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Sandra Rodrigues-Mascarenhas * 
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A B S T R A C T   

The SARS-Cov2 infection triggers a multisystem inflammatory disorder, knowing as COVID-19, a pandemic 
disease. This disease is characterized by acute respiratory distress syndrome, cytokine-driven hyper-
inflammation, and leukocytes count changes. The innate immune response has been linked to COVID-19 
immunopathogenesis (e.g., dysfunctional IFN response and myeloid inflammation). In this regard, neutrophils 
have been highlighted as essential effector cells in the development of COVID-19. This review summarized the 
significant finds about neutrophils and its effector mechanisms (e.g., neutrophils enzymes and cytokines, 
neutrophil extracellular traps) in COVID-19 so far.   

1. Introduction: COVID-19 

COVID-19 (Coronavirus disease 2019) is an infectious inflammatory 
disease caused by SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus 2) [1], a new type of coronavirus identified in China in 
December 2019 after several patients were diagnosed with nonspecific 
pneumonia [2]. The coronavirus outbreak began in Wuhan, the capital 
of Hubei province, and quickly spread across continental dimensions, 
turning Covid-19 into a pandemic disease [3]. 

Coronaviruses are single-stranded RNA viruses that are character-
ized by having corona-like projections on their surface. There are four 
main proteins in the structure of these microorganisms, including the 
spike protein (S), which is related to the host cell mechanism of invasion 
[4]. The SARS-CoV-2 is the third virus of the β coronavirus group to 
demonstrate the capacity to infect humans with pandemic potential [5]. 
SARS-CoV and the MERS-CoV (Middle Eastern respiratory syndrome 
coronavirus) were responsible for previous relevant outbreaks of respi-
ratory disease in 2003 [6,7] and 2012 [8,9], respectively. 

Human-to-human transmission occurs through direct contact or 
respiratory droplets from infected individuals, whether symptomatic or 
asymptomatic [10–12]. Several reports have suggested that other forms 
of transmission, such as the fecal-oral route [13–16] and intrauterine 
vertical transmission, may also happen [17,18]. However, more studies 
need to be carried out to confirm this form of transmission. 

The clinical features of COVID-19 may appear after an incubation 

period of around 5–14 days [19]. Some early symptoms resemble those 
of other viral respiratory infections, such as those caused by influenza 
viruses. However, dyspnea and high fever define the main clinical dif-
ference between COVID-19 and common cold [20]. Additionally, when 
compared to the influenza virus, SARS-CoV-2 infection presents greater 
chances of progressing to severe and critical infections, which require 
oxygen therapy and ventilatory support [21]. Elderly patients and those 
with chronic conditions have higher risks of rapid progression to acute 
respiratory distress syndrome (ARDS) and multiple organ failure, often 
resulting in death. These features demonstrate a systemic aspect of this 
infection, which is accompanied by an intense inflammatory process 
[22–24]. 

2. COVID-19 and inflammation 

The COVID-19 infection starts by exposure to microdroplets present 
in the exhalations of infected individuals. Then, the SARS-CoV-2 spreads 
to the bronchioles and alveolar spaces [25], entrancing into the host 
cells (e.g., endothelial, epithelial, and smooth muscle cells) by binding 
the angiotensin-converting enzyme (ACE)-2, a metallopeptidase present 
on the cell surface [26–29]. 

In the lung, SARS-CoV-2 infects the alveolar cells (type I and II 
pneumocytes and alveolar macrophages) and then starts intracellular 
replication in pulmonary tissues. Type I and III interferons (IFN) pro-
duction is an early defense mechanism in the alveolar cells [25]. 
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However, recent researchers have found deficient expression of these 
cytokines, besides the upregulated expression of chemokines and in-
terleukins [30,31]. In normal human bronchial epithelial (NHBE) cells 
culture, the cytokine profile includes the IFNs deficiency and elevated 
expression of CCL20, CXC-type chemokines, IL-1β, IL-6, and tumor ne-
crosis factor (TNF) [31]. The type I and III IFN absence shows that, 
although SARS-CoV-2 is sensitive to IFN antiviral effect, the virus can 
inhibit its induction [31–34]. This ability may come from, at least, one 
mechanism of blocking the activation of the IFN signaling pathway at an 
early step following the nuclear transport of interferon regulatory fac-
tors (IRF) [35]. Furthermore, the recruitment of leukocytes, a hallmark 
of inflammation, is strongly related to the chemokine profile. For 
example, CCL2 and CCL8 recruit monocytes/macrophages, CXCL16 is a 
chemoattractant of NK cells, CXCL8 is the principal neutrophil chemo-
attractant, and CXCL9 and CXCL10 chemoattract T cells. Thus, the 
chemokine profile may be a driver of the signature pathology of SARS- 
CoV-2 [36]. 

The immune features between moderate and severe disease are 
modified after ten days of infection when severely ill patients remain 
with high proinflammatory cytokines [37]. Furthermore, deregulated 
inflammatory response to an infection may result in the cytokine storm 
syndrome, which is associated with severe COVID-19 [38,39]. This 
syndrome is characterized by high levels of interleukins, TNF-α, G-CSF, 
MCP-1, and MIP-1α, which are higher in intensive care unit patients 
than non-intensive care unit patients [37,40,41]. Additionally, the 
inflammasome NLRP3, a multiprotein complex crucial to the host de-
fense, is highly activated in COVID-19 patients. Inflammasome-induced 
cytokines IL-1β and IL-18 also contribute to cytokine storm, and sus-
tained NLRP3 inflammasome activation is directly associated with the 
disease’s severity [42–44]. The cytokines milieu recruits immune cells 
and activate T helper type 1 (Th1) response, which is related to the 
activation of a specific immune response. Moreover, Th1 cells stimulate 
IL-6 production by inflammatory monocytes in severe COVID-19 and 
contribute to the cytokine storm [45]. However, Th2 cytokines are also 
presented in COVID-19 serum patients and may impair the Th1- 
inflammatory response [40]. Thereby, chemokines/cytokines milieu 
comprises a possible therapeutic target for COVID-19 [46]. 

Peripheral blood immune cells (PBMCs) of COVID-19 patients pre-
sent low T cell number and frequency in both CD4+ and CD8+ pop-
ulations, which are more activated. On the order hand, monocytes are 
increased, but they present a reduction in HLA-DR expression compared 
with the control group (non-infected) [37]. Additionally, in severe 
COVID-19, patients present a reduced number of B cells and natural 
killer (NK) cells associated with severe T cell depletion, and a high 
neutrophil population [37,40,47–49]. This neutrophilia occurs after 
seven days symptoms onset [50]. 

3. Neutrophils in COVID-19 

Neutrophils are the most abundant immune cells in human blood. 
They account for approximately 50–70% of all leukocytes. Besides 
serving as first responders to many infections, neutrophils have critical 
homeostatic functions being also implicated in chronic inflammatory 
diseases [51]. These polymorphonuclear cells play a protective role 
during bacterial or fungal infections; however, their role in viral in-
fections is not fully understood [52,53]. Although the evidence is 
limited, it has been suggested that neutrophils enhance antiviral de-
fenses by interaction with other immune cell populations, virus inter-
nalization and killing mechanism, cytokines release, degranulation, 
oxidative burst, and neutrophil extracellular traps (NETs) [53,54]. 

Neutrophils are present in many lung diseases associated with ARDS, 
as reported in infections by influenza virus and SARS-CoV-1 [55]. A 
bioinformatic study presented data indicating that neutrophil activation 
and degranulation are highly activated processes in the SARS infection 
[56]. Recently, the recruitment of this polymorphonuclear (PMN) was 
observed in the immune response triggered by SARS-CoV-2. 

Furthermore, neutrophilia has been described as an indicator of severe 
respiratory symptoms and a poor outcome in patients with COVID-19 
[57–59]. 

Several studies have reported that neutrophil-to-lymphocyte ratio 
(NLR), a clinical inflammation biomarker, is increased and predicts se-
vere illness in the early stage of SARS-CoV-2 infection [59–62]. Higher 
D-dimer and C-reactive protein (CRP) levels follow NLR’s increase in 
these patients [63,64]. Also, increased NLR has been considered an in-
dependent risk factor for mortality in hospitalized patients [41,65,66], 
related to some comorbidities (e.g., diabetes and cardiovascular disease) 
[67]. A study observed that COVID-19 diabetes patients with higher NLR 
had heavier severity and more extended hospital stay [68]. This fact 
supports the idea that pre-existing chronic inflammation contributes to 
COVID-19 severity [65,69]. 

In addition to the NLR, neutrophil to CD4+ lymphocyte ratio 
(NCD4LR) has been associated with the negative conversion time (NCT) 
of SARS-CoV-2. A study found that high NCD4LR indicates worse im-
mune function and prolonged virus clearance [70]. Another biomarker 
involving this PMN, the neutrophil count to albumin ratio (NAR), has 
been described as a new predictor of mortality in COVID-19 patients 
[71]. Therefore, the NCD4LR and NAR values also could be used as 
clinical markers for COVID-19 progression in addition to the NLR [41]. 

Besides, the increase of neutrophils is not reported only in the 
bloodstream but also in the lungs [72]. PMN infiltration in pulmonary 
capillaries with extravasation to alveolar space and neutrophilic 
mucositis was observed in lung autopsies obtained from patients who 
died from COVID-19, indicating inflammation in the entire lower res-
piratory tract [73,74]. Moreover, immature phenotype and/or 
dysfunctional mature neutrophils have been described in severe COVID- 
19 patients [75,76]. These studies indicate that the increased infiltration 
of immature and/or dysfunctional neutrophil contributes to the imbal-
ance of the lungs’ immune response in severe cases. 

Respiratory epithelium infection by SARS-CoV-2 leads to cell secre-
tion of multiple cytokines, chemokines, and DAMPs, as previously 
described [31,77]. Transcriptional analysis of bronchoalveolar lavage 
fluid (BALF) from COVID-19 patients reported high levels of CXCL-2 and 
CXCL-8, chemokines that facilitate the PMN recruitment to the site of 
infection [78–82]. Although the neutrophils could present a protective 
role, extensive and prolonged activation of these leukocytes can lead to 
detrimental effects in the lungs and result in pneumonia and/or ARDS 
[83,84]. Wang and colleagues [50] also demonstrated that neutrophilia 
coincides with lung injury in severe COVID-19 patients. 

It has been described that neutrophils play a pivotal role in the 
development of ARDS caused by influenza infection [55]. In COVID-19, 
neutrophils accumulation generates toxic molecules that might 
contribute to ARDS’s physiopathology [85]. Respiratory burst from 
activated neutrophils induces ROS release, such as superoxide radicals 
and H2O2, leading to oxidative stress that contributes to the cytokine 
storm and blood clots formation in SARS-CoV-2 infection [86,87]. 
Moreover, decreased expression of the antioxidant enzyme superoxide 
dismutase 3 (SOD3) in the lung tissue of old patients with COVID-19 was 
also reported [88]. Therefore, excessive oxidative stress induced by 
PMN infiltration is related to the alveolar damage, thrombosis, and 
severity in COVID-19 [87]. In addition to ROS formation, neutrophil 
elastase has been implicated in COVID-19 pathogenesis [89–91]. This 
proteolytic enzyme, which is stored in azurophil granules, is secreted to 
degrade antigens. Nevertheless, an imbalance of the elastase and other 
proteinases induces damage in the alveolar-capillary barrier, resulting in 
tissue injury and edema formation [92]. 

Furthermore, persistently activated neutrophils contribute to main-
taining the inflammatory state in the lungs by cytokine release, as 
observed in MERS and SARS-CoV-1 infections [93]. Similar findings 
were described in SARS-CoV-2 infection by Parackova and colleagues 
[76] that reported the neutrophils as drivers of hyperinflammation by 
enhanced degranulation of primary granules and pro-inflammatory cy-
tokines release. Taken together, these molecules secreted by PMN can 
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cause severe damage in alveolar tissue, independently of the virus 
cytopathic effect. 

Additionally, Meizlish and colleagues [94] identified neutrophil ac-
tivators (IL-8 and G-CSF) and effectors (resistin, lipocalin-2, and hepa-
tocyte growth factor) as early biomarkers of severe COVID-19 patients. 
The authors also demonstrated a positive association between high 
levels in immature granulocytes and neutrophil counts with increased 
mortality [94]. These data highlight the neutrophil role in the severity of 
COVID-19 disease. 

Viral infection can also induce the release of neutrophils extracel-
lular traps (NETs) by neutrophils [95]. The NETs mechanism was first 
described by Brinkmann and colleagues in 2004 [96]. These traps 
consist of chromatin fibers associated with enzymes such as neutrophil 
elastase, cathepsin G, and myeloperoxidase [97,98]. NETs are known to 
immobilize and degrade bacteria, fungi, viruses, being a critical effector 
mechanism to contain infections [99]. However, NETs can act as a 
double-edged sword of immunity [98], having a pro- or anti- 
inflammatory effect [100,101]. Schauer and colleagues [102] reported 
that an aggregate of NETs can degrade cytokines and chemokines, 
reducing inflammation. This anti-inflammatory effect has also been 
demonstrated in the ocular microenvironment [103]. On the other hand, 
NETs can promote tissue damage, having already been shown that NETs 
and platelets’ interaction can cause endothelial damage in infections by 
Escherichia coli [104]. NETs can also participate in the pathogenesis of 
autoimmune diseases, such as systemic lupus erythematosus and rheu-
matoid arthritis, where elevated levels of NETs have been seen in serum 
and synovial fluid, respectively, in patients with these diseases 
[105,106]. 

Studies have been reported an elevated level of NETs in patients with 
COVID-19 [107–109], and an increased plasma NETs is correlated with 
increased COVID-19 severity [109], besides contributing to lung injury 
and microvascular thrombosis [107]. The vascular occlusion caused by 
NETs is not only reported in lung tissue [110] but also in kidney and 
liver [111], which suggests that NETs thrombotic effects may be related 
to systemic and harmful effects of COVID-19. This relationship between 
NETs and thrombosis may also be related to complement system acti-
vation. Indeed, C3 [112] and C5 [113] inhibition dampen NET release in 

COVID-19 patients. Since coagulation disorders are a worse prognosis to 
COVID-19 [114–116], and both NETs and complement proteins are 
associated with these thrombotic events [113], therapies that focus on 
this triple complement-NETs-coagulation axis may be a therapeutic 
opportunity. 

At the transcriptional level, Wang and collaborators [50] demon-
strated activation of several NETs-associated in COVID-19 patients. 
They hypothesized that some of them could be related to negative 
regulation of NK and T cell, dampening antiviral response [50]. In severe 
COVID-19, Veras and colleagues [109] demonstrated that neutrophils, 
both circulating and lung-infiltrating, release high levels of NETs. The 
authors also present data that demonstrate a NETs release directly 
induced by SARS-CoV-2 [117]. This SARS-CoV-2-induced NETs release 
is PAD-4-dependent [109]. PAD4 is critical to NET formation because it 
promotes a process of hypercitrulination of histones, resulting in chro-
matin decondensation [118]. The SARS-CoV-2-activated neutrophils 
can also induce apoptosis in lung epithelial (A549 cells), reinforcing 
neutrophil role in COVID-19 immunopathology and other coronavirus 
infections [109]. 

4. Conclusions 

The literature related to neutrophil and COVID-19 so far demon-
strated a crucial role of these polymorphonuclear cells in the patho-
genesis of COVID-19 (Fig. 1). Despite the immune system modulation 
needs being tightly controlled to avoid immunosuppression, the 
different neutrophil mechanisms (e.g., neutrophils enzymes and cyto-
kines, NETs) are potential targets to treat COVID-19, mainly the severe 
cases. 
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Fig 1. The neutrophil role in the lung 
tissue during infection by SARS-CoV-2. 
(1) The neutrophil-to-lymphocyte ratio 
(NLR) is elevated in the bloodstream. (2) 
The migrated neutrophils contribute to 
storm cytokines formation and release 
other mediators (e.g., elastase neutro-
philic). (3) SARS-CoV-2 infection pro-
motes neutrophil extracellular traps 
release, which can contribute to lung 
damage and (4) immunothrombosis. 
These many steps may be potential 
therapeutic targets. Several other cells 
and mediators are involved in COVID-19 
immunopathology, but they are sup-
pressed in this figure to highlight the 
neutrophil role. The figure was created 
with BioRender.com [119].   
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B. Krämer, T. Krammer, S. Brumhard, L. Bonaguro, E. De Domenico, D. Wendisch, 
M. Grasshoff, T.S. Kapellos, M. Beckstette, T. Pecht, A. Saglam, O. Dietrich, H. 
E. Mei, A.R. Schulz, C. Conrad, D. Kunkel, E. Vafadarnejad, C.J. Xu, A. Horne, 
M. Herbert, A. Drews, C. Thibeault, M. Pfeiffer, S. Hippenstiel, A. Hocke, 
H. Müller-Redetzky, K.M. Heim, F. Machleidt, A. Uhrig, L. Bosquillon de Jarcy, 
L. Jürgens, M. Stegemann, C.R. Glösenkamp, H.D. Volk, C. Goffinet, 
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A. Alvarado-Navarro, M. Fafutis-Morris, Neutrophil extracellular traps and its 
implications in inflammation: An overview, Front. Immunol. 8 (2017) 81, 
https://doi.org/10.3389/fimmu.2017.00081. 

[98] M.J. Kaplan, M. Radic, Neutrophil extracellular traps: double-edged swords of 
innate immunity, J. Immunol. 189 (2012) 2689–2695, https://doi.org/10.4049/ 
jimmunol.1201719. 

[99] V. Papayannopoulos, Neutrophil extracellular traps in immunity and disease, Nat. 
Rev. Immunol. 18 (2018) 134–147, https://doi.org/10.1038/nri.2017.105. 
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