
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Chaos, Solitons and Fractals 142 (2021) 110418 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

A mathematical model to examine the effect of quarantine on the 

spread of coronavirus 

A. Babaei a , M. Ahmadi a , H. Jafari a , b , c , ∗, A. Liya 

a 

a Department of Applied Mathematics, University of Mazandaran, Babolsar, Iran 
b Department of Mathematical Sciences, University of South Africa, UNISA0 0 03, South Africa 
c Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 110122, Taiwan 

a r t i c l e i n f o 

Article history: 

Received 20 July 2020 

Revised 30 October 2020 

Accepted 31 October 2020 

Available online 30 November 2020 

Keywords: 

Coronavirus 

Mathematical model 

Caputo derivative 

Stability analysis 

Reproduction number 

a b s t r a c t 

In this study, we propose a mathematical model about the spread of novel coronavirus. This model is a 

system of fractional order differential equations in Caputo’s sense. The aim is to explain the virus trans- 

mission and to investigate the impact of quarantine on decreasing the prevalence rate of the virus in the 

environment. The unique solvability of the presented COVID-19 model is proved. Also, the equilibrium 

points and the reproduction number of the proposed model are discussed in two cases with and without 

considering the quarantine factor. Using the Adams-Bashforth-Moulton predictor-corrector method, some 

numerical simulations are implemented to survey the behavior of the considered model. 

© 2020 Elsevier Ltd. All rights reserved. 

1

c

r

n

i

C

n

T

r

q

c

c

a

t  

c

p

d

m

m

s

S

A

f

a

r

p

t

f

[

t

f

[

B

g

M

e

c

v

w

c

I

i

s

o

h

0

. Introduction 

The current crisis that many countries are facing is a new virus 

alled coronavirus. In late December 2019, an unknown virus was 

eported in the city of Wuhan, China. The main concern of Chi- 

ese officials was that the number of infected people was increas- 

ng exponentially, and this created an epidemic issue in Wuhan [1] . 

hinese immunologists who have dealt with this emerging phe- 

omenon believe that the new virus can easily spread in public. 

he main way to the transmission of coronavirus is through respi- 

atory droplets when people are near to each other [2,3] . Therefore, 

uarantine and social distancing seem to be the only appropriate 

ontrol mechanisms, until a vaccine or some drugs are found for 

oronavirus disease 2019 (COVID-19). 

Mathematical biology is one of the most interesting research 

reas for applied mathematicians. Many theoretical and computa- 

ional studies are done by the scientists in this field [4–8] . In re-

ent years, using fractional order operators have provided new as- 

ects for describing mathematical models in biomathematics. The 

efinition of fractional order operators can preserve hereditary and 

emory traits of a considered variable in a real problem [9–14] . In 

any cases of natural biological processes, the present and next 

tate of a system are dependent on its all previous states. Thus, 
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ractional operators are suitable and valuable mathematical tools to 

 better understanding the behavior of natural systems. This helps 

esearchers to propose more accurate models of various biological 

henomena. Authors in literature employed different types of frac- 

ional derivatives for these purposes. Caputo and Riemann-Liouville 

ractional derivatives are the most used definitions by researchers 

15–21] . In recent years, some new definitions of fractional deriva- 

ives have been proposed. Caputo and Fabrizio in [22] presented a 

ractional derivative without singular kernel. Models introduced in 

23–25] are some practical applications of this fractional derivative. 

ased on Caputo and Fabrizio fractional derivative definition, Atan- 

ana and Baleanu [26] developed a new fractional derivative with 

ittag-Leffler kernel. Researchers in [27,28] used this fractional op- 

rator to study some other natural phenomena. 

COVID-19 causes significant damage to the economies of many 

ountries. Therefore, it is vital to find a working solution to pre- 

ent the spread of this virus and to control this disease. That is 

hy many people around the world are working in different dis- 

iplines looking for a useful way to control the virus efficiently. 

n recent months, the main focus of mathematical biology special- 

sts has been on the problems related to this pandemic. These re- 

earchers presented some models to study the important factors 

f virus transmission. By studying these factors, they are trying to 

ake an essential step in this field. Thus, many mathematical mod- 

ls are presented to survey the dynamics of COVID-19 infection 

29,30,33–37] . 

In this study, we introduce two fractional order models to ana- 

yze the behavior of COVID-19 in society. The main difference be- 

https://doi.org/10.1016/j.chaos.2020.110418
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ween these models is the quarantine factor. First, the model is 

urveyed according to this factor. Afterwards, the model is inves- 

igated without considering this factor. 

The rest of this paper has the following organization. In 

ection 2 , we provide an initial model of COVID-19 in the pres- 

nce of the quarantine process and analysis of the model will 

e examined. This model consists seven compartments, each of 

hem is somehow involved in the virus. In Section 3 we ana- 

yze a sub-model of the previous section without considering the 

uarantine factor. Some numerical simulations are implemented in 

ection 4 to investigate the effect of quarantine restrictions on the 

pread of coronavirus. Finally, the main findings and conclusions 

re presented in Section 5 . 

. COVID-19 model with considering quarantine 

In this section, we propose a fractional order model for study- 

ng the quarantine factor on coronavirus prevalence. Therefore, at 

rst, we review the definition of Caputo fractional derivative [9] as 

 

 

D 

α
t f (t)= 

1 

�(n − α) 

∫ t 

0 

( t − ξ ) (n −α−1) f (n ) ( ξ ) dξ , n − 1 < α < n. 

(1) 

n the following, we use D 

α insted of C 
0 
D 

α
t for simplicity. 

In the survey conducted, we will have seven compartments. 

eople who are susceptible or exposed to the virus are shown by 

. These individuals are divided into the following categories: 

• infected but do not yet have symptoms (A ) , 

• infected with symptoms (I) , 

• infected who are quarantined (E q ) , 

• infected who are hospitalized (H) , 

• people who have recovered from the disease (R ) , 

• the quarantined susceptible individuals (S q ) , 

nd 

(t) = S(t) + I(t) + A (t) + R (t) + H(t) + E q (t) + S q (t) . 

o present the model, the following parameters are introduced. �

s the birth rate of the population. c is the contact rate. θ shows 

he transmission rate and β is the probability of transmission per 

ontact. q indicates quarantined rate of susceptible individuals. δI 

nd δq represent transition rates of symptomatic infected individ- 

als and quarantined susceptible individuals to the quarantined 

nfected compartment, respectively. γI , γA and γH are the recov- 

ry rates of infected people with symptoms, infected people with- 

ut symptoms and quarantined infected individuals, respectively. μ
hows naturally death rates. ρ is the probability of having symp- 

oms among infected individuals. λ shows the release rate of the 

uarantined uninfected contacts into the community. Finally, αI , 

A , αE and αR represent the rates at which the virus removes from 

he compartments I, A, E and R . 

According to the above defined parameters and the relations 

etween the considered human categories, we get the following 

ystem: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 

αS = � − ( cβ( 1 − q ) ( 1 − ρ) + cβ( 1 − q ) ρ + βcq 

+ ( 1 − β) cq ) ( I + θA ) S + λS q − μS, 

D 

α I = βcρ( 1 − q ) S ( I + θA ) − ( δI + γI + αI ) I, 

D 

αA = βc ( 1 − ρ) ( 1 − q ) S ( I + θA ) − ( γA + αA ) A, 

D 

αS q = ( 1 − β) cqS ( I + θA ) − ( λ + μ) S q , 

D 

αE q = βcqS ( I + θA ) − ( δq + αE ) E q , 

D 

αH = δI I + δq E q − ( αA + γH ) H, 

D 

αR = γI I + γA A + γH H − αR R. 

(2) 
2 
he right-hand side of the system (2) has the physical dimension 

time ) −1 whereas the other side has the dimension (time ) −α . To 

orrect this mismatch, we use the approach proposed in [15] . So, 

e get the modified system as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 

αS = � − ( c αβα( 1 − q ) + c αq ) ( I + θαA ) S + λαS q − μαS, 

D 

α I = βαc αρα( 1 − q ) S ( I + θαA ) −
(
δα

I + γ α
I + αα

I 

)
I, 

D 

αA = βαc α( 1 − ρα) ( 1 − q ) S ( I + θαA ) −
(
γ α

A 
+ αα

A 

)
A, 

D 

αS q = ( 1 − βα) c αqS ( I + θαA ) − ( λα + μα) S q , 

D 

αE q = βαc αqS ( I + θαA ) −
(
δα

q + αα
E 

)
E q , 

D 

αH = δI 
α

I + δα
q E q −

(
αα

A 
+ γ α

H 

)
H, 

D 

αR = γ α
I I + γ α

A 
A + γ α

H H − αα
R R. 

(3) 

To examine the unique solvability of system (3) , first we recall 

he following lemma. 

emma 1. [38] (Generalized mean value theorem) Suppose that 

 (t) ∈ C[ a, b] and D 

α
t w (t) ∈ C[ a, b] for 0 < α ≤ 1 , then 

 (t) = w (a ) + 

1 

�(α) 
D 

α
t w (ζ ) . (t − a ) α, (4)

here a ≤ ζ ≤ t, ∀ t ∈ (a, b] . 

orollary 1. Assume that w (t) ∈ C[ a, b] and D 

α
t w (t) ∈ C[ a, b] for 0 <

� 1 . It follows from Lemma 1 that if D 

α
t w (t) � 0 , ∀ t ∈ (a, b) , then

 (t) is non-decreasing ∀ t ∈ [ a, b] and if D 

α
t w (t) � 0 , ∀ t ∈ (a, b) , then

(t) is non-increasing on [ a, b] . 

heorem 1. The system (3) has a unique positive solution for t � 0 . 

roof. The existence and uniqueness of solution for system (3) on 

0 , ∞ ) is a direct result of Theorem 3.1 and Remark 3.2 from Lin

39] . Now, on the region 

+ = { (S, I, A, S q , E q , H, R ) ;
S > 0 , I � 0 , A � 0 , S q � 0 , E q � 0 , H � 0 , R � 0 } , 

e have 

 

α
t S | S=0 = � + λαS q ≥ 0 , 

 

α
t I | I=0 = θαβαc αρα( 1 − q ) AS ≥ 0 , 

 

α
t A | A =0 = βαc α( 1 − ρα) ( 1 − q ) SI ≥ 0 , 

 

α
t S q | S q =0 = c αq ( 1 − βα) S ( I + θαA ) ≥ 0 , 

 

α
t E q | E q =0 = c αqβαS ( I + θαA ) ≥ 0 , 

 

α
t H | H=0 = δα

I I + δα
q E q ≥ 0 , 

 

α
t R | R =0 = γ α

I I + γ α
A 

A + γ α
H H ≥ 0 . 

hus, on each hyperplane bounding the nonnegative orthant, the 

ector field points to + . So, Corollary (1) results + is a positive 

nvariant set. �

.1. Stability of the disease-free equilibrium 

Now, we explore the stability for the model (3) by considering 

he disease free equilibrium (DFE) point and the basic reproduction 

umber. Let the right hand side of the four differential equations 

n (3) are equal to zero. Then, the DFE for the model (3) will be

s 

 0 = 

(
�

μα
, 0 , 0 , 0 , 0 , 0 , 0 

)
. 

o verify the stability of E 0 , the basic reproduction number de- 

oted by R 0 should be computed. For this aim, the next generation 

atrix method [5] will be employed. First, based on this method, 
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e define the matrices F and V associated with the model (3) as 

 = 

⎛ 

⎜ ⎜ ⎝ 

βαc αρα( 1 − q ) S βαc αρα( 1 − q ) θαS 0 0 

βαc α( 1 − ρα) ( 1 − q ) S βαc α( 1 − ρα) ( 1 − q ) θαS 0 0 

βαc αqS βαc αqθαS 0 0 

0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

,

 = 

⎛ 

⎜ ⎜ ⎝ 

η 0 0 0 

0 ξ 0 0 

0 0 

(
δα

q + αα
E 

)
0 

−δα
I 0 −δα

q 

(
αα

A 
+ γ α

H 

)

⎞ 

⎟ ⎟ ⎠ 

. 

he required basic reproduction number of model (3) is the spec- 

ral radius of the matrix F V −1 . Hence, we get 

 0 = 

ψ 

(
ηθα − ηθαρα + ξρα

)
ξη

, (5) 

n which 

 := βαc α( 1 − q ) �μα , η := δα
I + γ α

I + αα
I , 

:= γ α
A 

+ αα
A 
, 

heorem 2. If R 0 < 1 then the DFE point E 0 is locally asymptotically 

table. 

roof. First, we get the Jacobian matrix related to (3) at E 0 as: 

 ( E 0 ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−μα −ψ − c αq �μα −ψ − c αqθα λ

0 ψρα − η ψραθα 0 

0 ψ ( 1 − ρα) ψ ( 1 − ρα) θα − ξ 0 

0 ( 1 − βα) c αq �μα ( 1 − βα) c αq �μα θα −( λα + μα)

0 βαc αq �μα βαc αq �μα 0 

0 δα
I 0 0 

0 γ α
I γ α

A 
0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

−
(
δα

q + αα
E 

)
0 0 

δα
q −

(
αα

A 
+ γ α

H 

)
0 

0 γ α
H −αα

R 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The DFE is stable if all eigenvalues of the Jacobian matrix J(E 0 ) 

e negative. The eigenvalues of this matrix are as follows: 

1 = −λα − μα, λ2 = −μα, λ3 = −δα
q − αα

E , 

4 = −αα
R , λ5 = −αα

A 
− γ α

H , 

6 = −1 

2 

( K ( η, ψ, θ, ξ , ρ) 

 

√ 

( K ( η, ψ, θ, ξ , ρ) ) 
2 − 4 ( −ψηθα + ηξ + ψηθαρα − ψξρα) 

)
,

7 = 

1 

2 

( −K ( η, ψ, θ, ξ , ρ) 

 

√ 

( K ( η, ψ, θ, ξ , ρ) ) 
2 − 4 ( −ψηθα + ηξ + ψηθαρα − ψξρα) 

)
,

here 

 ( η, ψ, θ, ξ , ρ) := η − ψθα + ξ − ψρα + ψθαρα. (6) 

ince the first five eigenvalues are negative, so it suffices to prove 

hat λ6 < 0 , and λ7 < 0 . Thus 

6 = −1 

2 

(
K + 

√ 

K 

2 + 4 ηξ (R 0 − 1) 
)
, (7) 

f R 0 < 1 then K 

2 > K 

2 + 4 ηξ (R 0 − 1) and 

 > 

√ 

K 

2 + 4 ηξ (R 0 − 1) > 0 , (8) 
3 
o, it can be concluded λ6 < 0 if R 0 < 1 . According to (6) and (8) ,

or λ7 , we get 

7 = 

1 

2 

(
− K + 

√ 

K 

2 + 4 ηξ (R 0 − 1) 
)
, (9) 

nd the proof is complete. �

. COVID-19 model without quarantine factor 

In this section, we consider a sub-model of (3) without consid- 

ring the quarantine factor and discuss its properties. In fact, we 

ant to see what happens for the basic reproduction number of 

OVID-19 model in the absence of quarantine. It helps us to bet- 

er realize the impact of quarantine on the spread of disease. Thus, 

e can get an apparent comparison between two cases, with and 

ithout considering quarantine facilities. For this end, by delet- 

ng the variables and parameters related to the quarantine process 

rom (3) , we get 
 

 

 

 

 

 

 

 

 

 

 

 

 

D 

αS = � − c αβα( 1 − q ) ( I + θαA ) S − μαS, 

D 

α I = βαc αρα( 1 − q ) S ( I + θαA ) −
(
δα

I + γ α
I + αα

I 

)
I, 

D 

αA = βαc α( 1 − ρα) ( 1 − q ) S ( I + θαA ) −
(
γ α

A 
+ αα

A 

)
A, 

D 

αH = δα
I I −

(
αα

A 
+ γ α

H 

)
H, 

D 

αR = γ α
I I + γ α

A 
A + γ α

H H − αα
R R. 

(10) 

he category S q of (3) is a subset S. Also, E q in (3) is a subset

rom the union of A and I. So, the model (3) and the sub-model 

10) have the similar main compartments. As a result, the repro- 

uction numbers of these models are the same and obtained as 

5) . 

Let E ∗ = (S ∗(t) , I ∗(t) , A 

∗(t) , H 

∗(t) , R ∗(t)) is the endemic equilib-

ium of this model. This point can be determined by solving the 

ystem 

 

 

 

 

 

 

 

 

 

 

 

 

 

� − c αβα( 1 − q ) ( I + θαA ) S − μαS = 0 , 

βαc αρα( 1 − q ) S ( I + θαA ) −
(
δα

I + γ α
I + αα

I 

)
I = 0 , 

βαc α( 1 − ρα) ( 1 − q ) S ( I + θαA ) −
(
γ α

A 
+ αα

A 

)
A = 0 , 

δα
I I −

(
αα

A 
+ γ α

H 

)
H = 0 , 

γ α
I I + γ α

A 
A + γ α

H H − αα
R R = 0 . 

(11) 

he third equation leads to 

 

∗ = 

βαc α(1 − q )(1 − ρα) S ∗(I ∗ + θαA 

∗) 
ξ

, (12) 

ut y = I ∗ + θαA 

∗. Then, we get 

 

∗ = 

βαc α(1 − q )(1 − ρα) S ∗y 

ξ
, 

o 

 = 

A 

∗ξ
βαc α(1 − q )(1 − ρα) S ∗

. (13) 

he first equation in (11) results 

 

∗ = 

�

μα + βαc α(1 − q )(I ∗ + θαA 

∗) 
= 

�

μα + βαc α(1 − q ) y 
. (14) 

ubstituting (14) into (13) and some direct calculations give 

 = 

A 

∗ξμα

�βαc α(1 − q )(1 − ρα) − A 

∗ξβαc α(1 − q ) 
. (15) 

ow, from the second equation in (11) , we have 

 

∗ = 

βαc αρ(1 − q ) S ∗(I ∗ + θαA 

∗) 
η

= 

βαc αρα(1 − q ) S ∗y 

η
. (16) 

his relation leads to 

 = 

ημα I ∗

βαc αρα(1 − q )� − βαc α(1 − q ) ηI ∗
. (17) 



A. Babaei, M. Ahmadi, H. Jafari et al. Chaos, Solitons and Fractals 142 (2021) 110418 

H

A

W

S

N

H

F  

c

R

T

I

T

a

s

I

H

n

I

S

S

A

H

R

(

4

t

d

t

p

n

w

o  

fi

H

s

t

l

t

Table 1 

Parameters values for the model (3) . 

� 6931614.27 [32] 

β 2 . 1011 × 10 −8 [31] 

c 14.781 [31] 

θ 0.5944 [32] 

q 1 . 8887 × 10 −7 [31] 

δI 0.13266 [31] 

δq 0.1259 [31] 

γI 0.33029 [31] 

γA 0.13978 [31] 

γH 0.11624 [31] 

αA 1 . 7826 × 10 −5 [31] 

μ 1 
69 . 5 

[32] 

ρ 0.86834 [31] 

λ 1 
14 

[31] 

αE 
1 

68 . 5 
Estimated 

αR 0.0144 Estimated 

αI 0.00723 Estimated 

Fig. 1. Variations of the reproduction number for several values of 0 ≤ q ≤ 1 and 

0 ≤ α ≤ 1 . 
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ence, due to (15) and (17) , the following result can be obtained 

 

∗ = 

(1 − ρα) η

ραξ
I ∗. (18) 

ith substituting (17) into (14) 

 

∗ = 

ρα� − ηI ∗

μαρα
. (19) 

ow, the fourth equation in (11) results 

 

∗ = 

δα
I 

αα
A 

+ γ α
H 

I ∗. (20) 

inally, from the fifth equation in (11) and Eqs. (18) , and (20) , we

an conclude 

 

∗ = 

(
γ α

A 
(1 − ρα) η

αα
R 
ραξ

+ 

γ α
H δ

α
I 

αα
R 
(αα

A 
+ γ α

H 
) 

+ 

γ α
I 

αα
R 

)
I ∗. (21) 

herefore, all the components of E ∗ can be displayed in terms of 

 

∗. 

heorem 3. The model (10) has an unique endemic equilibrium if 

nd only if R 0 > 1 . 

Proof. According to (17) and (19) , from (16) and with doing 

ome simple calculations, we have 

 

∗ = 

�ρα

η
− ραξ�

ψ ( ραξ + (1 − ρα) ηθα) 
. 

ence, rewriting this equation due to the obtained reproduction 

umber R 0 in (5) results 

 

∗ = 

�ρα

η
(1 − 1 

R 0 

) . (22) 

o, substituting (22) into Eqs. (18) –(21) gives 

 

∗ = 

�

μαR 0 

, 

 

∗ = 

�( 1 − ρα) 

ξ

(
1 − 1 

R 0 

)
, 

 

∗ = 

�ραδα
I 

η
(
αα

A 
+ γ α

H 

)(
1 − 1 

R 0 

)
, 

 

∗ = 

( 

γ α
A ( 1 − ρα) η

αα
R 
ραξ

+ 

γ α
H δ

α
I 

αα
R 

(
αα

A 
+ γ α

H 

) + 

γ α
I 

αα
R 

) 

�ρα

η

(
1 − 1 

R 0 

)
. 

The above equations show that E ∗ is the endemic point of 

10) if and only if R 0 > 1 . �

. Results and discussion 

In this section, some numerical simulations are provided to bet- 

er understanding the dynamical behaviors of the fractional or- 

er COVID-19 model (3) and to investigate the impact of quaran- 

ine on this pandemic. For this goal, the Adams-Bashforth-Moulton 

redictor-corrector method [40,41] will be employed to solve this 

onlinear system of fractional order. To perform these simulations 

e need some initial values for the variables and the parameters 

f the model (3) . For this work, we use the estimated data of con-

rmed coronavirus disease cases that occurred in Wuhan City and 

ubei Province of China [31,32] . The parameter estimations are ob- 

erved in Table 1 . Also, we suppose the following initial condi- 

ions: 

S(0) = 110810 0 0 , I(0) = 27 . 679 , A (0) = 53 . 839 , 

S q (0) = 739 , E q (0) = 1 . 1642 , H(0) = 1 , R (0) = 2 . 

The basic reproduction number plays a crucial role in control- 

ing COVID-19 prevalence. Thus, at first, we investigate the ob- 

ained values for this parameter. Fig. 1 shows the variations of R 
0 

4 
ith respect to the order α, for numerous values of the quaran- 

ine rate q . It can be observed that, when we assign a small value

o the quarantine rate, such as q = 0 . 0 0 05 , for 0 ≤ α ≤ 0 . 1 , R 0 < 1

nd the virus does not spread. But, when q get a large value, such 

s q = 0 . 9 , then for 0 ≤ α ≤ 0 . 45 , the reproduction number is less

han 1. So, for smaller values of q, the bifurcation from a disease 

ree equilibrium (R 0 < 1) to a stable endemic equilibrium (R 0 > 1) 

ccurs for smaller values of the fractional order α. Also, for smaller 

alues of the quarantine rate, when α > 0 . 5 , it follows from this

gure that the values of the reproduction number will increase 

everely and higher levels of prevalence can be expected. So, the 

raphs of Fig. 1 confirm the impact of the fractional order and the 

uarantine rate parameters in the fractional order model of COVID- 

9. 

Fig. 2 displays the variations of four categories A (t) , I(t) , E q (t) ,

nd H(t) of the fractional model (3) in a period of time for sev- 

ral values of the parameter α when q = 10 −7 . This figure con- 

rms that the fractional model shows a different behavior of the 

isease in comparison to the classical model, i.e. in the case α = 1 . 

igs. 3 and 4 compare the dynamics of model (3) in the classi- 

al case α = 1 and the fractional case α = 0 . 9 for three small val-

es of the quarantine parameter q . Also, Figs. 5 and 6 present a

imilar comparison for larger values of q . The obtained results in 

hese figures indicate that the variations in the parameter q have 

 significant effect on the spread of the disease in the community. 

lso, these comparative studies highlight the role of fractional or- 

er in the mathematical modeling of COVID-19. Using fractional or- 

er models figure out new patterns for this pandemic that unseen 

n the integer order model. 
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Fig. 2. Dynamics of system (3) for several values of α when q = 10 −7 . 
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Fig. 3. Dynamics of system (3) for several values of q when α = 1 . 
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Fig. 4. Dynamics of system (3) for several values of q when α = 0 . 9 . 
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Fig. 5. Dynamics of system (3) for q = 0 . 2 , 0 . 5 , 0 . 9 when α = 1 . 
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Fig. 6. Dynamics of system (3) for q = 0 . 2 , 0 . 5 , 0 . 9 when α = 0 . 9 . 

9 



A. Babaei, M. Ahmadi, H. Jafari et al. Chaos, Solitons and Fractals 142 (2021) 110418 

5

p

E

s

t

o

t

f

t

q

a

A

t

s

t

m

a

f

p

s

s

c

o

f

D

c

i

C

-

n

&

V

R

 

 

 

 

[

 

 

 

 

 

 

 

[  

[  

[

[  

[  

[  

 

[

[

[  

[  

[  

[  

[  

[

[  

[

[

[

[

[

[

[

. Conclusions 

In the present article, a model for coronavirus disease was pro- 

osed to show the effect of quarantine on the spread of the virus. 

xistence of a positive solution for this model was proved and the 

tability of the proposed model was studied. Afterwards, to inves- 

igate the impact of quarantine, a sub-model was obtained with- 

ut considering this factor. It was shown that for the reproduc- 

ion numbers larger than one an endemic equilibrium point exists 

or this sub-model. The graph of the reproduction number versus 

he fractional derivative order was plotted for different values of 

uarantine rate. It was concluded that for smaller values of quar- 

ntine rate, the reproduction number has very significant growth. 

lso, we can observe that the basic reproduction number tends to 

he values less than 1 when the fractional order decreases. So, for 

maller values of α, we get a bifurcation from a pandemic state 

o a disease-free state. Also, the figures related to variations of the 

ain categories of the introduced model versus time was displayed 

ccording to different values of the quarantine rate. From the per- 

ormed studies it can be seen that quarantine as one of the ways to 

revent COVID-19, has a great impact on its control. For future re- 

earch works, it may be possible to investigate the impact of other 

afety strategies such as social distancing and using mask on the 

ontrol of COVID-19 pandemic. Also, according to the randomness 

f connections between individuals, considering stochastic models 

or this disease could be the subject of some future researches. 
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