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1. Introduction

The current crisis that many countries are facing is a new virus
called coronavirus. In late December 2019, an unknown virus was
reported in the city of Wuhan, China. The main concern of Chi-
nese officials was that the number of infected people was increas-
ing exponentially, and this created an epidemic issue in Wuhan [1].
Chinese immunologists who have dealt with this emerging phe-
nomenon believe that the new virus can easily spread in public.
The main way to the transmission of coronavirus is through respi-
ratory droplets when people are near to each other [2,3]. Therefore,
quarantine and social distancing seem to be the only appropriate
control mechanisms, until a vaccine or some drugs are found for
coronavirus disease 2019 (COVID-19).

Mathematical biology is one of the most interesting research
areas for applied mathematicians. Many theoretical and computa-
tional studies are done by the scientists in this field [4-8]. In re-
cent years, using fractional order operators have provided new as-
pects for describing mathematical models in biomathematics. The
definition of fractional order operators can preserve hereditary and
memory traits of a considered variable in a real problem [9-14]. In
many cases of natural biological processes, the present and next
state of a system are dependent on its all previous states. Thus,
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fractional operators are suitable and valuable mathematical tools to
a better understanding the behavior of natural systems. This helps
researchers to propose more accurate models of various biological
phenomena. Authors in literature employed different types of frac-
tional derivatives for these purposes. Caputo and Riemann-Liouville
fractional derivatives are the most used definitions by researchers
[15-21]. In recent years, some new definitions of fractional deriva-
tives have been proposed. Caputo and Fabrizio in [22] presented a
fractional derivative without singular kernel. Models introduced in
[23-25] are some practical applications of this fractional derivative.
Based on Caputo and Fabrizio fractional derivative definition, Atan-
gana and Baleanu [26] developed a new fractional derivative with
Mittag-Leffler kernel. Researchers in [27,28] used this fractional op-
erator to study some other natural phenomena.

COVID-19 causes significant damage to the economies of many
countries. Therefore, it is vital to find a working solution to pre-
vent the spread of this virus and to control this disease. That is
why many people around the world are working in different dis-
ciplines looking for a useful way to control the virus efficiently.
In recent months, the main focus of mathematical biology special-
ists has been on the problems related to this pandemic. These re-
searchers presented some models to study the important factors
of virus transmission. By studying these factors, they are trying to
take an essential step in this field. Thus, many mathematical mod-
els are presented to survey the dynamics of COVID-19 infection
[29,30,33-37].

In this study, we introduce two fractional order models to ana-
lyze the behavior of COVID-19 in society. The main difference be-
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tween these models is the quarantine factor. First, the model is
surveyed according to this factor. Afterwards, the model is inves-
tigated without considering this factor.

The rest of this paper has the following organization. In
Section 2, we provide an initial model of COVID-19 in the pres-
ence of the quarantine process and analysis of the model will
be examined. This model consists seven compartments, each of
them is somehow involved in the virus. In Section 3 we ana-
lyze a sub-model of the previous section without considering the
quarantine factor. Some numerical simulations are implemented in
Section 4 to investigate the effect of quarantine restrictions on the
spread of coronavirus. Finally, the main findings and conclusions
are presented in Section 5.

2. COVID-19 model with considering quarantine

In this section, we propose a fractional order model for study-
ing the quarantine factor on coronavirus prevalence. Therefore, at
first, we review the definition of Caputo fractional derivative [9] as

DEFO= gy [ €O, n-1<a<n
(1)

In the following, we use D* insted of SD‘;‘ for simplicity.

In the survey conducted, we will have seven compartments.
People who are susceptible or exposed to the virus are shown by
S. These individuals are divided into the following categories:

- infected but do not yet have symptoms (A),

- infected with symptoms (I),

- infected who are quarantined (Eq),

- infected who are hospitalized (H),

» people who have recovered from the disease (R),
- the quarantined susceptible individuals (Sq),

and
N(t) =S(t) +1(t) + A(t) + R(t) + H(t) + Eq(t) + Sq(t).

To present the model, the following parameters are introduced. A
is the birth rate of the population. c is the contact rate. 6 shows
the transmission rate and § is the probability of transmission per
contact. q indicates quarantined rate of susceptible individuals. §;
and d, represent transition rates of symptomatic infected individ-
uals and quarantined susceptible individuals to the quarantined
infected compartment, respectively. y;, y4 and yy are the recov-
ery rates of infected people with symptoms, infected people with-
out symptoms and quarantined infected individuals, respectively.
shows naturally death rates. p is the probability of having symp-
toms among infected individuals. A shows the release rate of the
quarantined uninfected contacts into the community. Finally, ¢,
o4, o and ag represent the rates at which the virus removes from
the compartments I, A, E and R.

According to the above defined parameters and the relations
between the considered human categories, we get the following
system:

D*S=A—(cBA-q)(1-p)+cf(1-q)p+pcq
+(1 = B)cq)(I +60A)S + 1S — uS,

DI = Bcp(1—q)SU+0A) — (61+ yi +ap)l,

DA = (1 — p)(1 - q)SU +OA) — (Va+ aa)A,

DS, = (1 - B)cgS(I +OA) — (A + w)S;.

D¥Ey = BcqS(I+ 0A) — (84 + ar)Eq,

D*H = 81 + 84E4 — (ata + yu)H,

D*R = yil + yaA + yuH — agR.
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The right-hand side of the system (2) has the physical dimension
(time)~! whereas the other side has the dimension (time)~“. To
correct this mismatch, we use the approach proposed in [15]. So,
we get the modified system as

DS = A — (¢*B*(1 —q) + c*q)(I + O%A)S + L*Sg — ju°S,

DI = Boc® p* (1 — q)S(I + 6%A) — (8¢ + y* + af )L,

DA = Bc®(1 - p®) (1 — )S( + 6%A) — (v + af)A.,

D¥Sq = (1= B*)c*qS(I+ 0%A) — (A% + u*)Sq. (3)
DEq = Bc*qS(I1 + 6°A) — (8% + a)Ey.

DH = 81+ 8§Eq — (af + v )H,

D*R =y +yIA+y§H — ofR.

To examine the unique solvability of system (3), first we recall
the following lemma.

Lemma 1. [38] (Generalized mean value theorem) Suppose that
w(t) € Cla, b] and D¥w(t) € C[a, b] for 0 < a < 1, then

1
w(t) =w(a) + WD?W(C)-G -a)*, (4)
where a < ¢ <t, Vt e (a,b].
Corollary 1. Assume that w(t) € Cla, b] and Dfw(t) € C[a, b] for 0 <
a < 1. It follows from Lemma 1 that if D¥w(t) > 0, Vt € (a, b), then
w(t) is non-decreasing Vt € [a, b] and if D¥w(t) < 0, Vt € (a, b), then
w(t) is non-increasing on [a, b].

Theorem 1. The system (3) has a unique positive solution for t > 0.

Proof. The existence and uniqueness of solution for system (3) on

[0, 00) is a direct result of Theorem 3.1 and Remark 3.2 from Lin

[39]. Now, on the region

Qy ={( LA Sq.Eq, H R);
$>0,1>0A>0,S>0,E;>0H>0R>0},

we have

D¥S|s_og = A+ A%Sq > 0,

D1|j_o = 0% B p* (1 — q)AS = 0,

DfAlpo = B*c* (1 - p*)(1 —q)SI = 0,

D‘;‘Sq|sq=0 =c*q(1 - B*)S( + 6%A) > 0,

D‘;‘quEq=0 =c*qB*S(I + 6%A) > 0,

DYH|y_o = 61+ 85Eq = O,

DfRlg—o = ¥"I+ yyA+yH = 0.

Thus, on each hyperplane bounding the nonnegative orthant, the

vector field points to €2.. So, Corollary (1) results 2. is a positive
invariant set. O

2.1. Stability of the disease-free equilibrium

Now, we explore the stability for the model (3) by considering
the disease free equilibrium (DFE) point and the basic reproduction
number. Let the right hand side of the four differential equations
in (3) are equal to zero. Then, the DFE for the model (3) will be
as

Ey = (AH,O,O,O,O,O,O)
m

To verify the stability of Ey, the basic reproduction number de-
noted by Ry should be computed. For this aim, the next generation
matrix method [5] will be employed. First, based on this method,
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we define the matrices F and V associated with the model (3) as
Brc*p*(1-q)S Brc*p*(1-q)p*s 0 0
Fe Brct(1—p*)(1-q)S B**(1-p*)(1-g)0*S 0 0
BYc*qS Béc*qhS 00}
0 0 00
n 0 0 0
0 £ 0 0
=1 o o (8 +ag) 0
S N Cr R 7))

The required basic reproduction number of model (3) is the spec-
tral radius of the matrix FV~1. Hence, we get

Y (0% —no%p* +&p%)

Ry = £ , (5)
in which

V=B -qh, 0= +y +of,

§ =y +of,

Theorem 2. If Ry < 1 then the DFE point E is locally asymptotically
stable.

Proof. First, we get the Jacobian matrix related to (3) at Ey as:

—ue =Y g Y - cgh” A
0 Yo% —n Y pro* 0
0 v (1-p%) Y1 —-p*0*-§ 0
J(Eo)=10 (1-B9)c"q  (1-BY)c*q0% —(A+un®)
0 Bc a5 Bcq .t 0
0 8¢ 0 0
0 %8 173 0
0 0 0
0 0 0
0 0 0
0 0 0
~(8¢+ag) © 0
8¢ —(eg+yg) O
0 Vi —oR

The DFE is stable if all eigenvalues of the Jacobian matrix J(Eq)
be negative. The eigenvalues of this matrix are as follows:

)\,1:7)\,“*[1,0[, )\.32780[7“?,

Ay = —ue, q
As =

—ay — V.

Ao =~ (K1 Y.6.€.p)

VK 0.0.8.p)) — 4% 0 + Y6 p* —EpY)).
b = 5 (-K(1.¥.60.€.0)

V(K. Y.0.8. ) —A(=Yn0% + 1 + Y10 p* — &) ).

where

K. ¢.0.5.p):=n—y0%+§ -y p” +y0%p®. (6)
Since the first five eigenvalues are negative, so it suffices to prove
that Ag <0, and A7 < 0. Thus

)\6:—%(1@\/1(2 +4nE(Rg — 1)), (7)

if Ry < 1 then K? > K? +4n&(Ry — 1) and

K>+ K+4nE@Ro—1) > 0, (8)

— Y
)\,4— OlR,
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so, it can be concluded Ag < 0 if Ry < 1. According to (6) and (8),
for A7, we get

A7=%(—1<+,/1<2+4n§(R0—1)), (9)

and the proof is complete. O
3. COVID-19 model without quarantine factor

In this section, we consider a sub-model of (3) without consid-
ering the quarantine factor and discuss its properties. In fact, we
want to see what happens for the basic reproduction number of
COVID-19 model in the absence of quarantine. It helps us to bet-
ter realize the impact of quarantine on the spread of disease. Thus,
we can get an apparent comparison between two cases, with and
without considering quarantine facilities. For this end, by delet-
ing the variables and parameters related to the quarantine process
from (3), we get

D*S=A —c*BY(1 - q)(I+0%A)S — u°S,
DI = focp® (1 — q)S(I +0%A) — (8¢ + y* + o)1,
D*A = Bc?(1 - p®) (1 — )S(I + 6°A) — (v +aZ)A,  (10)
D*H = 81 — (a§ + v )H,
DR =y + YA+ y§H — agR.
The category Sq of (3) is a subset S. Also, Eq in (3) is a subset
from the union of A and I. So, the model (3) and the sub-model

(10) have the similar main compartments. As a result, the repro-
duction numbers of these models are the same and obtained as
(5).

Let E* = (S*(t), I*(t), A*(t), H*(t), R*(t)) is the endemic equilib-
rium of this model. This point can be determined by solving the
system

A —c*BY(1—q)(I +60%A)S — u*S =0,
Bcp® (1= q)S(I+0%A) — (8 + v + o) =0,
B (1= p)(1 = q)SU +6%A) — (v +af)A=0, (11)
81— (ag +y%)H =0,
ViI+ yiA+ yiH —afR=0.

The third equation leads to

. B (=g (A = p*)S (I +60%A%)

A , (12)
§
Put y = I* + 6%A*. Then, we get
pr Brer - - pM)Sy
£ ,
S0
A*E
V= B =g = oS (13)
The first equation in (11) results
§* = A = A . (14)
/‘La +/301Ca(] _ q)(l* +9aA*) /‘La +ﬂaca(] _ q)y
Substituting (14) into (13) and some direct calculations give
A*E
V= ABE (T =) — o) — AEFTE(T —q) =
Now, from the second equation in (11), we have
po BretpA - S " +6°A%) _ B p(1 - @)Sy (16)
n n
This relation leads to
o J*
nuel (17)

Y= Becapa(i—q)A - pece(1— i
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Hence, due to (15) and (17), the following result can be obtained
_ A

a A=pm,
p*E

With substituting (17) into (14)

aA _ I*
5 — puTO‘n , (19)
Now, the fourth equation in (11) results
Lo

ot

(18)

I*. (20)

Finally, from the fifth equation in (11) and Eqs. (18), and (20), we

can conclude

o ‘l _ o 0[80[ o

o (AP idT Y (21)
agp*§ agag +vg)  op

Therefore, all the components of E* can be displayed in terms of

I*.

Theorem 3. The model (10) has an unique endemic equilibrium if
and only if Ry > 1.

Proof. According to (17) and (19), from (16) and with doing
some simple calculations, we have
Ap® pPUEA
n Y(eeE+ (1 - p*)no)
Hence, rewriting this equation due to the obtained reproduction
number Ry in (5) results

I =

Ap® 1
F=——0-—=). 22
) (22)
So, substituting (22) into Eqgs. (18)-(21) gives
. A
Ry’
Al - p“)( 1 )
A= ——— 21— — ),
§ Ro
e = AP (1- L)
n(eg +vi) N Ro
a] — po o sa o o
R — VA(a L m . Vil i Ap (1_1).
og p*E af(ad +yy) o] n Ro

The above equations show that E* is the endemic point of
(10) if and only if Ry > 1. O

4. Results and discussion

In this section, some numerical simulations are provided to bet-
ter understanding the dynamical behaviors of the fractional or-
der COVID-19 model (3) and to investigate the impact of quaran-
tine on this pandemic. For this goal, the Adams-Bashforth-Moulton
predictor-corrector method [40,41] will be employed to solve this
nonlinear system of fractional order. To perform these simulations
we need some initial values for the variables and the parameters
of the model (3). For this work, we use the estimated data of con-
firmed coronavirus disease cases that occurred in Wuhan City and
Hubei Province of China [31,32]. The parameter estimations are ob-
served in Table 1. Also, we suppose the following initial condi-
tions:

S(0) = 11081000, 1(0) = 27.679, A(0) = 53.839,
S;(0) =739, E,(0)=1.1642, H(0)=1, R(0)=2.

The basic reproduction number plays a crucial role in control-
ling COVID-19 prevalence. Thus, at first, we investigate the ob-
tained values for this parameter. Fig. 1 shows the variations of Ry
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Table 1
Parameters values for the model (3).
A 6931614.27 [32]
B 2.1011 x 10-8 [31]
c 14.781 [31]
6 0.5944 [32]
q 1.8887 x 107 [31]
S 0.13266 [31]
8q 0.1259 [31]
It 0.33029 [31]
Va 0.13978 [31]
yu  0.11624 [31]
oy 1.7826 x 10~° [31]
U ms (32]
P 0.86834 [31]
A o [31]
o s Estimated
aR 0.0144 Estimated
o 0.00723 Estimated

q=0.0005

L q=0.2
300

----- = qg=0.5
q=0.9

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. Variations of the reproduction number for several values of 0 <q <1 and
O<a=<1.

with respect to the order «, for numerous values of the quaran-
tine rate g. It can be observed that, when we assign a small value
to the quarantine rate, such as g = 0.0005, for 0 <« <0.1, Ry < 1
and the virus does not spread. But, when g get a large value, such
as ¢ =0.9, then for 0 < o < 0.45, the reproduction number is less
than 1. So, for smaller values of g, the bifurcation from a disease
free equilibrium (Ry < 1) to a stable endemic equilibrium (Rg > 1)
occurs for smaller values of the fractional order «. Also, for smaller
values of the quarantine rate, when « > 0.5, it follows from this
figure that the values of the reproduction number will increase
severely and higher levels of prevalence can be expected. So, the
graphs of Fig. 1 confirm the impact of the fractional order and the
quarantine rate parameters in the fractional order model of COVID-
19.

Fig. 2 displays the variations of four categories A(t), I(t), Eq(t),
and H(t) of the fractional model (3) in a period of time for sev-
eral values of the parameter o when q = 10~7. This figure con-
firms that the fractional model shows a different behavior of the
disease in comparison to the classical model, i.e. in the case o = 1.
Figs. 3 and 4 compare the dynamics of model (3) in the classi-
cal case @ =1 and the fractional case o = 0.9 for three small val-
ues of the quarantine parameter q. Also, Figs. 5 and 6 present a
similar comparison for larger values of q. The obtained results in
these figures indicate that the variations in the parameter q have
a significant effect on the spread of the disease in the community.
Also, these comparative studies highlight the role of fractional or-
der in the mathematical modeling of COVID-19. Using fractional or-
der models figure out new patterns for this pandemic that unseen
in the integer order model.
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Isolated exposed (Eq(t))

Infectious With Symptoms (I(t))

25

n

-
o

0.5

100 150 200 250
Time(days)

100 150 200 250
Time(days)

Fig. 2. Dynamics of system (3) for several values of @ when g =107,
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% 10°
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Fig. 3. Dynamics of system (3) for several values of ¢ when o = 1.
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Fig. 4. Dynamics of system (3) for several values of ¢ when « = 0.9.
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Fig. 5. Dynamics of system (3) for ¢ =0.2,0.5,0.9 when « = 1.
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Fig. 6. Dynamics of system (3) for ¢ =0.2,0.5,0.9 when o = 0.9.
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5. Conclusions

In the present article, a model for coronavirus disease was pro-
posed to show the effect of quarantine on the spread of the virus.
Existence of a positive solution for this model was proved and the
stability of the proposed model was studied. Afterwards, to inves-
tigate the impact of quarantine, a sub-model was obtained with-
out considering this factor. It was shown that for the reproduc-
tion numbers larger than one an endemic equilibrium point exists
for this sub-model. The graph of the reproduction number versus
the fractional derivative order was plotted for different values of
quarantine rate. It was concluded that for smaller values of quar-
antine rate, the reproduction number has very significant growth.
Also, we can observe that the basic reproduction number tends to
the values less than 1 when the fractional order decreases. So, for
smaller values of o, we get a bifurcation from a pandemic state
to a disease-free state. Also, the figures related to variations of the
main categories of the introduced model versus time was displayed
according to different values of the quarantine rate. From the per-
formed studies it can be seen that quarantine as one of the ways to
prevent COVID-19, has a great impact on its control. For future re-
search works, it may be possible to investigate the impact of other
safety strategies such as social distancing and using mask on the
control of COVID-19 pandemic. Also, according to the randomness
of connections between individuals, considering stochastic models
for this disease could be the subject of some future researches.
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