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Abstract

Purpose of Review: Evidence suggests that the microbiome of the skin, gastrointestinal tract 

and airway contribute to health and disease. As we learn more about the role that the microbiota 

plays in allergic disease development, we can develop therapeutics to alter this pathway.

Recent Findings: Epidemiologic studies reveal that an association exists between 

environmental exposures which alter the microbiota, and developing atopic dermatitis, food 

allergy and/or asthma. In fact, samples from the skin, gastrointestinal tract and respiratory tract, 

reveal distinct microbiotas compared to healthy controls, with microbial changes (dysbiosis) often 

preceding the development of allergic disease. Mechanistic studies have confirmed that microbes 

can either promote skin, gut and airway health by strengthening barrier integrity, or they can alter 

skin integrity and damage gut and airway epithelium.

Summary: In this review, we will discuss recent studies that reveal the link between the 

microbiota and immune development, and we will discuss ways to influence these changes.
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INTRODUCTION

The prevalence of allergic disease continues to increase in the developed world leading to an 

increase in the number of children diagnosed with respiratory allergies such as rhinitis and 

asthma, food allergy, and/or atopic dermatitis. The hygiene hypothesis suggests that 

individuals from larger households have lower rates of allergic rhinitis and asthma. The 

advent of sophisticated methods to detect bacteria has resulted in numerous studies 

investigating the association between bacteria and allergic disease. Associations between the 

microbiota and exposures (cesarean deliveries, formula feeding, prebiotic or probiotic use, 

high fat and low fiber diets, and antibiotic use during infancy), and the eventual development 
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of allergic disease suggests that the human microbiota plays a central role in the regulation 

of this process. (1–5)

This review summarizes the current literature linking the microbiota and allergic diseases, 

and reviews experimental data suggesting potential mechanisms between the two. In 

addition, the authors will discuss clinical evidence that early interventions may alter the 

microbiome and may decrease development of allergic disease. Because findings differ for 

each of the three main allergic diseases, atopic dermatitis, food allergy, and asthma will be 

reviewed individually.

ATOPIC DERMATITIS

The skin microbiome is comprised of bacteria, fungi, viruses and archaeal communities, 

with bacteria (the microbiota) being the most widely studied. Healthy skin consists of a 

diverse community of microbes that has differing communities depending on the sampling 

site. Propionibacterium species predominate in sebaceous sites while Corynebacterium and 

Staphylococcus species are found in moist microenvironments.(6, 7) When changes in this 

“healthy microbiome” occur, allergic sensitization can ensue.

Infant Skin Microbiome

Early skin colonization of infants consists of four main genera: Staphylococcus, 

Streptococcus, Lactobacillus and Propionibacterium.(8) However, in infants with atopic 

dermatitis (AD), an increased prevalence of Staphylococcus aureus with a decrease in the 

commensal microbes, Propionibacterium, Streptococcus, Acinetobacter, Corynebacterium, 

and Prevotella, has been observed. (8–13) These changes in bacterial composition can 

impair the skin’s ability to prevent overgrowth of harmful bacteria. For example, coagulase 

negative commensal bacteria, including S. epidermidis, S. hominis, and S. lugdunensis, 

secrete antimicrobials that limit S. aureus overgrowth and biofilm formation. In individuals 

with AD the prevalence of these protective bacteria is decreased which can disrupt this 

protective process.(14) Despite evidence that an overgrowth of S. aureus precedes the 

development of atopic dermatitis, (15) colonization with other species of Staphylococcus is 

associated with lower risk of atopic dermatitis by one year of age, demonstrating that 

mechanistic pathways influencing AD development can be species specific. (16)

Skin Microbiota and Atopic Dermatitis

Regardless of the timing of presentation, numerous studies have shown that over 90% of 

patients with atopic dermatitis have Staphylococcus aureus colonization.(17) Furthermore, 

the proportion of S. aureus relative to other commensals increases during flares, with higher 

density associated with more severe AD. (12, 18, 19) Mechanistic studies investigating the 

association between the presence of S. aureus and AD severity have shown that S. aureus 
affects atopic dermatitis in several ways. S. aureus activates protease receptors to disrupt the 

epidermal barrier of patients with AD or mice with filaggrin loss of mutation functions.(20, 

21). In addition, S. aureus releases endotoxins and enterotoxins which stimulate mast cells 

and cause inflammation and dysregulation of keratinocytes. S. aureus also upregulates 

production of type 2 cytokines such as TSLP, IL-4 and IL-13.(20) High IL-4 and IL-13 
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deplete keratinocyte-produced antimicrobial peptides (AMPs) needed to control pathogenic 

organisms, thereby allowing further destruction by pathogenic bacteria. Ultimately, TLR2-

mediated sensing of S. aureus is impaired in Langerhans cells from AD skin causing a cycle 

of keratinocyte dysregulation and disruption of the skin microbiome.(22) In healthy skin, 

Staphylococcus epidermidis activates TLR2, which promotes tight junction protein 

expression and induces keratinocyte‐derived AMPs secretion; therefore when S. aureus is 

the predominating species colonizing the skin this protective process is less effective. (23, 

24) In addition, coagulase negative bacteria including S. epidermidis, S. hominis, and S. 
lugdunensis secrete antimicrobials that limit S. aureus overgrowth and biofilm formation.

(25) While most studies point to S. aureus preceding the overgrowth of atopic dermatitis, 

one recent study did not find a high prevalence of S. aureus in lesional skin of infants with 

AD, (16) suggesting that longitudinal studies are needed to determine if S. aureus or other 

microbes play a role in AD development.

Gut Microbiome and Atopic Dermatitis

A diminished diversity of the gut microbiome also shares a relationship with atopic 

dermatitis. For example, antibiotic use in the first two years of life is associated with an 

increased risk of atopic dermatitis, suggesting a link between changing the GI microbiota 

and skin immunity. (1, 8) Additionally, other evidence demonstrates a lack of Bacteroides 
diversity or a high prevalence of Clostridium difficile colonization by one year of age is 

associated with atopic dermatitis development by 2 years of age. (26–28) One explanation 

for this difference is that individuals with atopic dermatitis are missing mucin producing 

bacteria which provides food for the commensal bacteria of the gut. If this nutrition is 

lacking it is possible that pathogenic bacteria overgrowth occurs instead. (29) Furthermore, 

often times a lower abundance of Bifidobacterium is present in the intestine of these 

individuals, suggesting that immune mechanisms are activated differently if more than one 

allergic disease is present. (30) Interestingly, the gut microbiota of infants with atopic 

dermatitis changes if they have concomitant food allergy. The fecal microbiota of those with 

both atopic dermatitis and food allergy contained more Escherichia coli and Bifidobacterium 
pseudocatenulatum, and less Bifidobacterium breve, Bfidobacterium adolescentis, 

Faecalibacterium prausnitzii, and Akkermansia muciniphila than children who had atopic 

dermatitis without food allergy. (9) Understanding the mechanisms behind this difference 

will help improve methods of prevention and treatment.

Treatment

Recent treatments for atopic dermatitis address the microbiota of the skin, with S. aureus as 

the main target. Emollients and anti-inflammatory medications are initially used to improve 

the epidermal barrier and prevent S. aureus from predominating. Antimicrobials are then 

used to directly combat S. Aureus. (8) New treatment strategies aim to add helpful bacteria 

to the skin rather than eliminate unwanted microorganisms. For example, the addition of 

topical Roseomonas mucosa and Vitreoscilla filiformis bacterial lysate has been shown to 

improve inflammation and severity of eczema. (31) Additionally, autologous microbiome 

transplant of S. hominis and S. epidermidis has also been efficacious in controlling S. aureus 
overgrowth. (32)
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Improving the gut microbiome has been another target in the treatment of atopic dermatitis. 

Supplementation with probiotics and prebiotics is one intervention being assessed. Some 

success has been seen with probiotics. Prenatal and post-natal administration of the 

probiotics Bifidobacterium breve M-16V and Bifidobacterium longum BB536 reduced the 

risk of developing atopic dermatitis during the first 18 months of life. (33, 34) Additionally, 

prenatal and post‐natal treatment with Lactobacillus combined with Bifidobacterium 
reduced the risk of developing atopic dermatitis.(35) However, other studies have found 

conflicting results for probiotic use. For example, a recent randomized controlled trial 

administered Lactobacillus rhamnosus to children with a parental history of asthma for the 

first 6 mo of life. (36) Compared to those who received placebo, supplementation did not 

prevent the development of eczema or asthma by 2 years of age, suggesting that 

Bifidobacterium may play a larger role in allergic sensitization than Lactobacillus.

FOOD ALLERGY

Method of Delivery

The gut microbiome is mostly comprised of E. Coli and enterococcus species immediately 

after birth.(37) These microbes provide an oxygen rich environment for Bifidobacterium, 

Lactobacillus, Bacteroides, and Clostridium to proliferate. In infants born by cesarean 

section, Clostridium predominates over Bifidobacterium species, while the inverse is 

observed with vaginal deliveries.(38) Furthermore, infants born by cesarean section are 

colonized by maternal skin and hospital derived microbes, (39) suggesting that method of 

delivery may play a role in the early development of the microbiota and potentially the 

development of food allergy.

The Early Microbiome and Breastfeeding

Breastfed infants have less overall gut diversity within the first few weeks of life and are 

mostly colonized by Bifidobacterium. (40) An increased prevalence of Clostridium species 

compared to Bifidobacterium species at 3 weeks of age is associated with developing a food 

allergy in the first year of life. (40, 41) Furthermore, decreased Bifidobacterium and 

Lactobacillus species at 1–2 months of age increases the risk of developing allergies by 5 

years of age. (42, 43) One possible explanation for this link between bacteria and decreased 

food allergy is that Bifidobacterium releases SCFAs (butyrate and propionate) and lowers 

stool pH, thereby creating an unfavorable environment for pathogenic bacteria. In mouse 

studies, non-digestible oligosaccharides and SCFAs decrease IgE mediated basophil 

degranulation and reduce the development of food allergies, further supporting a link 

between high levels of Bifidobacterium and food allergy. (44) Interestingly, formula is 

lacking Bifidobacterium further suggesting that early exposure to specific bacteria through 

the diet is key to food allergy prevention.(45)

Maternal Diet

Maternal diet may influence the infant microbiota and development of food allergy. The 

presence of Prevotella in maternal stool is associated with a decreased risk of their infant 

developing food allergy. (46) Prevotella is less prevalent in the Western world and is a 

microbe know for fermenting fiber and producing SCFAs. Maternal diets high in fat and 

Aguilera et al. Page 4

Curr Allergy Asthma Rep. Author manuscript; available in PMC 2020 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fiber are associated with lower risk of food allergy development in offspring and this risk 

was further decreased if the mother’s stool contained Prevotella copri. Furthermore, P. copri 
is more prevalent in women from larger households and in women who did not receive 

antibiotics during pregnancy, two known protective associations in the development of 

allergic diseases. (46) Additionally, maternal peanut ingestion during pregnancy and 

lactation paired with early infant introduction to peanut allergen was shown to be associated 

with a decreased risk of sensitization to peanut allergen compared to early infant diet 

introduction alone.(47) However, another study found increased sensitization in offspring of 

mothers who consumed peanuts during pregnancy. (48) Insufficient data exists at this time to 

recommend a modification of the maternal diet during pregnancy to reduce the risk of food 

allergy.

Infant Diet

When considering introduction of solid foods, the benefits of SCFAs have been 

demonstrated. In a subset study of 301 children in the Protection Against Allergy Study in 

Rural Environments, the consumption of yogurt, fish, vegetables, and fruits within the first 

year of life was found to be associated with increased butyrate in stool samples by one year 

of age. In those children with butyrate and propionate levels over the 95th percentile, 

decreased sensitization to food allergens was discovered between the ages of 3 to 6 years of 

age.(4) Furthermore, another cohort study out of the United Kingdom found that diets rich in 

fruits, vegetables, and home prepared foods (as opposed to commercial infant foods) were 

associated with lower rates of food allergy by age 2 years of age. (49) These data could be 

secondary to the production of SCFAs by commensal bacteria, but more evidence is needed. 

Animal studies are currently underway and will help define mechanisms between bacteria 

and food allergy. (50)

Early food introduction to a diverse range of foods has been linked to lower incidence of 

food allergy.(49, 51, 52) The most substantial study supporting this is The Learning Early 

About Peanut Allergy trial, which revealed that introducing peanut allergen into an infant’s 

diet at 4–6 months of age reduced the incidence of peanut allergy. (51, 53) Interestingly, 

infants with Staphylococcus skin colonization were more likely to develop allergy 

suggesting that skin colonization may also contribute to allergic sensitization. In addition to 

early introduction of peanut, cheese consumption is associated with a reduced risk for food 

allergy, potentially due to its microbial composition and/or its relatively high content of 

SCFAs.(4) Further research is needed to delineate the relationship between specific foods 

and microbial development.

Gastrointestinal Microbiota and Food Allergy

The microbiota of the GI tract changes over the first three years of life, with the neonatal and 

infant microbiota influenced by method of delivery, breastfeeding, and solid food 

introduction as discussed above. (54, 55) Microbiota differences have been observed in 

patients with established food allergy, and they differ based on the food allergen studied. For 

example, studies report a higher prevalence of Lachnospiraceae, Streptococcaceae, and 

Leuconostocaceae in children with egg allergy (56), and an increase in Lachnospiraceae and 

Ruminocaceae in those with milk allergy.(57) Interestingly, further differences exist between 
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those who have resolution of their allergy. An observational study investigating the 

microbiota of 226 infants between 3–16 months of age with milk allergy found that the 

presence of Clostridia and Firmicutes in the gut was associated with resolution of milk 

allergy by 8 years of age.(58) Further studies are needed to determine if specific species of 

these bacteria could be used to treat food allergy.

Studies investigating the mechanisms between food allergy and the microbiota have found 

that symbiotic bacteria have been shown to assist in intestinal integrity and immune system 

development/regulation. For example, commensal bacteria induce intestinal T-cells to 

differentiate into T-regulatory cells (59, 60) and the SCFAs, butyrate and propionate, drive T-

regulatory differentiation (61, 62) and decrease pro-inflammatory mediator production from 

dendritic cells.(61) In addition, high fiber diets have been shown to protect mice from 

developing peanut sensitization due to the increase in fiber fermenting anaerobic bacteria 

producing SCFA which increase T-regulatory cells and dendritic cell tolerogenesis.(63)

As discussed above, numerous studies have demonstrated an association between the 

microbiome and the development of food allergy. Further mechanistic studies are needed to 

help us better understand how these bacteria lead to food allergy in some, but not all, infants.

Treatment

Despite our lack of understanding of these underlying mechanisms, studies investigating 

various treatment modalities have been performed. Treatments that intervene with the 

microbiome include prebiotics, probiotics, synbiotics, and fecal microbiota transplantation. 

The benefit of adding prebiotics to mimic human milk in formula-fed infants to decrease 

food allergy has not been demonstrated. In regard to probiotics, Lactobacillus rhamnosus 
supplementation in children with milk allergy has been shown to reduce the development of 

other allergic diseases and hasten resolution of milk allergy.(64) Use of this same 

supplement alongside oral desensitization to peanut resulted in a majority of participants 

achieving tolerance, however the study lacked a probiotic only and oral immunotherapy only 

groups for comparison.(65) Recent reviews of probiotics in food allergy concluded that 

insufficient data exists to recommend probiotic supplementation at this time. (66) Based on 

these data, the World Allergy Organization has suggested that probiotics can be used in 

certain high-risk populations making it clear that its recommendations are based on low-

quality evidence.(67) Further research is needed in this area. Synbiotics and fecal microbiota 

transfers trials are still in their infancy and have yet to produce reliable results. Currently the 

use of partially hydrolyzed infant formula with added synbiotics compared to regular infant 

formula is being investigated. Fecal microbiota transfer studies in murine models have 

revealed that colonization of milk sensitized, germ-free mice with bacteria from healthy 

infant stool decreased the systemic allergic response compared to uncolonized mice.(68) In 

humans, fecal microbiota transfers have been studied in irritable bowel disease and 

Clostridium difficile infection (69, 70) however data for peanut allergy treatment with fecal 

microbiota transfers are still undergoing several phase 1 clinical trials (NCT02960074).
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ASTHMA

The early work of Bisgaard et al. showed that bacterial colonization of the hypopharynx at 

one month of age was associated with early wheeze and the subsequent development of 

asthma.(71) Furthermore, they found that early colonization with Streptococcus 
pneumoniae, Moraxella catarrhalis, and Haemophilus influenzae was associated with 

increased levels of total IgE and blood eosinophil counts (71). The same group demonstrated 

that bacterial infections of the airway were associated with acute episodes of wheeze in 

children, independent of viral infection, (72) suggesting bacteria could be an early predictive 

marker or a causal factor in the development of wheeze and childhood asthma.

Environmental Impact

It has now been well established that a child’s environment can influence health outcomes. 

Multiple studies have found that children raised in the setting of rural farm communities 

have a decreased likelihood of developing asthma (73–79). Furthermore, some studies have 

looked into specific exposures, finding that pig farming, farm milk consumption (80), and 

time spent working in animal sheds and barns are protective (78). Meanwhile sheep farming, 

hare/rabbit farming, and hay feed exposure increased the risk of developing asthma (78). 

Endotoxin levels found in the dust near these farming environments have been the focus of 

studies examining the differences between these various farm-related exposures. In 

comparing the rural farm environment of Indiana Amish versus South Dakota Hutterite 

children, it was found that endotoxin levels were 6.8 times greater in dust from the homes of 

the Amish community. (73) Interestingly, the prevalence of asthma in the Amish cohort of 

children was 4 times lower than that of the Hutterite. The exposure to greater microbial 

diversity, found in various farming communities, seems to exhibit protection from the 

development of asthma. It has been suggested by many that the early-in-life exposure to 

higher levels of environment-specific endotoxins plays a significant role in innate immunity 

activation and its ability to suppress inflammatory responses (73, 78, 79). While the 

knowledge that certain farm exposures protect against asthma development is helpful, it is 

not a practical solution to raise all children on farms. A recent study investigated the 

mechanisms behind this exposure finding that mice exposed to dust from Amish farms have 

less airway hyper-reactivity and eosinophilia. Furthermore, knocking out steps in innate 

immunity pathways eliminated these protective effects, demonstrating that high endotoxin 

exposure is needed to develop innate immune responses. (75)

Method of Delivery

With an increase in the number of caesarian sections being performed in industrialized 

countries coinciding with an increase in asthma prevalence, method of delivery has become 

an area of interest in regard to the neonatal microbiome. Multiple studies have found an 

association between delivery via caesarian section and childhood asthma, with a recent 

meta-analysis finding that caesarian section increased the risk of childhood asthma by 20% 

(81). The microbiota within the nares, skin, and oral cavity are different between caesarian 

and vaginally delivered neonates.(82) Furthermore, neonates born via caesarian section 

showed greater nasopharyngeal microbiota instability longitudinally as well as decreased 

abundance of Corynebacterium and Dolosigranulum (83), bacteria associated with an 
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absence of wheeze or asthma. Not only is the nasopharyngeal microbiota affected but the gut 

microbiota also appears to play a role in early airway immune responses. Independent of 

intrapartum antibiotic administration, vaginally delivered infants have a higher abundance of 

Bifidobacterium and E. coli with a lower abundance of Staphylococcus and Klebsiella. The 

same study also found that the composition of the GI microbiota at one week of life was 

associated with the number of respiratory infections reported in infants over the first year of 

life, suggesting that both the respiratory and gut microbiota play a role in asthma 

development. (84) However, other studies have found that while mode of delivery was 

associated with different patterns of microbiota in the neonate, when the microbiota was 

sampled again at 6 weeks of age, the differences no longer remained (82). Further 

investigations are needed to determine if this early difference in the microbiome at birth is 

associated with long term outcomes of asthma.

Breastfeeding

Many studies have shown a beneficial association between breastfeeding and respiratory 

health (85–89). Infants exclusively breastfeed for the first six weeks of life have a more 

stable microbiota profile comprised mainly of Dolosigranulum and Corynebacterium. 

Breastfeeding for a longer period of time (3 months) was also associated with prolonged 

elevated abundance of Dolosigranulum and Corynebacterium, thereby providing greater 

microbiota stability to the developing airway (90). In addition, breastfeeding is associated 

with fewer parent-reported respiratory infections (91, 92), suggesting that this prolonged 

microbiota stability is stimulating immune system development.

Airway Microbiome and Asthma

Whether a causal relationship exists between the airway microbiota and asthma remains 

unknown. However, multiple studies have attempted to map out the upper airway microbiota 

in order to investigate a possible relationship between dysbiosis and respiratory illness, 

wheeze, and asthma. Prospective cohort studies have found that six dominant genera make 

up the upper airway microbiota, ranging from early childhood through late adolescence. 

Throughout this time period the dominant genera in the upper airway microbiota are 

Moraxella, Streptococcus, Corynebacterium, Alloiococcus, Haemophilus, and 

Staphylococcus (93–95). Alterations in the development of the upper airway microbiota are 

associated with an increased risk of upper respiratory tract infections (URIs) during the first 

few years of life. (95, 96) Increases in the abundance of Streptococcus and Haemophilus 
(97) is associated with RSV bronchiolitis, while RV bronchiolitis is associated with an 

increased abundance of Haemophilus and Moraxella. (98) (91, 93, 99, 100). In contrast, a 

high abundance of Corynebacterium confers protective effects leading to stabilization of 

airway microbiota and milder disease, (90, 91, 93, 100, 101) suggesting that bacteria play an 

active role in the immune responses to infection. In a study of the upper and lower airway 

microbiome and transcriptome, it was suggested that in the nasal airway of non-asthmatics, 

Corynebacterium negatively interacted with genes that promoted inflammation and therefore 

conferred protection (100). The relationship between Moraxella and respiratory illness 

remains ill-defined with studies showing conflicting data. While some are associating its 

abundance with microbial stability and lack of respiratory illness(91), others are finding that 

a microbial profile dominated by Moraxella correlates with increased instances of 
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respiratory illness and asthma exacerbations(71, 94). Murine models do support a 

detrimental role, as colonization with Moraxella led to strong inflammatory responses and 

elevated neutrophilic infiltrates (102, 103). In another study, isolated strains of Moraxella 
from nasal secretions of asthmatics were utilized for inoculation of airway epithelial cell 

cultures. It was found that Moraxella isolates increased epithelial damage as well as gene 

expression of pro-inflammatory cytokines(94). These studies point to the importance of 

understanding the evolution of early life airway microbiota and identifying a ‘critical 

window’ in which intervention could alter the trajectory of respiratory health. Further 

supporting these findings, neonatal mice exhibited a two-week window following birth in 

which microbial exposure and diversity correlated with stabilization of the lung microbiota. 

Dysregulation of the microbiota in the time window led to sustained susceptibility to allergic 

airway inflammation into adulthood (104). Additional studies are still needed to confirm 

whether distinct microbiota profiles trigger harmful responses in the upper airway.

Treatment

While numerous studies are underway, few interventions have been published. 

Administration of Lactobacillus reuteri to mice attenuated recruitment of airway eosinophils 

and prevented allergen-induced airway hyperresponsiveness.(105) In infants, one recent 

study examined third trimester supplementation with fish oil and high dose Vitamin D. (106) 

At one month of age, the infant airway microbiota contained fewer bacteria associated with 

asthma development compared to placebo matched controls. Interestingly, the vaginal 

microbiota was not altered in this study, suggesting that prenatal supplementation does not 

harm the maternal microbiota. Randomized control trials with long-term follow-up are 

needed to determine if these early interventions prevent allergic diseases during childhood.

CONCLUSIONS

A growing body of evidence links the skin, gut, and respiratory microbiota with allergic 

diseases. Commensal bacteria is associated with “healthy” immune development, while a 

higher abundance of pathogenic bacteria is associated with weakened mucosal protection 

and the upregulation of inflammatory cytokines (Figure 1). However, studies describing the 

timing behind these microbial changes and immune development are lacking, and the ideal 

moment to intervene before detrimental immune changes occur is needed. Once this 

“window of opportunity” is determined, better methods to prevent allergic disease can be 

achieved.
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Figure 1: 
An increase in pathogenic bacteria is associated with a decrease in innate immune responses 

including a decrease in mucosal protection and an upregulation of inflammatory cytokines 

leading to an increase in allergic sensitization. In contrast, an increase in commensal bacteria 

is associated with activation of innate immunity and prevention of allergic sensitization.
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