing peptide 

RIAs.34

In 1977, R. Yalow received the Nobel prize in physiology and medicine “for the 

development of RIA of peptide hormones.” S. Berson had passed away and was not eligible 

posthumously. Dr Yalow shared the Nobel Prize that year with R. Guillemen and A. Schally 

“for their discoveries concerning the peptide hormone production of the brain.” Dr 

Guillemin and his colleagues had discovered somato-statin.35 Arimura and colleagues36,37 

established an acetone extraction RIA to measure plasma somato-statin plasma in 1978. The 

impact that RIA had on GI peptide discovery is depicted in Fig. 1.

With the discovery of new peptides/hormones during this period between 1960 and 2000, it 

would be only a matter of time before the development and utility of some of these peptides 

became clinically relevant (the peptide therapy era). The clinical era, albeit, at a much 

slower pace, progressed in parallel with the discovery of GI hormones beginning in 1902. 
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The pathologist S. Oberndorfer is credited with the description of small bowel tumors, 

which he termed “karzinoide,” meaning carcinoma-like. His publication in 190738 and 

description was the first to distinguish the slower growing tumors from true carcinomas. It 

was not until 1928 that he revised the initial description of benign tumors to more accurately 

reflect their malignant and metastatic potential.39 In his section on carcinoid tumors, Oberg6 

cites a case report by Ransom40 from 1890 of a woman with probable malignant carcinoid 

tumors who flushed after eating. Oberg6 suggested this could be the first description of 

carcinoid syndrome. Lembeck,41 in 1953, confirmed that serotonin was present in an ileal 

carcinoid tumor, specifically within the enterochromaffin cells. The problem of being able to 

determine carcinoid tumors as functional serotonin-secreting tumors in the past has been 

caused by the difficulty in measuring the plasma serotonin, which has a short half-life of 35 

seconds. This is been overcome with the addition of ascorbic acid to a whole-blood sample.

It has now been shown that ileal carcinoid tumors are the second-most frequent leading 

tumor of the GI tract. Moreover, they have a higher incidence than esophageal and gastric 

carcinomas combined.42 An insulin-secreting pancreatic NET was first described by Wilder 

and colleagues43 in 1927. It was a case that used a bioassay whereby they could demonstrate 

that the liver metastasis contained bioactive insulin. Whipple and Frantz44 published a large 

series of islet cell tumors associated with hypoglycemia. They also described what came to 

be known as Whipple triad: documented low blood sugar associated with symptoms of 

hypoglycemia, improved with glucose replacement.

In 1955, Zollinger and Ellison45 described two patients with abdominal pain, diarrhea 

(because of excess gastric acid secretion), and atypical bleeding ulcerations of the small 

bowel associated with NETs of the pancreas. Shortly after the initial description, the 

syndrome was named ulcerogenic syndrome and/or Zollinger-Ellison syndrome. One of the 

first two patients initially reported was a 17-year-old woman at the time of diagnosis. A few 

years following her subtotal gastrectomy, it was noted she was a member of a multiple 

endocrine neoplasia (MEN) syndrome type 1 (MEN-1) kindred, and one of the authors 

(T.M.O.) helped care for this patient for almost 20 years. Her weight had remained quite 

stable even in the presence of liver metastasis and subtotal gastrectomy. It was determined 

by RIA that her tumor secreted gastrin and somatostatin, and that the somatostatin acted, in 

part, as an antagonist to gastrin secretion on her liver tumors via a peptide-peptide 

interaction. She was never begun on octreotide, but her liver lesions remained stable until the 

time of her death at age 65. A similar case of a gastrinoma secreting somatostatin was 

discussed by O’Dorisio and colleagues in 1987.46

Gregory and coworkers47 identified gastrin from patients with Zollinger-Ellison syndrome, 

including one patient from the original Zollinger-Ellison publication. Using classic bioassay, 

they injected gastrinoma tumor extract intravenously into two dogs and showed profound 

gastric acid output. Their work validated Edkins8 physiologic observation in 1905 using 

canine stomach mucosa extracts.

In 1958, internist J.V. Verner and pathologist A.B. Morrison described two patients with 

fulminant secretory diarrhea, hypokalemia, achlorhydria (most often hypochlorhydria), and 

pancreatic NETs. The patient also had metabolic acidosis caused by bicarbonate loss in the 
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diarrhea.48 Although initially termed “watery diarrhea, hypokalemia, achlorhydria,” it came 

to be called watery diarrhea syndrome. Because the neuromo-dulator VIP shares amino acid 

homology with secretin and GIP, both neuropeptides were thought to be the modulating 

peptide excess in the watery diarrhea syndrome. It was not until the purification of VIP by S. 

Said and V. Mutt and the development of the VIP RIA that the actual pathohumoral state of 

VIP and watery diarrhea syndrome was established.49,50

Although glucagonoma syndrome was first described in 1942, McGavran and co-workers51 

reported a case of a patient with glucagonoma syndrome with elevated plasma glucagon 

levels, diabetes mellitus (type II), severe dermopathy, and a pancreatic NET in 1966. The 

immunoreactive-like glucagon RIA was performed by R.H. Unger and proved to be one of 

the best glucagon polyclonal antibodies (Unger 30K) for glucagon RIA in the United States. 

The association of the often-lethal thromboem-bolism in the glucagonoma syndrome was 

reported by Mallinson and coworkers in 1974.52

Somatostatinoma began to be described in the late 1970s. They are rare and are more often 

peripancreatic than pancreatic in location. These are considered asymptomatic but are 

associated with gallbladder disease (because of antagonism of CCK), diabetes mellitus (type 

II), and subclinical fat malabsorption (because of antagonism of pancreatic enzyme release).
53

Although only 20% of pancreatic NETs are functional, these tumors of the GEP system 

predominantly secrete their excess peptides/amines in an endocrine manner. They may also 

secrete peptides or amines alien to their cell of origin in a paraendocrine (paracrine) fashion.
46,54 Because of the ability to measure plasma neuropeptides by specific and sensitive RIA, 

and recognizing their physiologic and pathophysiologic actions, we can ascribe peptide/

amine function to GEP NETs based on their syndrome/symptoms. Although it is currently 

accepted that GEP NETs derive from neuroendocrine cells/tissue, the amine precursor 

uptake decarboxylase hypothesis of Pearse55,56 remains appealing. His concept considered 

that the diffuse endocrine system is of neural crest origin. It was supported by the finding 

that neuron-specific enolase is present in all parts of the neuroendocrine cell system.57 

Unfortunately, we have come to appreciate the inadequate specificity of neuron-specific 

enolase antibodies, which may have impacted on Pearse’s conclusion that the origin of 

neuroendocrine cells are derived from neural crest tissue. Later worked by Andrews and 

colleagues58 was an endodermal origin of neuroendocrine cells, and not necessarily neural 

crest origin. The amine precursor uptake decarboxylase concept, however, remains a 

convenient and practical framework to describe and study NETs.

Most enteropancreatic NETs are considered sporadic. However, inherited syndromes 

associated with pancreatic and thyroid NETs exist, and their genetics has been determined. 

These include MEN1 and MEN2 syndromes, von Hippel-Lindau disease, 

neurofibromatosis-1, and tuberous sclerosis. Although the inherited NET-associated 

syndromes are rare, we have clinically observed MEN1 and MEN2 more often in our NET 

clinics than von Hippel-Lindau disease or tuberous sclerosis. This may be caused, in part, by 

the functional nature of the pancreatic NETs in MEN1, and the diagnosis and management 

of pheochromocytoma in MEN2 syndromes. Norton and coworkers59 published a review of 
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the genetics and clinical management of MEN1 and MEN2 in 2015. Table 2 represents the 

major NETs of the GEP system and their MEN associations.

Clinically affected MEN1 patients most often present initially with hypercalcemia and 

elevated parathyroid hormone or a history of parathyroid surgery and evidence of four gland 

parathyroid hyperplasia. The most common pituitary tumor, when present, is a prolactinoma, 

but can also be a growth hormone- or corticotropin-secreting tumor. The pancreatic NET, 

when it occurs, is most commonly an insulinoma or gastrinoma, but rare glucagonomas or 

VIPoma can also be seen in other members of MEN1 kindreds. The pancreatic NETs are 

most often multiple adenomas, one or two of which may grow while the other adenomas 

remain stable. Correcting the hypercalcemia when present before working up a functional 

PNET is recommended. Whereas carcinoid tumor can co-occur in MEN1 and MEN2 

syndromes, the pulmonary carcinoid tumor seems more prevalent in MEN1 patients, in our 

experience.

Regarding MEN2 syndrome, the most frequent component of MEN2 almost always involves 

medullary thyroid carcinoma (MTC) from the neuroendocrine C-cells (parafollicular cells) 

of the thyroid gland. MTC is always present in MEN2 and constitutes the primary diagnosis. 

Parathyroid hyperplasia can also be present in MEN2A but is not as clinically frequent as 

seen in MEN1 patients. The third gland involved in MEN2 is the adrenal medulla, which 

gives rise to pheochromocytomas. Patients may present first with symptoms of 

pheochromocytoma and thereafter an MTC is discovered. Both MTC and 

pheochromocytoma are often bilateral. MEN2B is much less common (5%) than MEN2A, 

which accounts for 95% of MEN2 patients. MEN2B is clinically more aggressive, also 

consists of pheochromocytomas, but does not have parathyroid hyperplasia; it is also 

associated with a marfanoid body habitus and ganglioneuromas of the GI tract.59 

Carcinoembryonic antigen with serial measurements of calcitonin is helpful in detecting 

early aggressivity and metastasis of MEN2-associated MTC.

The final portion of this review addresses selected aspects of the various peptide therapies 

that currently exist in the United States. The following schema represents a partial approach 

to the various therapeutic modalities (Fig. 2).

As noted, the arrows are two-way, and designed to represent that electing one therapy does 

not eliminate its option at a different phase of treatment. It is important to demonstrate that 

any of the therapeutic options can be repeated. Most of the listed options are discussed by 

other authors in this issue. This review briefly address surgery/debulking and somatostatin 

and ianreotide therapy, and discusses the most recent FDA-approved peptide receptor 

radionuclide therapy (PRRT).

SURGERY/CYTOREDUCTION

It is historically and presently accepted that the first best therapy in the management of NET 

is surgery, whenever possible. Less well-established is the overall survival (OS) 

improvement when the primary tumor is removed versus being unable to remove the primary 

tumor. This is caused, in part, by the reality that all surgical studies of this nature are 
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retrospective and the assignment of patients to no surgery is inherently unethical. That said, 

there are publications that strongly suggest benefits in progression-free survival (PFS) and 

OS when the primary tumor and hepatic metastasis debulking is possible.60–63 At the 

University of Iowa, our endocrine surgeon (editor of the present monograph) is aggressive in 

removing primary PNETS and SBNETs, with liver tumor debulking (and liver sparing) 

when safe surgery and low patient risk are possible63

OCTREOTIDE/LANREOTIDE

Octreotide and Ianreotide remain as first-line management and therapy for functional and 

nonfunctional NETs. They are remarkable for their durability over decades and merit 

discussion. Octreotide (Sandostatin) and, somewhat later, Ianreotide (Somatu-line) were 

both developed as analogues (more properly, congeners) of the active ringed portion of 

native somatostatin-14.64–66 Their other natural form is somatostatin-28, representing an 

extension of somatostatin-14 away from its active eight amino acid ring.67 As noted from 

Fig. 1, somatostatin has been shown to have all four regulatory functions: (1) endocrine, (2) 

paracrine, (3) neurocrine, and (4) autocrine.67 Shortly after its initial discovery and 

publication in 1973 by Brazeau and colleagues,35 Sandoz (now Novartis) focused their 

medicinal chemists to synthesize a longer acting fragment of the eight amino acid ring of the 

native somatostatin to be used clinically. Almost 9 years later, octreotide (SMS 201–995, 

Sandostatin) was synthesized by Bauer and colleagues.64 Shown next is the amino acid 

structure of Sandostatin-native somatostatin-14 and the eight amino acid synthetic structures 

of octreotide and lanreotide both containing the D-isomers of the naturally occurring amino 

acids and the bioactive ringed portion. D-isomers prevent enzyme degradation, as compared 

with the naturally occurring L-form amino acids in somatostatin-14. Also documented in 

Fig. 3 showing the 1 to 14 somatostatin and octreotide and lanreotide is the purported amino 

acid, lysine, within the ringed portion considered to be the primary peptide binding site of 

somatostatin, octreotide, and lanreotide to the somatostatin receptor subtype 2 (sstr2A), the 

most prevalent receptor of the five somatostatin receptor subtypes on neuroendocrine cells 

and their NETs (see Fig. 3).67

It is important to appreciate that for 10 years following the discovery of native somatostatin, 

there was a large number of publications reporting somatostatin’s mechanisms of action and 

regulatory role in mammalian physiology68–70 and its regulatory role in NETs. Based on the 

information available on native somatostatin, and the wide-spread clinical use of octreotide, 

somewhat later the use of lanreotide was a reasonable and rational extension. Both 

analogues had a much longer plasma half-life than the naturally occurring somatostatin, and 

a much more potent and durable action on NETs.71–74 During the late 1980s, while 

octreotide and lanreotide were being used on a compassionate use basis to treat NETs and 

growth-hormone-secreting pituitary tumors causing acromegaly, there were efforts to 

characterize the various receptors on NETs. Reubi and coworkers75 mapped somatostatin 

receptor subtypes using autoradiographic techniques that included the use of 125lodine 

isotope labeled to the tyrosine substituted for phenylalanine in octreotide at position 3. Patel 

and Srikant76 demonstrated peptide analogue subtype selectivity using five clonal human 

somatostatin subtype receptors (hsstr1–5). During the same year, Bruns and colleagues77 

discussed the molecular pharmacology of somatostatin-receptor subtypes. This was made 
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possible for sstr2A by highly specific IHC with a commercially available polyclonal 

antibody, UMB-1 (Biotrend, Epitomics, Inc). Characterization of the UMB-1 antibody was 

published in 2012 by Korner and coworkers.78 As noted in our therapeutic schema, all 

patients coming to our NET clinics for the first time will have their tumor tissue stained 

(when available) for sstr2A. Qian and colleagues79 published a study examining the 

presence of somatostatin subtype receptors 1 to 5 and OS and PFS in patients with 

metastatic NETs. They concluded that patients with NETs that express sstr2A (but not sstrl, 

sstr3, sstr4, or sstr5) have a longer OS. They determined that tumors with sstr2A IHC that 

are treated with somatostatin analogues have a longer PFS.79

PEPTIDE RECEPTOR RADIONUCLIDE THERAPY AND THERANOSTICS

The remarkably persistent standard of care use of somatostatin analogues, especially 

octreotide, would almost naturally lead to PRRT of GEP NETs. We discuss the history of 

theranostics, from the FDA-approved diagnostic 68Ga-DOTATATE PET scan (NET-SPOT) 

and its therapeutic partner, 177Lu-DOTATATE PRRT, and allude to novel tumor targets that 

may lead to FDA approval in the near future.

Fig. 4 shows a timeline establishing the similar role that octreotide has had since its 

synthesis and clinical use in 1982 on PRRT.80 It depicts close interaction between discovery 

by academic centers and industry leading to clinical use of modified octreotide as a recently 

FDA-approved effective and rational therapy for NETS.81

An excellent review of PRRT development was recently published by Levine and Krenning.
82 Noted in Fig. 4, targeted radiotherapy began with the work of S. Hertz using 131Iodine 

treatment of severe hyperthyroidism.83 Although his work had been done well before the 

1946 JAMA publication,83 World War II interrupted Dr Hertz’ investigative efforts. During 

the 1940s, Dr Hertz recognized that thyroid targeting with 131Iodine made it possible to 

successfully treat patients with thyroid cancer. The Society of Nuclear Medicine and 

Molecular Imaging established a yearly Sol Hertz Award in 2016, recognizing “individuals 

who have made outstanding contributions to radionuclide therapy.”

The first use of the term “peptide receptor” concept probably derives from the work by the 

Erasmus University group, headed by Krenning84 and Maecke and colleagues.85 There are 

early publications by Krenning and colleagues84 that not only address the peptide receptor 

acronym, but also demonstrate proof of concept using 111In-octreotide as an imaging and 

therapeutic agent given to a single patient. Mueller-Brand with Maecke and their colleagues 

reported on the “powerful new tool,” DOTA-TOC (a chelator attached to [tyr3]-octreotide), 

for sstr2A in metastatic NET subjects. This was the first use of β emitting energy, 90Yttrium, 

coupled with the DOTA chelator.86

Krenning and his group at Erasmus pursued diagnostic imaging with 123Iodine-labeled Tyr3-

octreotide achieving successful scintigraphic imaging.87 By 1990, they had successfully 

developed 111Indium-labeled DTPA (chelator) attached to pentetreotide (OctreoScan) and 

reported their 1000-patient experience in 1993.88 The Octreoscan was ultimately used for 

diagnostic entry criteria in the registered NETTER-1 trial for PRRT4 coupled with therapy 

O’Dorisio et al. Page 8

Surg Oncol Clin N Am. Author manuscript; available in PMC 2020 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using 177Lu-DOTATATE. Since 2001, the improved diagnostic scan for detection of 

somatostatin receptor positivity was developed using the 68Ga-DOTA-somatostatin 

analogue, thereby increasing the sensitivity and specificity by using PET instead of single-

photon emission computed tomography (SPECT). In 2007, Baum and colleagues published 

their work on the highly sensitive and specific 68Ga-DOTA-(tyr3)-octreotide (TOC) and 

DOTA-(tyr3-octreotide, substituted threonine for threoninolol-octreotide [TATE]) PET 

imaging.89 It was, however, the use of the diagnostic OctreoScan with 177Lu-DOTATATE 

that led to the first FDA-approved, European Medicines Agency-approved 

radiopharmaceutical for PRR.81

Noted in Fig. 5, the term “theranostics” was coined by Rosch and Baum in 2011.90 The 

theranostics concept is the use of the identical linker molecule (peptide in this case) with the 

chelator “cage” for 68Ga for diagnosis, and the 177Lu/90Y for therapy. A good description of 

PRRT and of theranostics is depicted in Fig. 5.85

On the top right-hand panel is the DOTA-chelator with its “cage” containing the therapeutic 

radiometal, 90Y. The top middle panel is the DOTA chelator attached to (tyr3)-octreotide 

(TOC) and considered to be the vector binding to the tumor’s sstr2A. The top left panel is 

the tumor membrane with the sstr2A dangling externally above the membrane. For a single 

receptor (sstr2A) binding to a single ligand (tyr3)-octreotide, four properties are necessary85: 

(1) high sstr2A expression on the NET, (2) the native peptide (somatostatin) sequence being 

known, (3) high affinity/specificity/avidity for the target (sstr2A), and (4) the analogues 

(vector, ligand) are synthetically feasible (50 amino acid residues or less).

The next major breakthrough in theranostics is likely to be the introduction of new 

radioisotopes and new targeting agents in addition to DOTATOC and DOTATATE. 
177Lutetium and 90Yttrium are primarily β emitters with path lengths greater than the 

average diameter of a single cell, thus generating “cross-fire” effects of cytotoxicity to 

adjacent cells and normal tissues, a Particle energy emitters, such as 225Ac (astatine) and 
212Pb (lead) coupled to a high-affinity somatostatin analogue, are likely to deliver a higher 

energy dose to a single cell with little or no cross-fire when targeted to tumors expressing 

high levels of sstr2A. Recent in vitro experiments in cell lines expressing sstr2 have shown a 

six-fold increase in radiation dose/cell from 213Bi-DOTATOC compared with 177Lu-

DOTATATE.91 Importantly, these results substantiate emerging evidence that α emitters may 

be more effective for PRRT because of preferred dose deposition within the cell nucleus 

(Table 3).92

The contribution of internalization to targeting efficiency was then investigated within the 

geometry of cells by modifying the uptake of α or β emitting radionucleotides from 

complete membrane bound (0% internalized) to fully internalized (100%). The up-take 

values arising with 100% internalization were approximately 1.5-fold higher for the entire 

cell, and 2- to 3-fold higher for the nucleus when compared with binding to the cell 

membrane, α Emitters deposit significantly higher doses for the tumor metastasis of various 

sizes relative to β emitters representing 60 to 140 times higher doses for 212Pb and 213Bi, 

and 190 to 620 times higher doses for 225Ac when compared with the β emitter, 177Lu 
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(Azure). Importantly, these results substantiate emerging evidence that a emitters may be 

more effective for PRRT because of preferred dose deposition within the cell nucleus.

Most NETs are low grade 1 and 2 with Ki-67 less than 20%. Grade 3 NETS and 

neuroendocrine carcinomas (NECs) have less response to either 177Lu- or 90Y-DOTA-TOC 

or DOTATATE. These high-grade tumors have a Ki-67 of 55% to 90% and often lack the 

sstr2A expression, leading investigators to try to identify theranostics targets for grade 3 

NETS and NECs. CXCR4 is a chemokine receptor that like sstr2A is a G-protein-coupled 

receptor expressed on the cell surface and internalized on binding of a high-affinity ligand.93 

We and others have identified CXCR4 expression on NEC, multiple myeloma, and 

leukemia.94–98 The ligand for CXCR4 is a small peptide SDF-1, also known as CXCLI2. 

Pentixafor is a CXCR4 antagonist that can be complexed to the DOTA chelator. GA68-

Pentixifor and 177Lu-Pentixifor are, thus, a theranostic pair. 177Lu can be used for SPECT 

imaging and diagnosis: however, 68Ga-Pentixifor is improved as a PET imaging agent with a 

sensitivity of 3 to 5 mm as compared with 10 to 15 m sensitivity for SPECT. 177Lu-

Pentixather has shown promise as a radiother-apeutic drug in early studies for patients with 

multiple myeloma and leukemia,94 but CXCR4 is expressed on hematopoietic progenitors 

and stromal cells, leading to concern for bone marrow toxicity. A recent preclinical study 

has demonstrated that bone marrow from mice treated with 177Lu-Pentixather is able to 

serve as a graft in lethally irradiated animals, providing support for the use of 177Lu-

Pentixather in aggressive malignancies with dosimetry of bone marrow dose to prevent 

toxicity.99 Patients with multiple myeloma or leukemia treated with 177Lu-Pentixather 

routinely receive autologous hematopoietic stem cell rescue.

177LU-PSMA-617 has primarily been tested in Germany under compassionate use 

circumstances and relapsed metastatic castrate-resistant prostate cancer and has only 

recently been introduced into US clinical trials. A retrospective analysis of 145 patients 

treated in 12 European centers demonstrated greater than 50% decrease in prostate-specific 

antigen levels in most patients.100 Hematologic toxicity was low even in these heavily 

pretreated patients; dry mouth related to high uptake of the 177Lu-PMSA-617 in salivary 

glands was the primary toxicity along with fatigue and nausea.101 These preliminary results 

support the conduct of controlled phase 2 trials that are currently ongoing in Europe and the 

United States.

Although most theranostic compounds are peptide agonists targeting G-protein-coupled 

receptors, several antagonist molecules are in preclinical and early clinical use. One example 

is a peptide ligand, 68Ga-DOTA-bombesin (neoBOMB), targeting the gastrin-releasing 

peptide receptor known to be expressed in prostate cancer cells.102 This gastrin-releasing 

peptide receptor antagonist has shown promising results in animal models and its first PET 

imaging in humans has been recently reported. Similarly, an antagonist at the somatostatin 

receptor has been introduced as a theranostic pair in NETs. 68Ga/177Lu-DOTA-JR-11 seems 

to bind to many more sites/cells than either DOTATOC or DOTATATE in low-grade NETs. 

It is in early phase trials with little information on safety or efficacy available at this time.
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KEY POINTS

• Although most theranostic compounds are peptide agonists targeting G-

protein-coupled receptors, several antagonist molecules are in preclinical and 

early clinical use.

• One example is a peptide ligand, 68Ga-DOTA-bombesin (neoBOMB) 

targeting the gastrin releasing peptide (GRP) receptor known to be expressed 

in prostate cancer cells.

• This GRPR antagonist has shown promising results in animal models and its 

first PET imaging in humans has been recently reported.

• Similarly, an antagonist at the somatostatin receptor has been introduced as a 

theranostic pair in neuroendocrine tumors.
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Fig. 1. 
Peptides identified in the mammalian gastroenteropancreatic system. a Somatostatin has all 

regulatory actions: endocrine, paracrine, neuroendocrine, autocrine. b RIA (radioim-

munoassay) first described in 1959.28,29
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Fig. 2. 
Carcinoid and neuroendocrine tumors: cancer management and treatment options of care. a 

Most recently FDA approved. FDG, fluorodeoxyglucose; WHO, World Health Organization. 

(Courtesy of Iowa NET Team, Iowa City, IA.)
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Fig. 3. 
Somatostatin and its congeners.
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Fig. 4. 
A timeline of octreotide culminating in development of PRRT and theranostics.
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Fig. 5. 
Targeted molecular imaging and therapy (PRRT) and theranostics concept. Theranostics is 

the use of diagnostic radionuclides (68Cu, 68Ga) and therapeutic radionuclides (90Y, 177Lu, 
212Pb) labeled to the same somatostatin congener (TOC or TATE).90 (Courtesy of H. 
Maecke, University Hospital, Basel, CH.)
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Table 1

Investigators who helped describe and identify the amine/peptide-secreting cells of the GEP system

Investigator (s) Year Observation References #

P. Langerhans 1870s Cell clusters on acinar cells Langerhans and Moorison,14 1869

E. Laguesse 1890s Islets of Langerhans Langerhans and Moorison,14 1869

R. P. Heidenhain 1870 EC
EC-like: histamine secretion

Heidenhain,151870

A. Nikolas 1891 EC cells, Gl tract Nikolas,16 1891

N. Kulchitsky 1897 EC cells/crypts of Lieberkühn Kulchitsky,17 1897

M. Ciaccio 1906 EC cells in human Gl tract Ciaccio,18 1906

A. Gosset and P. Masson 1914 Diffuse endocrine system Gosset and Masson,19 1914

F. Feyter 1938 Helle zellen, clear cells; neuroendocrine Feyter,20 1938

F. Feyter 1953 Coined paracrine and neurocrine Feyter,21 1953

Abbreviation: EC, enterochromaffin.

Data from O’Dorisio TM. Gut endocrinology: clinical and therapeutic impact. Am J Med. 1986;81(6B):1–7 and Öberg K. The Genesis of the 
Neuroendocrine Tumors Concept: From Oberndorfer to 2018. Endocrinol Metab Clin North Am. 2018;47(3):711–731.
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Table 2

Major neuroendocrine tumors of the GEP system and their associations with multiple endocrine neoplasias

Peptide/Amine Syndrome/Symptom Apudoma/NET MEN1 or MEN2
a

Gastrin Zollinger-Ellison diarrhea, atypical Gl ulcers Gastrinoma 1

Insulinoma Hypoglycemia, symptomatic Insulinoma 1

VIP Watery diarrhea syndrome VIPoma 1 (rare)

Glucagon Dermatosis, diabetes, thromboembolism Glucagonoma 1 (rare)

Somatostatin Diabetes, fat malabsorption, cholelithiasis Somatostatinoma 1 (rare)
2 (very rare)

Pancreatic polypeptide Asymptomatic PP-oma 1

Calcitonin Asymptomatic/diarrhea, flushing Medullary thyroid carcinoma 2

Norepinephrine/epinephrine Hypertension, tachycardia, pallor Pheochromocytoma 2

Serotonin, substance P, neurotensin Flushing, diarrhea, cool perspiration Carcinoid 1 (lung carcinoid)
2 (ileal carcinoid)

a
MEN1, autosomal-dominant; gene resides on chromosome 11q13; 610 aa nuclear protein “MENIN” Tumor Suppressor. MEN2, autosomal-

dominant, gene on chromosome 10q; a receptor tyrosine kinase protooncogene6,59.

Modified from O’Dorisio TM, Vinik Al. Pancreatic polypeptide in missed hormone-producing tumors of the gastrointestinal tract. In Cohen S, 
Soloway RD (Eds) Contemporary issues in gastroenterology. Edinburgh: Churchill-Livingston 1984;5:117–128; with permission.
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Table 3

Radionuclides currently in use for theranostics

Radioisotope (Emission) Average Path Length (mm) Mean Particle Energy (MeV)

225Ac (α) <0.1 5.59

212Pb (α) <0.1 6.0–8.8
a

177Lu (β) 1.7 0.134

90Yt (β) 0.05–12 0.933

a212Pb decays to 212Bi (36%) and 212Po (64%) with respective α energies.
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