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Over the course of the last several million years of evolution, humans prob-
ably have been plagued by hundreds or perhaps thousands of epidemics.
Little is known about such ancient epidemics and a deep evolutionary per-
spective on current pathogenic threats is lacking. The study of past
epidemics has typically been limited in temporal scope to recorded history,
and in physical scope to pathogens that left sufficient DNA behind, such as
Yersinia pestis during the Great Plague. Host genomes, however, offer an
indirect way to detect ancient epidemics beyond the current temporal and
physical limits. Arms races with pathogens have shaped the genomes of
the hosts by driving a large number of adaptations at many genes, and
these signals can be used to detect and further characterize ancient epi-
demics. Here, we detect the genomic footprints left by ancient viral
epidemics that took place in the past approximately 50 000 years in the 26
human populations represented in the 1000 Genomes Project. By using the
enrichment in signals of adaptation at approximately 4500 host loci that
interact with specific types of viruses, we provide evidence that RNAviruses
have driven a particularly large number of adaptive events across diverse
human populations. These results suggest that different types of viruses
may have exerted different selective pressures during human evolution.
Knowledge of these past selective pressures will provide a deeper evolution-
ary perspective on current pathogenic threats.

This article is part of the theme issue ‘Insights into health and disease
from ancient biomolecules’.
1. Introduction
About 40 years ago and for the first time in their evolution, humans eradicated
a virus that had claimed countless lives, the Variola virus known as the causal
agent of smallpox [1]. Since then, and despite progress in prevention, many
new viral threats have emerged and spread, including viruses such as human
immunodeficiency virus (HIV) [2,3], Ebola virus [4], Zika virus [5] and severe
acute respiratory syndrome (SARS) coronavirus [6]. The number of new viral
zoonoses (transmission from animals to humans) keeps increasing as a result
of multiple factors notably including higher population density and the disturb-
ance of wild habitats [7]. Although the current frequency of zoonoses may be
unusually high owing to large human populations in contact with other
species, even much less frequent viral zoonoses during the millions of years
of past human evolution are likely to have resulted in many epidemics.

When viruses impose a selective pressure on a host, adaptation happens in
response at the host loci that interact with the virus [8]. An epidemic can then
be detected through the enrichment in signals of adaptation at virus-interacting
proteins (VIPs) that interact with a virus. One obstacle to using this method is
that we do not have a direct access to the interactions between a host and an
ancient virus. However, host–virus interactions arewell known in present viruses.
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Because phylogenetically related pathogens tend to use the
same interactions with their hosts [8], we can use present inter-
actions as proxies for the interactionswith ancient viruses from
the same phylogenetic family. For example, HIV belongs to the
family of lentiviruses, and we can use interactions between
HIV and human proteins as proxies for ancient interactions
between human proteins and ancient lentiviruses.

Accordingly, we recently found that arms races with
ancient viruses have left characteristic signals of abundant,
intense adaptation in human proteins that interact with present
viruses [8–10]. According to our curation and annotation of the
virology literature, in the past three decades, virologists have
found that approximately 4500, or 20% of human proteins
physically interact with human-infecting viruses [11]. A large
proportion of these interactions have known functional conse-
quences for the viral replication cycle, thus making VIPs prime
candidates for host adaptation in response to viral epidemics
(see Methods; electronic supplementary material, table S1).
VIPs harbour remarkably high levels of past protein adap-
tation, with rates of adaptive amino acid changes several
times higher than human proteins that are not known to inter-
act with viruses (non-VIPs) [8,10]. Furthermore, adaptation
was not only more frequent at VIPs compared to non-VIPs; it
was also stronger, more intense adaptation [9,10], suggesting
that viruses repeatedly imposed strong selective pressures on
their human hosts during evolution. Thus, frequent new zoo-
noses and abundant adaptation at VIPs together suggest that
viruses drove many epidemics in past human evolution.

Despite these clear indications that ancient viral epidemics
may have been frequent, little is known about which ancient
viruses were involved, and how ancient viruses that caused
ancient epidemics relate phylogenetically to current viruses
infecting humans. The current lack of knowledge of ancient
viruses can be explained by the difficulty to recover ancient
viral DNA [12], and by the fact that many viruses have their
genomes coded by RNA that is known to degrade much
faster than DNA. In the light of the scarcity of molecular
remains, how can we identify the viruses that drove ancient
epidemics during human evolution?

In order to identify viruses that drove ancient epidemics,
we can use present interactions as proxies for the interactions
with ancient viruses from the same phylogenetic family.
Using this approach, we previously found evidence that
50 000 years ago [13–17], Neanderthals appear to have
infected the modern human ancestors of present Europeans
with one or multiple RNA viruses, as shown by the fact
that European modern humans harbour substantially more
and substantially longer introgressed Neanderthal DNA at
genes that interact with RNA viruses compared to genes
that interact with DNA viruses [11]. The key factor in this
finding was that ancient RNA viruses drove adaptive intro-
gression of Neanderthal DNA not only at a few loci, but at
dozens of loci, thus creating a strongly significant enrichment
of Neanderthal DNA at RNA VIPs (VIPs that interact with
RNA viruses) compared to DNA VIPs (VIPs that interact
with DNA viruses). The magnitude of the adaptive signals
is what enabled their assignment to a specific type of viruses,
in this case RNA viruses.

Because when they interbred [13–17], Neanderthals and
modern humans probably infected each other with their
respective viruses, there was a strong prior to expect ancient
epidemics at the time of interbreeding, and it made sense to
start looking for host genomic signals of ancient epidemics at
this particular time of human evolution. However, because
ancient epidemics were probably frequent during human evol-
ution, it nowalsomakes sense to extend the search for signals of
adaptation left byancient epidemics to any time of humanevol-
ution from which we can get signals of adaptation. Recent
human adaptation is particularly interesting in this respect,
becausewe now have good genomedatasets [18] and statistical
tools [19–23] to detect signals of recent adaptation genome-
wide in the form of recent selective sweeps. Haplotype-based
statistics that use the structure of haplotypes along chromo-
somes have been shown to be particularly useful to detect
recent selective sweeps, because they have good statistical
power to detect strong, recent incomplete sweeps [19,23,24]
without suffering from the confounding effect of other pro-
cesses such as background selection [25]. Among available
haplotype-based statistics, the integrated haplotype score
(iHS) [23] also has the three advantages of (i) having been exten-
sively tested [23,25–27], (ii) showing versatility when it comes
to detect sweeps fromde novomutations or from standing gen-
etic variation (see power analysis in Methods), and (iii) having
fast implementations that can be used to scan many individual
genomes from many human populations in a non-prohibitive
amount of time [28] (see Methods).

Here, we examine signals of recent human adaptation in
diverse human populations to ask whether viruses drove an
enrichment of signals of recent adaptation at VIPs compared
to non-VIPs. Specifically, we test whether VIPs are overall
enriched for recent selective sweeps detected by thewell-estab-
lished iHS statistic in the 26 human populations represented in
the 1000 Genomes phase 3 dataset [18]. The iHS statistic has
better power to detect the most recent, incomplete selective
sweeps, and no power to detect selective sweeps older than
50 000 years (see power analysis, Methods). This restricts our
analysis of recent adaptation in response to viruses to human
evolution after the migration out of Africa.

We further ask whether specific types of viruses drove
recent adaptation more frequently than others. More specifi-
cally, our previous results on adaptive introgression from
Neanderthals to modern humans [11], and the known zoo-
noses from the recent past [29,30], suggest that RNA
viruses may have driven more recent adaptation than DNA
viruses because they jump more often from a species to
another. The vast majority of known zoonotic viruses that
infected humans in the recent past are RNA viruses from
diverse RNA virus phylogenetic families, ranging from lenti-
viruses such as HIV, flaviviruses (Dengue and Zika virus)
and filoviruses (Ebola virus) to orthomyxoviruses (influenza
virus). Comparatively, most DNA viruses infecting humans
were transmitted from animals much longer ago [29] and
thus might cross species barriers less frequently in general.
DNA viruses also tend to include less pathogenic viral
families such as herpesviruses [31].

Taken together, these diverse lines of evidence suggest the
hypothesis that RNA viruses might have imposed a stronger
selective pressure than DNA viruses during recent human
evolution. To test this, we compare the enrichment in iHS selec-
tive sweeps at RNA VIPs and the same enrichment at DNA
VIPs. The dataset of 4500 VIPs is particularly well suited for
this comparison, with similar numbers of RNA and DNA
VIPs (2691 and 2604, respectively; electronic supplementary
material, table S1), providing an evenly powered comparison.

First, using all VIPs compared to non-VIPs,we find a strong
enrichment of iHS selective sweeps at VIPs overall, suggesting
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that viruses were a major selective pressure during recent
human evolution that drove multiple strong adaptive events.
Second, we further find that the selective sweeps enrichment
is much more pronounced at RNA VIPs compared to DNA
VIPs. These results validate previous results and are consistent
with RNA viruses being a significant selective pressure in the
past 50 000 years of human evolution.

2. Results
(a) Properties of virus-interacting proteins
We use a dataset of approximately 4500 VIPs that are human
proteins known to interact physically with viruses (electronic
supplementary material, table S1). Of these, we previously
manually curated 1920 from the virology literature (see
Methods). The articles that report these interactions also fre-
quently report their effect on the viral replication cycle, and
66% of the manually curated interactions also have reported
proviral (interaction is beneficial to viral proliferation) or anti-
viral effects (interaction is detrimental to the virus) (see
Methods). While this percentage is high, it is still likely to be
an underestimate owing to the fact that it is limited to the
cases where the effect of the interaction has been investigated
in the first place. This makes VIPs prime candidates for host
adaptation, with a strong likelihood of functional mutations
affecting the viral replication cycle. The remaining approxi-
mately 2600 VIPs were identified using high-throughput
methods and were retrieved from the VirHostnet 2.0 database
as well as from a number of additional studies (electronic sup-
plementary material, table S1). For this analysis, we pooled the
manually curated and the high-throughput VIPs together into
one group that we systematically compared to the rest of the
genome. In total, 20 viruses that infect humans have more
than 10 VIPs and 14 viruses have more than 100 VIPs, with
influenza virus (IAV) and HIV having the highest numbers of
known VIPs (1505 and 1209, respectively; electronic sup-
plementary material, table S1). Note that VIPs and all other
genes used for this analysis are Ensembl v83 genes [32].

A simplifying property of this set of VIPs for our analysis
is that they are almost exactly evenly distributed between
VIPs that interact with RNA viruses (2691 RNA VIPs) and
VIPs that interact with DNA viruses (2604 DNA VIPs), with
1134 VIPs interacting with both. This similar number of inter-
actions makes it possible to compare sweeps at RNA VIPs
with sweeps at DNA VIPs with no bias in statistical power.

(b) Virus-interacting proteins are enriched for recent
selective sweeps in human populations

We first test if VIPs are overall enriched for recent selective
sweeps compared to non-VIPs. We use the iHS statistic to
detect candidate sweeps in each of the 26 populations from the
1000 Genomes Project [28] (see Methods). The iHS statistic is
measured for a focal variant [23] bymeasuring how far the hap-
lotypes carrying the derived allele of the focal variant extend
both upstream and downstream of it, compared to how far the
haplotypes carrying the ancestral allele extend. A rapid increase
in the frequency of the derived focal allele owing to strong posi-
tive selection results in large and frequent linked haplotypes
compared to the haplotypes carrying the ancestral allele, and
in elevated values of the iHS statistic. We first measure iHS
along chromosomes for all variants in all the 26 populations
(see Methods), in a way that optimizes the sensitivity of iHS to
strong selective sweeps (see power analysis in Methods). We
do this because our previous work using a very different meth-
odology to quantify adaptation (the McDonald–Kreitman test)
[33–35] estimated that adaptation at VIPs was not only frequent
but also generally driven by strongly adaptive mutations [10],
which predicts strong selective sweeps at VIPs.

We then rank all protein coding genes in the genome from
highest iHS values to lowest iHS values. We measure the aver-
age iHS in large 1000 kb windows centred on the genomic
centre of genes. These largewindows are more specifically sen-
sitive to strong adaptation compared to smaller windows, and
using a constant window size avoids biases owing to gene
length (see Methods). For example, the top 200 genes are
then the 200 genes in a population with the highest iHS com-
pared to other genes, the top 1000 are the 1000 genes with
the highest iHS, and so on. Finally, we count how many VIPs
are among the top-ranking genes in a specific population. We
then sum the number of VIPs among top-ranking genes
across all the 26 populations. That is, if the world included
three populations A, B and C, and the respective top 100 of
populations A, B and C include 23, 34 and 15 VIPs, then the
worldwide top 100 would be 23 + 34 + 15 = 72. We then
measure the same sum but in the control sets of non-VIPs
and compute the corresponding fold enrichment in VIPs com-
pared to the average of the control sets of non-VIPs. This
implies that the results represent average worldwide trends.

Importantly, the sets of control non-VIPs account for mul-
tiple key potential confounding factors (see Methods). Indeed,
VIPs and non-VIPs not only differ by the fact that VIPs interact
with viruses while non-VIPs either do not interact with viruses
or are not known to. In addition, VIPs and non-VIPs differ by
many other factors [8,11]. For instance, VIPs are more highly
constrained, more highly expressed than non-VIPs and have
more protein–protein interactions than non-VIPs [8,11]. If
gene expression, protein–protein interactions [36] or other fac-
tors affect the prevalence of recent sweeps on their own,
independently of interactions with viruses, they might con-
found the comparison of VIPs and non-VIPs by creating
differences between the former and the latter that have nothing
to do with interactions with viruses. Thus, we build random
sets of control non-VIPs that match VIPs for multiple potential
confounding factorsusingapreviouslydescribedbootstrap test
[9] (see Methods). Furthermore, the control sets of non-VIPs
exclude all non-VIPs that are too close to VIPs and may thus
be found in the same large sweeps extending over multiple
genes. To avoid counting large VIP sweeps also as non-VIP
sweeps, or large non-VIP sweeps also as VIP sweeps, we
select only control non-VIPs at least 500 kb away from VIPs.
The enrichment of recent adaptation is, therefore, tested com-
paring sweep signals at VIPs compared to sweeps signals far
fromVIPs. Inaddition, to avoid theconfoundingeffect of count-
ing the same adaptive event multiple times when VIPs are
clustered together in the same selective sweep, we use an
approach based on block-randomized genomes to assess the
statistical significance of the signals detected (see Methods).

We retrieved the number of control non-VIPs among the
top-ranking sweep genes for each of the 1000 control sets,
measured the corresponding average and measured how
enriched VIPs were in top-ranking genes compared to this con-
trol average. Furthermore, we measured the fold enrichment at
VIPs for several sets of iHS top-ranking genes corresponding to
different rank thresholds. The top-ranking genes are defined by
sliding a rank threshold from the top 2000 genes to amuchmore
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Figure 1. Worldwide enrichment of iHS sweeps at VIPs compared to control non-VIPs. (a) Black line: observed fold enrichment at VIPs. Grey area: 95% confidence
interval of the fold enrichment. Fold enrichments above 10 are represented at 10. When this happens, the confidence interval is not represented. However, the
lowest edge of the confidence intervals not represented are all above 1. Red dots: bootstrap test p < 0.001 (see Methods). Dashed line: fold enrichment of 1, i.e. no
enrichment. Fold enrichment ( y-axis) is the number of VIPs in candidate sweeps divided by the average number of control non-VIPs in candidate sweeps. VIPs and
non-VIPs in candidate sweeps are counted if they belong to the top x iHS genes (x-axis), where x is a rank threshold that slides from top 2000 to top 20, taking in
total 25 values (2000; 1500; 1000; 900; 800; 700; 600; 500; 450; 400; 350; 300; 250; 200; 150; 100; 90; 80;70; 60; 50; 40;30; 25; 20). A fold enrichment of y = 3.51
at top x = 100 means that there are 3.51 times more VIPs in the top 100 iHS genes than control non-VIPs on average (over 1000 control sets of non-VIPs). There are
in fact 80 VIPs in the iHS top 100, versus only 22.7 control non-VIPs. Eighty is high compared to 100 because of the summing over all 26 human populations.
Specifically, a VIP or non-VIP counts as one in the top x if it is in the top x of at least one of the 26 populations. Note that counting the number of genes instead of
counting the number of sweeps ignores the clustering of multiple genes in a single sweep, but that we account for this potential bias when estimating the whole
rank threshold curve significance (see Methods). (b) Zoom-in on fold enrichment values from zero to two. (Online version in colour.)
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stringent threshold for the top 20genes (figure 1, x-axis). The top
2000 genes include even weak sweep signals, while the top 20
genes only correspond to strong sweep candidates. Using a slid-
ing rank threshold thus avoids making assumptions on exactly
how strong adaptation to viruses needs to be, and enables the
detection of enrichments for strong selective sweeps (top 100
or less) as well as enrichments driven by more incomplete or
weaker, polygenic hitchhiking signals spread across more
genes (see power analysis in Methods).

Using this strategy,we find that VIPs are enriched for recent
selected sweeps with confidence intervals clearly above the
no-enrichment mark (fold enrichment of 1 in figure 1a,b,
dashed horizontal line). VIPs are enriched for genes from the
top 2000 of iHS (figure 1a,b), suggesting an excess of weak to
moderate hitchhiking events. The relative enrichment shown
in figure 1 at top 2000 corresponds to an absolute number
of 527 additional VIPs compared to control expectations.
VIPs are, however, particularly enriched for strong selective
sweep signals in the top 100 of iHS or less (figure 1a),
suggesting that viruses drove particularly strong adaptive
events in recent human evolution. The iHS to 100 includes
80 VIPs in sweeps in different human populations, versus
only 22.7 expected by chance according to the bootstrap test.
The enrichment observed for the top 100 thus cannot explain
alone the enrichment observed for the top 2000 (57 versus
527 additional VIPs, respectively). Overall, the enrichments
from the top 2000 to the top 20 are collectively highly signifi-
cant and robust to issues such as clustering of multiple VIPs
in the same sweep ( p < 0.001; see Methods describing how
we estimate the significance of the whole enrichment curve
and not just at one rank threshold). These results suggest that
viruses may have driven multiple strong adaptive events
during that past approximately 50 000 years of human evol-
ution, and are consistent with our previous results showing
a high enrichment of adaptive events at VIPs at different
evolutionary time scales [8,10,11].
(c) RNA viruses drove more recent selective sweeps than
DNA viruses

The strong excess of iHS selective sweeps at VIPs suggests
that there may be enough statistical power to cut the set of
VIPs further into smaller categories, and ask which types of
viruses drove this signal. Specific viruses may have indeed
driven more epidemics than others in recent evolution, and
a completely homogeneous distribution of sweeps between
the VIPs of distinct viruses would be surprising.

As we mentioned previously, RNA viruses have been
responsible for the vast majority of recorded zoonoses in
human populations [29,30] and are often pathogenic (Ebola,
SARS, Dengue, Zika, influenza, HIV, etc.). Because the VIPs
of specific viruses can be used as proxies for their ancient
viral relatives, we use 2691 RNAVIPs and 2604 DNAVIPs as
proxies for looking at sweeps left by ancient RNA viruses or
by ancient DNA viruses, respectively.

We estimate the enrichment of recent sweeps at RNAVIPs
by comparing RNAVIPs with all other protein coding genes
far (greater than 500 kb) from RNA VIPs, including both
non-VIPs and other VIPs that do not interactwith RNAviruses.
Similarly, we estimate the enrichment of recent sweeps at DNA
VIPs by comparing DNA VIPs with all protein coding genes
located far away (greater than 500 kb). In short, we test if
what matters for observing a sweep enrichment is being
close to RNA VIPs or being close to DNA VIPs. We use the
bootstrap test again to match confounding factors exactly
the same way we did when comparing all VIPs and non-VIPs.

Counting sweeps and summing them over all the 26
populations from the 1000 Genomes Project, we find a substan-
tial enrichment in strong selective sweeps at RNA VIPs
(figure 2a; whole enrichment curve p < 0.001). This enrichment
is reminiscent of the one observed comparing all VIPs and non-
VIPs (figure 1a,b). Conversely, when we compare DNA VIPs
with genes far from them, we do not observe any enrichment
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of strong selective sweeps (figure 2b). We nevertheless observe
some enrichment when using the rank thresholds from top
2000 to top 500, suggesting weaker sweeps signals at DNA
VIPs. These results suggest that RNA viruses exerted a more
drastic selective pressure driving a larger number of strong
selective events compared to DNA viruses during recent
human evolution. The past 50 000 years of human evolution
might thus echo the very strong skew of recorded zoonoses
towards RNA viruses.
(d) Host functions do not explain the sweep
enrichment at virus-interacting proteins
or at RNA virus-interacting proteins

Even thoughwe control for a number of confounding factors in
the previous comparisons (VIPs versus non-VIPs, RNA VIPs
versus other genes and DNA VIPs versus other genes), we
have so far not controlled for the potential confounding effect
of the host biological functions on sweep enrichments. Because
the representation of specific host functions can be different in
VIPs and non-VIPs, these host functions rather than inter-
actions with viruses might explain the sweep enrichment
at VIPs, specifically at RNA VIPs. Specific host functions
may indeed be enriched in selective sweeps, and also over-
represented in VIPs compared to non-VIPs (or RNA VIPs
compared to other genes). For example, one might think of a
hypothetical case where VIPs are enriched for sweeps not
because they interact with viruses, but because they are
enriched in cell cycle proteins, and cell cycle proteins are
enriched for sweeps regardless of whether they interact with
viruses or not.

To test the possibility that host functions may explain our
results instead of viruses, we use functional annotations from
the Gene Ontology (GO) [37] and first askwhich GO biological
annotations are enriched in VIPs compared to non-VIPs (at
least 100% enrichment, lower enrichments are unlikely to
explain the several-fold excess of sweeps observed at VIPs).
We then build a large group of genes, each gene belonging to
at least one of the enriched GO annotations. We then use the
bootstrap test to compare sweeps in this group with sweeps
in control genes that belong to none of the VIP-enriched GO
annotations (figure 3). If GO annotations rather than viruses
explain our results, we expect the genes from the VIP-enriched
GO annotations to be significantly enriched for sweeps com-
pared to other genes. Because the confounding effect should
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be independent from viruses, we should be able to observe the
confounding sweep enrichment using only non-VIPs, after
having completely excluded VIPs from the comparison test.
When we use the bootstrap test to compare non-VIPs within
VIP-enriched GO annotations, and control non-VIPs, we do
not find any particular sweep enrichment (whole sliding
rank threshold curve p = 0.27; see Methods). We do not detect
any sweep enrichment when testing with GO annotations
over-represented (100% or more) in RNA VIPs either (whole
curve p = 0.62). These tests show that the host intrinsic biologi-
cal functions are unlikely to explain our results, which further
supports the role of viruses, and in particular RNAviruses, in
the observed patterns of recent adaptation.
Phil.Trans.R.Soc.B
375:20190575
3. Discussion
We find a sharp difference in recent sweep enrichment at
VIPs compared to non-VIPs, and more specifically at RNA
VIPs compared to DNA VIPs worldwide. Even though the
enrichment of sweeps at RNA VIPs is very unlikely to have
happened by chance alone, or because of confounding fac-
tors, our results must be considered as preliminary. Because
the enrichment analysis we conducted represents a corre-
lation of sweeps signals with the location of RNA VIPs
in the genome, it does not fully establish that viruses
caused the sweeps. Establishing causality will require more
work in the following future directions.

First, identifying the variants causal to the sweeps will help
in establishing plausible functional mechanisms of adaptation
in response to viruses. For example, several selective sweeps
might have been driven by causal non-synonymous variants
localized in the contact interface between the host VIP and a
viral protein, at a site in the contact interface known to be
important for the physical interaction. Alternatively, the
sweep causal variants might correspond to expression quanti-
tative trait loci, with the selected alleles corresponding to either
alleles increasing the expression of antiviral VIPs, or to alleles
decreasing the expression of proviral VIPs that a virus needs
to replicate. In short, the identification of causal functional
alleles affecting coding or regulatory sequences in a way
expected to be detrimental to viral replication will provide
clear support to the causal role of viruses behind the sweep
enrichment observed so far. A potential obstacle is that
we specifically observe strong enrichment in large selective
sweeps driven by strong recent adaptation. This may compli-
cate the identification of the causal variants if the large
sweeps include many linked variants. That said, new methods
were recently published with increased power and accuracy to
isolate the causal variants even in large sweeps [38].

Second, we have so far identified a worldwide sweep
enrichment at RNA VIPs, considering RNA viruses as one
broad category. However, specific viruses are expected to
have driven selective sweeps in specific human populations.
Detecting sweep enrichments in specific human populations
at VIPs that interact with specific RNA viruses may, therefore,
further support causality, in addition to further identifying
which viruses were particularly active during ancient epi-
demics. An important obstacle to detecting the effect of
specific viruses in specific human populations is that the set
of VIPs that interact with a specific virus can be substantially
smaller than the set of all VIPs or RNA and DNA VIPs. For
example, of the 2691 RNAVIPs, only 215 interact with Ebola
virus. In order to make up for the loss of statistical power
that is inevitable when using smaller samples of VIPs, we
will have to use sweep detection tools beyond the single iHS
statistic, with improved power and accuracy. Specific machine
learning approaches that combine multiple summary statistics
may offer increased performance compared to the use of a
single statistic [20,21,39].

Third, if viruses were causal, we expect that the selective
sweeps at VIPs of a specific virus would have happened
around the same evolutionary time within a specific human
population, which would correspond to the time of an epi-
demic, as opposed to being dispersed randomly across
different evolutionary timeswith no connection to a specific epi-
demic event. Dating selective sweeps linked to a specific virus,
with a significant convergence in individually estimated evol-
utionary times, may thus strengthen the evidence that viruses
were causal, in addition to providing estimates of when they
drove adaptation. Using combinations of summary statistics
instead of only one may again provide more accuracy when
dating selective events with approaches such as approximate
Bayesian computation [40].

Finally, the findings that both recent selective sweeps and
adaptive introgression from Neanderthals to Eurasian modern
humans were dominated by RNA viruses raise the important
question of whether or not RNA viruses systematically drove
more adaptation during most of human evolution, and more
broadly during the evolution of other species. More work is
now needed to quantify the impact of RNA viruses compared
to DNA viruses at deeper evolutionary time scales in humans,
using, for example, recent implementations of the McDonald–
Kreitman test [10,34,41] and to quantify the impact of RNA
viruses in other species both during recent and deeper evol-
ution. It will also be interesting to see if the genes involved in
recent human adaptation to RNA viruses were also more
often involved in adaptation over deeper evolutionary time
scales, which would highlight genes that may be particularly
important for host adaptation. Because RNA molecules from
ancient RNA viruses may prove very hard to impossible to
recover, our results potentially illustrate the importance of
pursuing host genome-based, indirect approaches to uncover
important pathogenic players in host evolution.
4. Methods
(a) Measuring integrated haplotype score and power

analysis
The iHS summary statistic is computed for each variant in a
genome with a minor allele frequency greater than 5%, and
known derived and ancestral alleles. For our analysis, we used
the hapbin software [28] to rapidly measure iHS for variants in
all the 26 separate human populations represented in the 1000Gen-
omes Project phase 3.We then computed the average of |iHS| (iHS
can take both highly negative or positive values that both indicate
adaptation) across all the variants within large 1000 kb windows.
Large 1000 kb windows are more specifically sensitive to large
sweeps driven by strong adaptation (see power analysis below).
To assign an iHS rank to each gene, each window was centred at
the genomic centre of a gene, halfway between the most upstream
transcription start site and the most downstream transcription end
site. The gen coordinates were obtained from Ensembl v83
(https://www.ensembl.org/). This window configuration avoids
introducing biases related to gene length. Indeed, one can imagine

https://www.ensembl.org/
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Figure 4. Power of iHS windows to detect various sweeps. (a) Incomplete selective sweeps from a de novo mutation that reached a 50% frequency. (b) Sweep from
a standing, 5% standing variant at the start of selection and that reached a 50% frequency. (c,d ) same as (a,b), respectively, but for sweeps that reached a 70%
instead of 50% frequency. The y-axis represents the statistical power (true positive rate) at 0.1% false positive rate (FPR). The x-axis represents the range of simu-
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50 kb windows. Orange curve: power with 1000 kb windows. Grey curve: ratio of the power with 1000 kb windows over the power with 50 kb windows. (Online
version in colour.)
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an alternative way to rank genes by iHS where the value used to
rank genes is the average iHSmeasured only for variants that over-
lap a gene. The problem with this is that longer genes would then
be more likely to overlap high local |iHS| values just by chance
compared to shorter genes, thus biasing power in favour of larger
genes. For this reason, we prefer to use a constant window size.

To determine a window size that would more specifically
detect strong adaptation in the human genome, we ran popula-
tion simulations of incomplete selective sweeps and measured
the power of iHS to detect weak or strong adaptation when
using different window sizes. In particular, we used two
window sizes, with small 50 kb windows and much larger
1000 kb windows. We ran the population simulations using
discoal [42]. Each simulation included 50 individuals (100
chromosomes) and represented a locus of 1.2 Mb with a uniform
recombination rate of 1 cM Mb−1, and a total cumulated θ of 1800
to match the average recombination rate and diversity observed
in the 1000 Genomes Project populations. In order to measure the
statistical power of iHS windows, we first had to determine the
distribution of the corresponding iHS values in the neutral case
without selective sweeps. This distribution was obtained running
10 000 independent neutral simulations. Note we simulated a
constant population size of 10 000 as fluctuations in population
size are not likely to change the difference in power between
small or large windows of iHS. We simulated a large number
of neutral loci to get precise power estimates even at low false
positive rates. Specifically, we estimated power at a low, 0.1%
false positive rate.
Figure 4 shows the power of the average |iHS| to detect a
range of incomplete selective sweeps (see figure legend) using
either 50 or 1000 kb windows. From the figure, it is clear that
50 kb windows have good power to detect sweeps for selection
intensities between 2Ns = 100 and 1000, whereas 1000 kb win-
dows only have good power to detect sweeps with selection
intensities greater than 200 (1% selection coefficient in the
human genome). Large, 1000 kb windows are, therefore, more
appropriate to detect more specifically strong adaptation events
expected from interactions with viruses. For this reason, we
used 1000 kb windows for the whole analysis.

(b) Testing enrichments with the boostrap test
The bootstrap test we used to match VIPs with control non-VIPs
that match for multiple confounding factors has already been
described extensively in a previous manuscript that the reader
can refer to for more ample details [9]. An implementation of
the bootstrap test is available at https://github.com/DavidPier-
reEnard, as part of a larger pipeline that also estimates the
whole enrichment curve p-value (see below). In brief, the boot-
strap test uses a straightforward control set-building algorithm
that adds control genes to a progressively growing control set,
in such a way that the growing control set has the same range
of values of confounding factors as the tested set of genes of
interest. For this analysis, the confounding factors that were
used in the bootstrap test include the following factors likely to
impact the frequency of selective sweeps:

https://github.com/DavidPierreEnard
https://github.com/DavidPierreEnard
https://github.com/DavidPierreEnard
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(i) the density of coding sequences in 50 kbwindows centred
on genes. Coding sequences are Ensembl v83 coding
sequences;

(ii) the density ofmammalian phastCons conserved elements
[43] (in 50 kb windows), downloaded from the UCSC
Genome Browser (https://genome.ucsc.edu/);

(iii) the density of regulatory elements, as measured by the
density of DNASE1 hypersensitive sites (in 50 kb win-
dows) also from the UCSC Genome Browser;

(iv) gC content (in 50 kb windows);
(v) recombination rate fromHinch et al. [44] in200 kbwindows.

We used 200 kb windows instead of 50 kb windows to
reduce the noise in recombination rate estimates;

(vi) average overall expression in 53 GTEx v7 tissues [45]
(https://www.gtexportal.org/home/). We used the log
(in base 2) of RPKM values;

(vii) expression (log base 2 of RPKM) in GTEx lymphocytes.
Expression in immune tissues is likely to impact the
rate of sweeps;

(viii) expression (log base 2 of RPKM) inGTEx testis. Expression
in testis is also likely to impact the rate of sweeps;

(ix) the number of protein–protein interactions (PPIs) in the
human protein interaction network [36]. The number
of PPIs has been shown to influence the rate of sweeps
[36]. We use the log (base 2) of the number of PPIs;

(x) the proportion of immune genes. The control sets have
the same proportion of immune genes as VIPs, as anno-
tated by the GO terms GO:0002376 (immune system
process), GO:0006952 (defence response) and
GO:0006955 (immune response), to avoid confusing the
effect of viruses with broader immune effects; and

(xi) the proportion of genes that interact with bacteria accord-
ing to the Intact database as of April 2018 (https://www.
ebi.ac.uk/intact/). Note that we also attempted to match
the proportion of genes that interact with Plasmodium
[46], but VIPs and non-VIPs had such different numbers
of Plasmodium-interacting genes that the bootstrap test
failed to match them. However, we were able to use the
bootstrap test to verify that Plasmodium-interacting genes
do not have more iHS sweeps than other genes (bootstrap
test p > 0.05 for all thresholds from top 2000 to top 20).

It is important to note that we match many (11) confounding
factors, which inevitably restricts the number of non-VIPs that
can be used as controls. Smaller numbers of control non-VIPs
increase the false positive rate of the bootstrap test (see below).
However, the false discovery rate analysis strategy that we use
to test the significance of the whole curve enrichment fully
takes this limitation into account (see below). Note also that in
order to limit the number of false positive sweeps owing to
low recombination regions included in the bootstrap test, we
did not use genes with recombination rates estimated to be
lower than 0.2 cM Mb−1 [44].

(c) Testing the significance of the whole enrichment
curve

In addition to estimating a p-value for each iHS rank threshold
from top 2000 to top 20 with the bootstrap test, we also estimated
how significantly the whole enrichment curve stands above null
expectations. We do this for multiple reasons, some of which are
already mentioned above. First, the different thresholds across
the whole curve are not independent from each other. As a con-
sequence, an excess of significant p-values at multiple thresholds
may reflect a correlation of false positives owing to the depen-
dence between thresholds. Second and most importantly, it is
very likely that we used the bootstrap test in conditions that
make it non-nominal (meaning a non-uniform distribution of
p-values under the null hypothesis of no enrichment). Indeed,
as we mentioned in the results, we had to exclude many non-
VIPs too close to VIPs (less than 500 kb) to avoid counting VIP
sweeps as non-VIP sweeps, and vice versa. We also used only
non-VIPs that could match VIPs for a large number of confound-
ing factors. The issue then is that we only had a limited number
of non-VIPs that were far enough from VIPs and that could be
used as controls. For example, for the VIPs versus non-VIPs
test, we could use only 1704 control non-VIPs. A smaller set of
controls means that in the bootstrap test, the same control non-
VIP has to be re-sampled more times (it is a bootstrap), thus
resulting in a smaller set of control non-VIPs. Smaller samples
of control non-VIPs are inevitably related to (i) a higher variance
of the control null distribution and (ii) also to a higher variance of
the overall average of the null distribution. Bias (i) can result in a
higher rate of false negatives with a decreased power to detect a
significant sweep enrichment, but more alarmingly bias (ii) can
on the contrary inflate the rate of false positive bootstrap tests
if the average of the small control sets is far from what the aver-
age would be for ideal, very large control sets.

This is a very serious limitation of our analysis, but fortunately,
there is a very simple, yet computationally intensive remedy.
Because we know that the bootstrap test is probably not nominal,
we can estimate the true false discovery rate associated with the
whole approach, by re-running the entire analysis pipeline many
times on randomized genomes where the iHS ranks have been
swapped randomly between genes. We specifically use 10 000
random genomes. We can then estimate how significant the real
enrichment curve from top 2000 to top 20 is compared to the
same curvemeasured on the 10 000 randomgenomes. As a statistic
to estimate the significance of the whole curve, we use the differ-
ence of the observed number of VIPs, minus the expected
number according to controls, and we sum this difference over
all rank thresholds from top 2000 to top 20 (figure 1).We then com-
pare the real value of the statistic for the real genome, with the
distribution of 10 000 random values obtained from the 10 000 ran-
domized genomes. For each randomized genome, we use exactly
the same VIPs and control non-VIPs as we did when testing the
real genome, but these genes are now associated with randomly
swapped iHS ranks. The sample size of the control sets of non-
VIPs is exactly the same using random genomes as when using
the real genome, meaning that the results of the boostrap test
reproduce exactly the same biases for the random genomes as
when testing the real genome. The p-value obtained for the
whole rank thresholds enrichment curve after 10 000 randomized
genomes is thus an unbiased, nominal p-value that matches the
actual false discovery rate.

It is, however, very important to note that it is true that the ran-
domized genomes provide an unbiased, whole curve test, only
because we do not randomize genomes in a completely random
fashion. If we just swapped randomly iHS ranks between genes,
we would lose the very important property of the real genome
that genes with top iHS ranks are likely to be neighbours and to
form clusters. Indeed, selective sweeps, and especially strong
large selective sweeps, can overlap with multiple genes in the
human genome, thus creating clusters of neighbouring high-rank-
ing iHS genes. In our case, it was, therefore, crucial to randomize
iHS ranks between genes in a way that conserved the same exact
clustering structure between top iHS rank genes. To achieve this,
we cut the genes ordered as they are across human chromosomes
in 100 blocks of contiguous genes, and then randomly shuffled
these blocks. The size of the blocks is much larger than the size
of even very large sweeps of multiple megabases, thus ensuring
that the clustering structure of the top iHS rank genes is preserved
within the blocks. Randomly swapping the blocks still results in
randomly swapping iHS ranks between genes within the blocks.
Because the randomized genomes obtained this way preserve the
clustering of iHS signals, we can still measure enrichments using

https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190575

9
the number of genes, instead of having to count the number of
sweeps. Note that the entire pipeline to get the whole enrichment
curve p-value is available at https://github.com/DavidPierreEnard
with a user manual, together with the bootstrap test.

(d) Testing the involvement of host intrinsic functions
with Gene Ontology categories

To test whether host intrinsic functions can explain the sweep
enrichment at VIPs and particularly at RNA VIPs, we measured
enrichment for sweeps among genes that belong to GO functions
that are over-represented in VIPs. Specifically, we tested whether
genes that belong to over-represented functions in VIPs are
enriched for sweeps completely independently of whether they
interact with viruses or not, by completely excluding VIPs and
genes at less than 500 kb from VIPs (and more likely to overlap
VIP sweeps) from the analysis. Thus, we used the bootstrap
test to compare iHS sweeps in 718 non-VIPs more than 500 kb
from VIPs that belong to over-represented GO functions in
VIPs (GO functions had to be found in 50 VIPs or more, 100%
over-represented or more), with sweeps in 423 non-VIPs more
than 500 kb from VIPs that do not belong to over-represented
GO functions in VIPs. The 718 non-VIPs with over-represented
GO functions are themselves at least 500 kb from non-VIPs
with no over-represented GO function to avoid the issue of
sweeps overlapping the two categories. For RNA VIPs, we
used 1726 non-RNA-VIPs within over-represented GO functions
and 357 non-RNA-VIPs with no over-represented GO function.
We ran the bootstrap test testing for a deficit of sweeps in the
423 non-VIPs out of over-represented GO functions using the
larger number of non-VIPs with at least an over-represented
function (the larger the pool of controls compared to the tested
set, the better). We also flipped the two groups when testing
GO functions for RNA VIPs for the same reason that it is
always better to have the larger group being the control group
in the bootstrap test. We estimated the significance of the boot-
strap test by measuring the whole enrichment curve p-value as
already described above. We used the same confounding factors
to match during the bootstrap test as we previously did to match
VIPs with control non-VIPs.

(e) Functional relevance of virus-interacting proteins
To estimate the functional relevance of VIPs for the viral replica-
tion cycle, we counted how many manually curated VIPs from
the first 200 rows in the electronic supplementary material,
table S1 had clear reported proviral or antiviral effects when
their function was experimentally perturbed either via
expression perturbation or via protein function perturbation.
The experimental perturbations had to be reported in the publi-
cations listed in the electronic supplementary material, table S1.
We found that 66% of the interactions with VIPs had clear func-
tional consequences for the viral replication cycle.

Data accessibility. The data on VIPs are available in the electronic sup-
plementary material, table S1, and the pipeline used to conduct the
analysis is available for other users at https://github.com/David
PierreEnard/Gene_Set_Enrichment_Pipeline.
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