
Improving an open-source commercial system to reliably 
perform activity-dependent stimulation

Maxwell Murphy1,2,*, Stefano Buccelli3,4,*, Yannick Bornat5, David Bundy1, Randolph 
Nudo1, David Guggenmos†,1, Michela Chiappalone†,3

1Department of Rehabilitation Medicine, University of Kansas Medical Center, 3901 Rainbow 
Boulevard, Kansas City, KS, United States 66160

2Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States

3Rehab Technologies IIT-INAIL Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, 
Italy

4Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and 15 
Child science (DINOGMI), University of Genova, L.go P. Daneo 3, 16132 Genova, Italy

5Laboratoire de l’Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux 
INP, CNRS UMR 5218, 351 Cours de la Libération, 33405 Talence Cedex, France

Abstract

Objective.—Activity-dependent stimulation (ADS) is designed to strengthen the connections 

between neuronal circuits and therefore may be a promising tool for promoting neurophysiological 

reorganization following a brain injury. To successfully perform this technique, two criteria must 

be met: 1) spikes in the extracellular electrical field potential must be detected accurately at one 

site of interest, and 2) stimulation pulses generated at fixed (< 1ms jitter), low-latency (< 10ms) 

intervals relative to each detected spike must be delivered reliably to a second site of interest. 

Here, we aimed to improve noise rejection in a low-cost commercial system to reliably perform 

ADS in awake, behaving rats, while maintaining latency requirements.

Approach.—We implemented a spike detection state machine on a field-programmable gate 

array (FPGA). Because the accuracy of spike detection can be heavily reduced in awake and 

behaving animals due to biological artifacts such as movement and chewing, the state machine 

tracks candidate spike waveforms, checking them against multiple programmable thresholds and 

rejecting any spikes that fail to meet a programmed threshold criterion.

Main Results.—A series of offline analyses showed that our implementation was able to 

appropriately trigger stimulation during epochs of biological artifacts with an overall accuracy 

between 72% and 97%, fixed computational latency of 167μs, and an algorithmic latency of 300μs 

to 800μs.
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Significance.—Our improvements have been made open-source and are freely available to all 

scientists working on closed-loop neuroprosthetic devices. Importantly, the improvements are 

easily incorporated into existing workflows that utilize the Intan Stimulation and Recording 

Controller.
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1. Introduction

Recent preclinical work has investigated the feasibility and efficacy of intracortical 

microstimulation (ICMS) coupled to neural activity to promote rehabilitation after brain 

injury (Guggenmos 2013, Azin 2011a, b). In brain-injured rats, constraining the timing of 

ICMS to within a few milliseconds of a detected extracellular action potential recorded in a 

second area improves motor skill beyond that achieved by randomly timed stimuli 

(Guggenmos 2013). This ICMS paradigm, known as activity-dependent stimulation (ADS), 

has also been used in healthy macaques to pair sites within motor cortex and alter evoked 

EMG output (Jackson 2006). The efficacy of these protocols relies both upon the accuracy 

of the spike detector and upon the reliability of subsequent low-latency (<10 ms) delivery of 

ICMS. Furthermore, because the invoked strengthening of connections between sites is 

thought to be generated by a Hebbian mechanism, low jitter in the delivery of stimuli (<1 

ms) is critical; for example, the difference in timing between invoking maximal potentiation 

and maximal depression of synaptic efficacy in hippocampal cultures is <5 ms (Bi and Poo 

1998). Depending upon the distance, type, and number of synapses that are putatively 

involved between the targets of ADS, it is also possible that the <10 ms latency constraint 

may be restricted to as low as <3–4 ms.

Historically, spike detection has been performed by applying a monopolar voltage threshold 

to the amplified and filtered neurophysiological signal, counting each rising edge of the 

resultant logical signal as the onset of a spike (Cheney and Fetz 1985). However, spike 

detection done in this way tends to conflate signals generated by movement and chewing 

with spikes from neural units when used in awake animal experiments, due to the similar 

frequency characteristics and larger amplitude of the former. For ADS, which relies upon the 

specific pairing of neurophysiological activity between two sites, non-specific stimulation 

due to biological noise sources would be obviously problematic.

Although many algorithms that are superior to monopolar voltage thresholds now exist and 

are easily implemented in various software packages for spike detection and sorting, the 

latency required in communicating with a host device can be prohibitive for ADS. 

Previously, ADS had been implemented in lightweight telemetric devices using an 

application-specific integrated circuit (Azin 2011a, b). However, for a long-term 

neurophysiological data acquisition solution, a more flexible architecture that can 

simultaneously acquire signals from hundreds of channels would be desirable. In addition, 

due to the timing constraints mentioned previously (<10 ms latency between detection and 

stimulation; <1 ms jitter in stimulus delivery), software solutions that involve a USB chain 
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cannot be used. Therefore, the most tenable solutions need to be implemented 

algorithmically in hardware, such as through a field programmable gate array (FPGA), a 

PCIe card interfaced through an ethernet connection, or some other comparable digital 

signal processing unit.

Recently, the commercial availability of high-gain, high-resolution custom amplifier 

integrated circuits (Harrison 2007, Harrison and Charles 2003), which interface to a host 

device through a serial parallel interface (SPI) has made it possible to construct relatively 

inexpensive neurophysiological acquisition systems that scale to high numbers of recording 

channels. These systems, such as the acquisition system provided by Intan or the Open-

Ephys acquisition board (Siegle 2017), use an FPGA to run the SPI that controls the 

amplifier chip while maintaining a buffer for USB communication with a host computer. 

Several proposed spike detection and spike sorting techniques take advantage of the FPGA, 

an integrated circuit that the end-user can reconfigure (Biffi 2010, Gibson 2013, Park 2017, 

Vallicelli 2017). Implementing the detection and sorting circuit on an FPGA allows the use 

of neurophysiological spiking as a reliable control signal in real-time, with low-latency; 

however, most implementations require custom integration with respect to the design of the 

full data acquisition circuit, which typically varies from laboratory to laboratory.

Here, we implemented a spike detection state machine designed to provide multiple 

threshold windows, reducing the likelihood of activity from sources other than spiking 

neural units on a single channel leading to the delivery of stimulation. The algorithm reduces 

the erroneous detection of spikes during biological noise in awake animals using an intuitive 

algorithm that requires minimal computational power. The implementation is conveniently 

designed to work as a modification to the existing open-source code provided by Intan for 

use in conjunction with their low-cost commercial platform for neurophysiological data 

acquisition and stimulus delivery. Importantly, the system allows the application of ADS 

with a fixed minimum latency <1 ms and has the potential to scale to a high number of 

channels in future design iterations.

2. Methods

2.1 Hardware architecture

The hardware architecture of the acquisition system and spike detector consists of three core 

components (Fig. 1):

1. Headstage: an amplifier circuit connected to a microelectrode array with an 

arbitrary number N of physical microelectrode leads placed near the neural 

substrate of interest;

2. FPGA: an interface that allows the amplifier circuit to multiplex both the 

incoming microelectrode signals and any outgoing stimulation commands to the 

appropriate microelectrodes; and,

3. Host: a general-purpose computer that provides an interface to the system, 

allowing the user to select the desired microelectrode channels and how a closed-

loop stimulation scheme will be implemented.
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This implementation used a commercially available integrated circuit and pre-assembled 

headstage (RHS2116; Intan Technologies, Los Angeles, CA, USA) to connect to the 

microelectrodes. To interface with this circuit, we used the Intan Stimulation/Recording 

Controller, which consists of an FPGA evaluation board (XEM6010-LX45; Opal Kelly Inc., 

Portland, OR, USA) equipped with a Xilinx Spartan 6 FPGA (XC6SLX45–2; Xilinx Inc., 

San Jose, CA, USA), a 128-Mbyte SDRAM chip, a 100-MHz clock source, I/O connectors, 

and a USB 2.0 interface chip capable of streaming data to a host computer at rates exceeding 

20 Mbyte/s. A desktop personal computer (Z230; Hewlett-Packard, Palo Alto, CA, USA) 

running Windows 7 (Microsoft, Redmond, WA, USA) was used to control the USB chain.

Intan provides a hardware design that embeds the open-source USB/FPGA interface 

developed by Opal Kelly. This design makes it possible to read and modify registers of the 

RHS2116 from a host computer. It consists of verilog Hardware Description Language 

(HDL) code written for the XEM6010-LX45 evaluation board. This code is synthesized 

using the free Xilinx ISE WebPack software. The resulting bitfile is locally stored on the 

board in a dedicated Flash memory and can be updated through the USB interface. It is 

loaded on the Spartan-6 FPGA at each power-up, allowing the FPGA to interpret commands 

and parameters issued by the user from the USB chain.

At its core, the USB/FPGA design provided by Intan is a state machine that controls SPI 

buses on up to eight peripheral RHS2116 amplifier circuits. The interface also contains a 

module that implements a short-latency threshold comparator on up to eight channels of 

digitized amplifier data streams routed to 16-bit digital-to-analog converters (DAC; 

AD5662; Analog Devices, Norwood, MA, USA) mounted on the evaluation board. The 

comparator logic state is routed to a TTL output wire that corresponds to the DAC channel 

number. The DAC module also implements a single-pole high-pass filter (HPF) on the 

selected amplifier data stream.

A second module, also included in the existing Intan USB/FPGA interface, contains a state 

machine that controls the delivery of ICMS to a selected amplifier channel. The module can 

be configured through the GUI to deliver stimuli on the rising or falling edge of a TTL input 

signal. Thus, by physically connecting pairs of TTL inputs and outputs, “closed-loop” 

stimulation based on the detection of threshold-crossing events (in this case, extracellular 

action potentials, or spikes) is already possible using the USB/FPGA interface as provided 

by the vendor.

The main contribution described herein is the addition of a state machine for spike detection 

that offers improved artifact rejection, while taking advantage of the short-latency 

comparator in the DAC module of the existing USB/FPGA interface. Importantly, we sought 

to make as few changes as possible to the existing toolkit provided and validated by the 

commercial vendor, in the hopes that any changes we introduced could be more easily 

integrated to existing workflows. Overall, the changes amount to an increase of 408 flip 

flops compared to the originally synthesized architecture, well within the bounds of the 

available resources on the XEM6010-LX45.
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2.2 Software interface

Software was modified from the original open-source C/C++ code provided by Intan 

Technologies for use with the RHS2116 amplifier IC, retaining many similarities with the 

original. The software implements a GUI, which provides a front-end to the USB/FPGA 

interface. Modifications described in the present study were added using Qt (version 5.8). 

Applications were compiled for Windows 32- and 64-bit operating systems using compilers 

for Microsoft Visual Studio 2015. This modified GUI includes a tab that allows 

configuration of the DAC (Fig. 2A, left panel) and the popup window for visualizing spikes 

is altered to accommodate online specification of each of the four parameters for each DAC 

channel used in the state machine detector, as described in Fig. 2A.

2.3 Spike detection state machine

The core of the spike detection state machine is a simple logic cycle that runs in the main 

module of the USB/FPGA interface (Fig. 2A, right). The state machine allows up to 8 

threshold levels (Li, where i is an integer from 1 to 8) with the following user-defined 

parameters (Fig. 2A, left):

• Threshold, ai, refers to the voltage value (μV) that the signal must pass through 

to count as a crossing. If the threshold is negative, then a crossing occurs when 

the signal value is less-than or equal-to the threshold value (Fig. 2B, multiplex 

logic). If the threshold is positive, then a crossing occurs when the signal is 

greater-than or equal-to the threshold value. This number is an unsigned 16-bit 

integer, which is limited between −5,000 μV and +5,000 μV, based on the 

dynamic range and scaling of the amplifier and DAC.

• Start, bi, refers to the (inclusive) onset sample of the window Li. If the state 

machine counter is less than this value, the threshold conditions for the specified 

window will not be considered in the state machine logic. The state machine 

switches from idle to active (as defined below) once the filtered amplifier data 

stream routed to DAC channel i meets the criteria for Li, if bi = 0.

• Stop, ci, refers to the (exclusive) end sample of the window Li. If the state 

machine counter is equal or higher than this value, the threshold conditions for 

the specified window will not be considered in the state machine logic. The 

maximum stop value, cmax, defines the total duration of the spike detection state 

machine.

• Type, di, refers to the amplitude bounding for window Li. It depends upon the 

polarity of the threshold. A value of zero corresponds to an “include” type 

window, which means that the signal must be less than a negative threshold or 

greater than a positive threshold while the state machine counter is within the 

range defined by the start and stop samples (Fig. 2C). A value of one 

corresponds to an “exclude” type window, which enforces the opposite 

conditions (signal must be greater than a negative threshold or less than a 

positive threshold).
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• Enable, ei, refers to whether window Li is involved in the decision circuit for the 

state machine. The state machine can run with as few as 1 and as many as 8 

windows enabled.

In the specific example of Figure 2A, we have defined three levels (e.g. L1, L2, and L3), 

where a1 and a2 are the blue ‘inclusion’ thresholds (d1 = d2 = 0) and a3 is the red exclusion 

threshold (d3 = 1). Therefore, the dark-grey spike, which crosses threshold a3, is excluded, 

but the black spike is not. Likewise, the light-grey spike, which does not cross the a2 blue 

‘inclusion’ threshold is also excluded. In total, the state machine runs for cmax samples, 

starting whenever the state is ‘idle’ and the filtered signal is less than a1.

The state machine increments a counter on the rising edge of the sample clock depending 

upon its current state, which is always in one of these three conditions:

1. idle, when one or more of the level criteria is not met or no DAC channel is 

enabled (Fig. 2A, grey);

2. active, when the criteria for each enabled DAC with a start value less than or 

equal to the current sample index and a stop value greater than the current 

sample index channel is true (Fig. 2A, black); or,

3. trigger, when the counter equals the largest enabled DAC window stop value 

(Fig. 2A, orange).

The counter increments only when the state machine is in the active state, and resets to zero 

any time it enters the idle state (Fig. 2A; right). If the state machine reaches the trigger state, 

it returns to the idle state on the ensuing sample clock cycle. Each state of the machine is 

reported by the high state on a unique pair of TTL output and input wires (see 

Supplementary section S4 for details).

2.4 Surgical implant and recording for in vivo testing

All protocols for animal use were approved by the Kansas University Medical Center 

Institutional Animal Care and Use Committee in compliance with the Guide for the Care 

and Use of Laboratory Animals (Eighth Edition, The National Academies Press, 2011). 

Briefly adult male Long Evans rats were anesthetized using a combination of ketamine and 

xylazine as described previously (Nishibe 2010). A laminectomy was performed to 

minimize edema during the procedure. Five 00–80 stainless steel skull screws were fixed 

around the perimeter of the skull to improve attachment of the dental acrylic cap. Using 

stereotaxic coordinates, a craniectomy was made over sensorimotor cortex of the left 

hemisphere. Microwire arrays were positioned to span the rostral forelimb area (RFA), 

caudal forelimb area (CFA), and forelimb sensory cortex (S1), which was confirmed by a 

brief ICMS mapping procedure before insertion to a depth of approximately 1500 μm. An 

external silver wire on each array was tied to the same skull screw placed in the interparietal 

bone, which acted as a common ground. In the rat used for session A (recording sessions 

described below), the microwire array was a custom in-house design consisting of 32 

channels of 33 μm diameter polyimide-coated tungsten wire (California Fine Wire Co., 

Grover Beach, CA), which were distributed throughout RFA, CFA, and S1 in a non-uniform 

grid pattern. The rat used for sessions B and C was implanted with a commercial microwire 
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array (MicroProbes for Life Science, Gaithersburg, MD) consisting of 16 channels of nickel-

chromium alloy 50 μm diameter wires arranged in a 4×4 grid with 250 μm site spacing 

implanted in S1. Qualitatively, spiking activity from both datasets was similar, but session A 
contained a few channels with large, stereotyped spikes, while spikes tended to be smaller in 

amplitude for sessions B and C. Prior to each recording, the rat was placed under anaesthesia 

via isofluorane induction, and subsequently one channel located within RFA was used for 

recording, while a single S1 channel was used in any stimulation sessions Electrode 

impedances ranged from 750 – 1,500 kΩ at recording sites. Recordings were made in 3- to 

5-minute blocks during and after recovery from anaesthesia.

Recordings were made during three separate sessions. Recording sessions were assigned the 

codes ‘A,’ ‘B,’ and ‘C.’ The main features and how these data were used within the current 

work are summarized in Table 1. Session A was taken from a first rat, three days after 

implantation, and contains a single epoch in which no stimulation was performed, which 

was used for subsequent offline characterizations due to the presence of large, stereotypical 

spike waveforms and low noise floor (RMS 18.6 μV, rectified median 11.3 μV). Sessions B 
and C were taken from a second rat approximately three months after the implantation. 

Session B tested the latency between spike detection using the state machine and onset of 

stimulation. Session C tested the online performance of the spike detection state machine 

using ad hoc parameters selected while the experiment was ongoing (e.g. to mimic a typical 

use case). Specific parameters for each recording session are reported in detail in Table S1; 

sub-indices indicate identical recording data that was re-run offline using a simulated test 

bench to characterize performance. To identify chewing periods (which bias performance 

toward false positive spike detection due to the presence of high-amplitude biological noise), 

a simultaneous video stream was synchronized with the neurophysiological data from 

session C through co-registration of a flashing LED that was tied to a digital input on the 

acquisition board.

2.5 Offline performance testing

Performance of the spike detection state machine was evaluated by comparing offline 

detection of spikes from the in vivo data from session A, either using a monopolar threshold 

detector or the state machine detector. To ensure that the analyses accurately captured online 

performance, we first validated the fidelity of the reconstructed recorded signals by ensuring 

that the DAC amplifier data stream and digital logic state streams recorded in vivo during 

session C matched those generated by the offline DAC filter and state machine simulation. 

Simulations were performed using test benches compiled in verilog, MATLAB (R2017a+), 

and Simulink (R2018b), as described in the supplementary methods section. The test 

benches are included in the online code repository along with the modified software and 

hardware code. Once we verified that there was no difference in the simulated digital logic 

state signals and the recorded ones, we used the DAC amplifier data stream recorded from 

session A to simulate the spikes detected using both a single-threshold detector (A0) as well 

as all events that entered the active and trigger states using the state machine detector (A1). 

For the monopolar threshold detector, spikes were only counted on the logical rising edge of 

the threshold crossing. Selection of a monopolar threshold was fixed at 40 μV, which was 
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initially determined online by visual inspection of the spike scope to set a level that appeared 

qualitatively to reject noise while accepting most multi-unit spiking.

To characterize the ability of the spike detection state machine to reject artifact while still 

detecting viable spikes we calculated accuracy, defined as the ratio of the sum of correctly 

classified spikes (true positives; TP) and correctly classified artifacts (true negatives; TN) to 

the total number of spikes and artifacts detected. To determine whether spikes or artifacts 

detected during a simulation were correctly classified, a set of target classifications for spike 

and artifact waveforms were obtained offline using manual sorting to group similar 

waveforms. This consisted of a cluster cutting technique in which the spikes and artefactual 

waveforms were assigned iteratively through the manual selection of waveforms from the 

candidate set of waveforms detected as either spikes or artifacts by the detector, similar to 

the technique described in (Harris 2000). While this method of classifying multi-unit spike 

waveforms has limitations depending on the amplitude of units under consideration (Harris 

2000), the purpose was to illustrate the ability of the spike detection state machine to reject 

artifactual waveforms, a situation for which an experienced operator is well-suited.

To verify our results on a dataset in which the ground truth spike times are already known, 

we synthesized an additional set of recordings (C3, in which a threshold detector was 

applied, and C4, in which the state machine detector was applied; parameters in table S1). In 

these simulations, known spike waveforms were added to a non-spiking recording channel at 

1,500 uniformly sampled random samples throughout the duration of the sample record. It 

should be noted that in these simulations, identical recordings can yield slightly different 

numbers of total detected spike and artifact waveforms depending on which spike detection 

procedure was simulated even if the initial inclusion threshold is the same for the state 

machine detector and the threshold detector: because the state machine has a minimum 

duration that requires multiple samples in order to detect the spike, probabilistically there 

are more opportunities to identify candidate spike and artifact waveforms when using a 

single-threshold detector, potentially leading to a slightly higher number of total event 

classifications when using the monopolar threshold detector.

After either sorting the detected spike and artifact waveforms to obtain the target 

classifications or using the a priori known ground truth spike times as targets, performance 

was obtained using confusion matrices to compare the detected outputs (e.g. spikes or 

artifacts) against the target outputs (e.g. spike or artifact classifications of the detected 

outputs using offline sorting). Sensitivity (or true positive rate; TPR) was estimated as the 

ratio of correctly classified spikes to the sum of correctly classified spikes (true positives; 

TP) and outputs given as artifacts that were determined to be spikes by offline sorting (false 

negatives; FN). True negative rate (TNR) was estimated as the ratio of correctly classified 

artifacts (true negatives; TN) to the sum of correctly classified artifacts and outputs given as 

spikes that were determined to be artifacts by offline sorting (false positives; FP). Precision 

(positive predictive value) was estimated as the ratio of true positives to the sum of true 

positives and false positives. The false discovery rate (FDR) was estimated as the ratio of 

false positives to the sum of true positives and false positives. The false negative rate (FNR) 

was estimated as the ratio of false negatives to the sum of true positives and false negatives. 
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These last two metrics (FDR and FNR) were of special interest, as we aimed to reduce FDR 

while maintaining a low FNR.

3. Results

3.1 Ability to detect waveforms of interest

An important feature of the spike detector state machine is the ability to identify relatively 

low-amplitude spikes during epochs that contain periods of relatively high-amplitude 

biological artifact. Biological noise, such as arises from mechanical vibration and EMG that 

occur during chewing and whisking, leads to large-amplitude, high-frequency (>300 Hz) 

deflections in the signals observed on electrodes embedded within cortex. To illustrate this, 

we isolated a short exemplar epoch from recording session C in which the presence of 

chewing was verified by synchronizing the electrophysiological data stream with video of 

the rat moving freely in the recording chamber. While these epochs of activity are likely 

generated by biological sources, they may still be undesirable during motor recordings 

designed to study neurophysiological spiking of units related to other motor behavior (i.e. 

forelimb movement during pellet retrievals). Unfortunately, the simple threshold detector 

produces many false-positive spike detections during such epochs (Fig. 3A, red 

highlighting). By contrast, the state machine detector is still able to correctly detect spikes 

(Fig. 3B, blue highlighting) during the noisy periods without mistakenly triggering from the 

same waveforms that are problematic for the threshold detector (Fig. 3B, green 

highlighting). Even within a single recording session and on a single recording amplifier 

channel, it was possible to distinguish between substantially different spike waveforms by 

customizing the parameters sent to the spike detection state machine online. Parameters that 

were selected online (recording C0, table S1) captured the smaller multi-unit activity (Fig. 

3C), whereas offline adjustment of parameters led to the ability to isolate waveforms from 

the larger of the two units (Figs. 3D). Importantly, the ability to set the level parameters in 

real-time, thanks to the modified GUI (Fig. S2), improved ease-of-use compared to existing 

systems, in which a “training” recording must first be obtained and analysed offline before 

allowing parameters to be set (Guggenmos 2013, Azin 2011a, b).

3.2 Performance in awake ambulatory rats

To quantify the online performance of the state machine we performed manual offline 

sorting of spike and artifact waveforms (from session C). We considered the offline sorting 

as ground truth, which allowed us to compute confusion matrices comparing the online 

classification (e.g. spike or artifact) to the offline sorted classification for the same waveform 

for each monopolar threshold crossing (Fig 4). The number of spikes correctly detected by 

the online spike detector state machine was 2,163 out of 2,582 (meaning a sensitivity, or true 

positive rate, of 83.8%). The number of true negative (i.e. artifacts not detected as spikes) 

was 40,188 out of 40,835 (meaning a specificity, or true negative rate, of 98.4%). The 

number of artifacts incorrectly classified as spikes was 647, resulting in a 23% false 

discovery rate (FDR) for the online spike detector state machine. Artifacts that led to false-

positives contained qualitative similarities with the spikes of interest, which may account for 

this value (Fig. 4B, FP-1 and FP-2). Overall, the online accuracy of the spike detector state 

machine was 97.5% (Fig. 4A; recording C0), which is inflated by a high number of true 
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negative samples due to the relatively large number of artifacts passed by the monopolar 

threshold. In practice, this could be mitigated using a monopolar threshold set to a much 

higher value; however, while increasing the threshold could reduce the number of artifacts 

falsely detected as spikes, it would also reduce the number of true positive spikes and is 

therefore not a feasible solution. Indeed, even the synthetic insertion of large-amplitude 

(−150μV peak) spikes at known times to a non-spiking channel results in an FDR of 90.5% 

for a monopolar threshold of −100 μV, while the state machine detector yielded an FDR of 

29.3% and overall accuracy of 72.2% (Fig. S3).

Using a channel selected for its low noise floor and large-amplitude spike waveforms 

recorded in vivo (session A), we computed the same performance measures used in the 

previous case (Fig. 5A). Performance overall was comparable (97.1% accuracy) due to the 

large number of correctly rejected waveforms. However, careful parameter selection also 

yielded an improved FDR (6.9%) and FNR (2.8%) for the state machine spike detector 

under these ideal conditions. We compared the best-case performance of our state machine 

detector to a monopolar threshold detector. Using identical recordings, there is a dramatic 

improvement in the FDR when using the state machine detector (189 artifacts characterized 

as spikes, of a total 2,075 spikes detected online, Fig. 5B) compared to the monopolar 

threshold detector (2,770 artifacts characterized as spikes, of a total 7,075 detected spikes, 

Fig. 5B). This improvement results from the rejection of artifactual waveforms, such as 

occur during epochs of biological noise (e.g. chewing, Figs. 3A, 3B).

3.3 Mean latency from spike peak to stimulus delivery

The total latency for an activity-dependent stimulus can be considered as the sum of the 

algorithmic latency (to reliably detect an event) and the computational latency (due to the 

system). Algorithmic latency, in this case, depends on the maximum number of samples 

needed to detect a spike. In this work, spikes were detected using state machines that varied 

between 300μs (session B; 9 samples at 30 kHz sample frequency) and 800μs (session C; 24 

samples at 30 kHz sample frequency). Therefore, the exact algorithmic latency is specific to 

the parameterization of the user-defined threshold levels. Our work did not alter the 

computational latency between the event detection and the delivery of the stimulus. During 

session B, the Intan Stimulation/Recording Controller stimulation sequencer module delay 

was set to zero milliseconds, allowing us to estimate the computational latency as the 

minimum latency between the rising edge of the virtual TTL input corresponding to the 

trigger state of the spike detection state machine and the onset of stimulus artifact. The 

computational latency obtained in this way was 167μs (5 samples at 30 kHz sample 

frequency; Fig. S1). Therefore, the total latency of the system during spike detection was 

reliably less than 1 ms, mainly due to the algorithmic latency, and indicates that the detector 

is responsive on a timescale that is both fast and reliable enough to be used for performing 

ADS.

4. Discussion

We developed a modified version of an open-source commercial system to implement 

closed-loop stimulation with sub-millisecond latency. The main improvement is the 
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implementation of a spike detection state machine with an interface that allows the 

application of eight reconfigurable thresholds to any combination of different or identical 

amplifier channels. The implemented state machine slightly reduces sensitivity (i.e. true 

positive rate, Fig. 4A), but drastically improves specificity (i.e. reduced FDR; Figs. 5A, 5B), 

which may be critical in designing closed-loop electrical stimulation paradigms in the 

central nervous system in vivo. This improvement in selectivity is particularly important 

when the stimulation paradigm must be implemented during ongoing natural behavior, such 

as chewing or whisking (Fig. 3).

Although the focus of this study was on applying the improved detector for use in ADS, we 

envision that this type of low-latency, highly-selective discriminator could be useful in a 

range of closed-loop applications. For example, feedback needs not be delivered in the form 

of stimulation pulses but could instead be incorporated as a part of the experimental design 

itself, such as the delivery of a reward contingent upon the discrimination of a unique spike 

waveform (Koralek 2012). However, the context of developing closed-loop neuroprostheses 

for applications such as neurorehabilitation provides important constraints. For example, a 

critical aspect of the ADS paradigm is the timing of stimuli based on the detection of a 

stereotyped waveform that represents a small group of cells near the recording 

microelectrode (Guggenmos 2013). Therefore, it is desirable to minimize the FDR while 

maintaining a detection algorithm that can be implemented with low latency and 

customizable sensitivity to maximize the chances of invoking Hebbian mechanisms of 

plasticity between cells at the detection site and those at the stimulation electrode (Bi and 

Poo 1998). It is possible that such a stimulation regime could be augmented by incorporating 

multiple stimulation sites at offset latencies from a single trigger source; this is also possible 

using the system presented in this study. Similarly, although not tested here, the 

modifications presented can apply simultaneous thresholds to several spatially distributed 

sites simultaneously. This provides a practical way to mitigate the large, non-neural sources 

of noise that result from a failure in the common-mode rejection, which are typically present 

on multiple channels simultaneously. Future versions of the discriminator presented here that 

scale to an arbitrarily large number of thresholds could then be useful in sorting using 

tetrodes or other high-density arrays.

With the rising interest in applications of closed-loop technologies for stimulation of the 

central nervous system (Levi 2018), a number of methods for implementing closed-loop 

stimulation have been made openly available. These include software packages, such as 

Falcon (Ciliberti and Kloosterman 2017), the Open Ephys GUI (Siegle 2017), and 

NeuroRighter (Newman 2012); however, software implementations of online spike detection 

and triggered stimulation typically suffer from the latencies imposed when performing serial 

communication with the host computer. One exception is the Real-Time eXperiment 

Interface (RTXI, (Patel 2017)); however, because the system is designed to operate using a 

National Instruments Data Acquisition card (NI-DAQ), it may be difficult to scale to a very 

high channel architecture. On the other hand, the ADC of the RHS2116 is scalable, and 

because digitization occurs very close to the source (on the headstage), yields improved 

noise characteristics.
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Hardware implementations, such as the synthesized bitfile that can be readily uploaded to 

effectively transform an FPGA into a commercial neurophysiological acquisition system, are 

not as widely distributed. Because hardware implementations typically have very specific 

design constraints and are optimized to meet those constraints, it is impractical to develop 

and distribute open-source hardware for closed-loop neuroprosthetics. Just as the RTXI 

system is not readily compatible with the Intan amplifier chips, hardware implementations 

(Ambroise 2017, Buccelli 2019) are designed to interface with in vitro microelectrode arrays 

that interface to an FPGA with different input and output pin configurations, making it 

difficult to provide a ubiquitous hardware bitfile for every experimental setup. Alternatively, 

moving from a hardware implementation in an FPGA to a custom application specific IC 

(and subsequent commercialization) becomes more practical for individual applications.

To minimize changes to the existing open-source software provided by Intan, the spike 

detection state machine was implemented in the DAC module. This imposes the limitation 

that only one spike detection state machine can run at a time. At a maximum, up to eight 

different amplifier channels could be polled for synchronous or near-synchronous events, or 

eight threshold criteria could be applied to the waveform of a single amplifier channel. 

Making substantial modifications to the existing FPGA might allow scaling of a spike 

detection state machine module to any arbitrary number of thresholds on different channels. 

A natural extension of this work would be to scale up the number of trigger sources for 

multi-stream ADS, particularly as FPGA evaluation boards with increased on-board 

resources become available. Generalizing the state machine to a higher number of 

independent channels by running it as a module that is independent of the DAC, automating 

the process of setting threshold levels (e.g. using spike “templates”), and integrating 

independent state machines to allow concurrent detection of events in multiple frequency 

ranges are currently being investigated to improve their application in closed-loop 

neuroprosthetic interfaces. Automating the process of setting threshold levels, especially as 

channel counts scale up, will be important, as the improved rejection may also reduce 

sensitivity, depending upon the ad hoc parameters set by the operator. Algorithmically, the 

state machine is fundamentally similar to the one implemented in (Azin 2011b); however, 

the state machine described here allows more flexibility in the parameterization of each 

threshold level by allowing the end-user to set each of the following four parameters while 

the application is running.

We have provided modifications to an existing interface for conducting electrophysiological 

experiments using closed-loop stimulation. These improvements allow spike detection to be 

performed with a higher selectivity at the expense of a reduced sensitivity. This trade-off is 

dependent upon the ad hoc selection of parameters, which can be adjusted by the 

experimenter in real-time. The architecture in which this improved spike detection state 

machine is implemented has the possibility to scale to a very high number of channels in the 

future, improving current and future functionality. Our contribution to the original design 

improves the accessibility of investigating of closed-loop stimulation paradigms, which may 

be necessary for effective, therapeutic neuroprosthetic systems.
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Figure 1: Overview of system architecture and implementation.
An amplifier chip is interfaced to the field-programmable gate array (FPGA), via a serial-

parallel interface (SPI). N electrode channels are routed to a high-gain amplifier. On board 

the FPGA, amplifier data from the FIFO buffer are piped to the host device via a USB 

interface. The digitized signals from any selected combination of amplifier channels (blue) 

can also be routed to up to 8 digital-to-analog converter (DAC) channels, where threshold 

comparator logic can be applied with sub-millisecond latency. In this example, 4 threshold 

windows are applied to the filtered data stream from amplifier channel 1.
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Figure 2: Spike detection state machine implementation.
A) Left: Example of a spike that would be included (black) and waveforms that would be 

rejected (grey) by the three state machine levels depicted (L1, L2, and L3, denoted by 

corresponding thresholds a1, a2, and a3). The dark-grey waveform exceeds the red exclusion 

threshold (a3), while the light-grey waveform does not meet the second blue inclusion 

threshold (a2). The black spike is included because the absolute value of its negative 

component does not exceed the absolute value set by a3, while the absolute value of its 

positive component exceeds the level set by the second blue inclusion level a2. The 
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parameters (a-e) are defined by the user during acquisition and are illustrated for the red 

exclusion level shown. Right: state flow diagram for the spike detection state machine. By 

default, the detector is in the idle state (grey), but transitions to active (black) as soon as the 

data stream fulfils the parameters for the earliest window (magenta). If the waveform meets 

all criteria specified by the defined levels, the state switches to trigger (orange), then 

automatically reverts to idle. B) Threshold logic in the DAC module. For each of the 8 DAC 

channels, the corresponding parameters determine if the machine is within the start and stop 

points of the window, relative to when the counter started, as well as whether it crossed the 

threshold (depending on threshold polarity). C) Active and idle counter incrementing logic. 

If the data stream meets criteria of each enabled level that applies to the current counter 

value, the counter is advanced by 1.
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Figure 3: Qualitative performance of the implemented spike detection.
A) 200ms of high-pass filtered data from session C during single-threshold (−40μV; 

simulation C2) spike detection. Red box represents a 130ms epoch of chewing. Red 

highlighting (false positive) indicates spikes that were wrongly detected. Blue highlighting 

(true positive) shows spikes that were correctly identified. B) Same data as in panel A with 

superimposed detections from the state machine spike detector. Green highlighting (true 

negative) indicates artifacts that were correctly rejected by the state machine. Grey 

highlighting (false negative) indicates a case of true spike not detected by the state machine. 

C) Random sub-sampling of 250 detected (magenta) and 250 rejected (grey) waveforms 

using the spike detection state machine in real-time (recording C0), using the digital outputs 
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from the online state machine. Flat lines represent threshold levels. Black spots represent 

inclusive samples that must meet the threshold criteria, while ends of lines are open to 

represent the non-inclusive threshold criterion. Cyan thresholds must be exceeded, whereas 

red thresholds must not be exceeded. D) An offline reconstruction (recording C1) was used 

to simulate the state machine using different window parameters. This random sub-sampling 

of 250 detected and 250 rejected waveforms indicates how the parameters could be set 

differently to isolate spikes from a different unit. Note that increasing the duration of the 

state machine also increases the total time to detection.
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Figure 4: Typical performance compared to offline sorted spikes.
A) Confusion matrix for comparison of online spike detection state machine performance 

after manual offline sorting of spike and artifact waveforms (recording C0). The blue box 

contains the number of true positive spikes and the percentage of the overall detected events 

that fit this category. The salmon box contains the number of false positive spikes detected 

by the algorithm, as determined by manual sorting. The grey box indicates the number of 

rejected spikes (which entered but did not complete the state machine) that were scored 

offline as spikes. The green box represents waveforms that were rejected by the state 

machine and were also classified manually offline as artifact. The top row on the far-right 

column show the positive predictive value (PPR) in blue and false discovery rate (FDR) in 

red. The second row on the far-right column shows the negative predictive value (NPV) in 

blue, and the false omission rate (FOR) in red. The first column on the bottom of the matrix 

show the sensitivity (or true positive rate, TPR) in blue and the false negative rate (FNR) in 

red. The second column on the bottom of the matrix shows the true negative rate (TNR) in 

blue and the false positive rate (FPR) in red. The box in the bottom right of the plot shows 

the overall accuracy (ACC) in blue and its complement (the error percentage, ERR) in red. 

B) Offline sorting used for comparison. Lighter regions indicate a higher density of 

waveforms passing through those voltage values. Spikes were manually sorted using cluster 

cutting to separate units into characteristic waveforms. Magenta outline indicates spike 

profile used for offline sorting in panel A. Bottom two panels (FP-1 and FP-2) are 

characteristic waveform types that sometimes passed the state machine conditions, 

contributing to the number of false positives.
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Figure 5: Ideal performance compared to offline sorted spikes and monopolar threshold 
detection.
A) Simulated performance using an ideal in vivo recording with large spikes (recording A1). 

Although the simulated performance is applied to a channel with high-amplitude spike 

waveforms, the overall accuracy effectively remains consistent. This is due to the relatively 

large proportion of waveforms that are correctly rejected (middle box). B) Manual offline 

sorting performed for recording A1 (presented in panel A), as well as a comparison to 

performance of true (blue) to false (salmon) discoveries for the state machine detector and a 

simple threshold detector for the same dataset (recording A0).
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Table 1:
Summary of recording data sets taken from rats.

Recordings were taken from awake, ambulatory rats implanted in RFA and S1. Columns describe whether 

stimulation was used, the main feature that distinguishes that recording dataset from the others, and the reason 

the recording was used in this study.

Name Stim? Feature Use

A No Large stereotypical spikes; low noise Offline performance

B Yes Stimulus artifacts Test latency of stimulation

C No Typical use case; synchronized video Online performance
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