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Virus–microbe interactions have been studied in great molecu-
lar details for many years in cultured model systems, yielding
a plethora of knowledge on how viruses use and manipu-
late host machinery. Since the advent of molecular techniques
and high-throughput sequencing, methods such as cooccurrence,
nucleotide composition, and other statistical frameworks have
been widely used to infer virus–microbe interactions, overcom-
ing the limitations of culturing methods. However, their accuracy
and relevance is still debatable as cooccurrence does not necessar-
ily mean interaction. Here we introduce an ecological perspective
of marine viral communities and potential interaction with their
hosts, using analyses that make no prior assumptions on spe-
cific virus–host pairs. By size fractionating water samples into
free viruses and microbes (i.e., also viruses inside or attached to
their hosts) and looking at how viral group abundance changes
over time along both fractions, we show that the viral commu-
nity is undergoing a change in rank abundance across seasons,
suggesting a seasonal succession of viruses in the Red Sea. We
use abundance patterns in the different size fractions to classify
viral clusters, indicating potential diverse interactions with their
hosts and potential differences in life history traits between major
viral groups. Finally, we show hourly resolved variations of intra-
cellular abundance of similar viral groups, which might indicate
differences in their infection cycles or metabolic capacities.
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V iruses of marine microorganisms outnumber their hosts and
are considered the most abundant biological entities in the

ocean (1). These viruses compose the largest reservoir of genetic
diversity in the oceans, and they are major participants in oceanic
biotic and abiotic processes (2–5). It is estimated that ∼50%
of marine microbial production is mediated by virus-induced
release of dissolved organic matter or viral shunt (6, 7). Research
suggests that viruses alter microbial primary and secondary pro-
duction (8, 9), impact the population dynamics and diversity of
microbial communities (10), and play an indispensable role in
marine biogeochemical fluxes (11).

Viruses rely on their host for propagation, and their abundance
is predicted to follow that of their hosts (kill-the-winner model
(12), and the bank model (13)). The bank model suggests that in
any given environment, a small fraction of the viral community is
highly abundant while the rest are rarer, waiting for the right con-
ditions (i.e., host) to propagate. These models have been useful
for describing, for the most part, the local and global distribu-
tion of free viruses in marine samples (2, 10, 13); however, our
understanding of the relationship between abundance variation
of marine viruses and host interaction remains limited. Further-
more, viruses depend on their host metabolism (14), often by
manipulating the metabolic and transcriptional machinery using
auxiliary metabolic genes (AMGs) (10, 15). Recent environmen-
tal studies have reported several viral AMGs expressed in diurnal
patterns, coupled with their host metabolism and reproduction
cycle (16–20). To date, only a few environmental studies of diel
patterns in marine viruses (16, 17, 20) and seasonality effects on

viral communities (19, 21–25) have been reported, and none of
these incorporate both diel and seasonal time scales.

Here we describe seasonal and diel abundance patterns of viral
communities in the Red Sea (specifically, double-strand DNA
viruses of prokaryotes) and show how these patterns can be used
to gain insights into viral life history traits and the potential inter-
actions of viruses with their hosts. To resolve seasonal and diel
patterns we collected diel samples of marine coastal water dur-
ing two seasons. We separated the cellular DNA fraction (gDNA
or metagenome), free virus fraction (vDNA or virome), and cel-
lular RNA fraction (RNA or metatranscriptome; SI Appendix,
Fig. S1B), allowing us to look at these fractions in both seasonal
and diel time scales. We used the bank model (13) as a concep-
tual framework to classify viral active or inactive state based on
their seasonal abundance across sample types (i.e., RNA, gDNA,
or vDNA), that is, classifying the abundant viruses as the active
group and the rest as the bank group (inactive) (Fig. 1A). Our
results suggest that many of the seasonally abundant viruses go
through a seasonal succession and that the high similarity in viral
richness across seasons is largely derived from low-abundance
viruses (bank). Furthermore, we assigned a taxonomic and eco-
logical classification to hundreds of viral contigs with different
patterns of abundance in the viral and cellular fractions. This
classification indicates that similar seasonal abundance patterns
of free viruses do not directly translate to similar abundance of
these viruses associated with their hosts (cellular samples), illus-
trating limitations of studies entirely based on viral metagenomes
(i.e., viromes). Finally, we observed many potential virus–host
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marine photic zone has been studied extensively in recent
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essarily translate to high host infection levels, suggesting the
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tory traits, even within viral taxonomic groups. Our results
highlight the diversity of viral life strategies in the ocean.
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Fig. 1. Classifying viruses by seasonal abundance patterns. (A) Using the
bank model (13) as a conceptual framework, the viral contigs were divided
into a high-abundance (active) group and a low-abundance (bank) group.
(B) Contigs from the active group were annotated and clustered into VCs.
Colored clusters represent examples of distinct superclusters containing sev-
eral VCs. (C) The rank abundance of each viral contig in the viral and cellular
DNA samples was used to classify its seasonal abundance patterns (rank
state; see text for annotation). Left connected line (blue) represents the
rank of a virus in the free-viral fraction in the summer and winter samples.
Similarly, the connected line on the right (orange) represents the virus

interactions (predicted by virus abundance in the cellular and
RNA samples) having a differential signature between light and
dark hours of the day. Such light-dependent interactions are
prevalent in cyanophages (viruses infecting Cyanobacteria) but
also include several viruses predicted to infect a heterotrophic
host.

Results and Discussion
Two sets of 24-h time series samples, with 2-h intervals between
samplings, were collected for this study. The first set was col-
lected during the summertime (11 to 12 August 2015) when the
water column was stratified, and the second was collected during
late winter (7 to 8 February 2016) when the upper water column
was mixed. In addition, we used metagenomic data from a diel
sample of Red Sea pelagic water collected during the autumn
(October 2012) (26) (SI Appendix, Fig. S1A). Assembled con-
tigs (length ≥ 5 kb) from all 48 DNA samples (cellular and viral
fractions) were filtered for predicted viral contigs using two virus
classifiers (Materials and Methods). A total of 32,496 contigs were
assigned as viral by both algorithms (minimum probability cutoff
0.75) and were mostly enriched in the viromes compared to the
metagenomes. These contigs were considered of viral origin for
downstream analysis.

The rank abundance curve of free viruses in the summer and
winter samples was heavy-tailed (SI Appendix, Fig. S2A), and
the measured abundance evenness ranged between 0.004 and
0.326 with different indices (Simpson evenness, EQ, and Evar;
SI Appendix, Fig. S2B, and Materials and Methods). Evenness
indices are useful for describing the distribution of species in
a community (27, 28). For example, in a community where all
species have the same abundances (perfectly even), evenness is
equal to 1. In contrast, in a very uneven community, where a few
species have high abundance and most species have low abun-
dances, the evenness will be closer to 0 (29). The observed values
across evenness indices seem to suggest that the viral commu-
nity in our samples is composed of a relatively small number of
viruses with high abundance, while the majority have a very low
abundance, in agreement with the bank model as well as other
reports (13, 16).

The rank reordering of free viruses in the diel samples
per season or between seasons showed that on average the
mean rank change between seasons is 2.4-fold higher com-
pared to diel changes (SI Appendix, Fig. S2C, and Materials and
Methods). This could indicate a seasonal change in dominance
of the different viral groups. Interestingly, the turnover of free
viruses (vDNA) between summer and winter [measured as the
proportion of viruses either gained or lost relative to the total
number of viruses observed across both time periods (29)] was
significantly lower compared to the turnover of intracellular
active viruses (i.e., RNA and gDNA; SI Appendix, Fig. S2D).
These observations not only provide further support to the exis-
tence of a persistent bank population of free viruses as previously
reported (13, 16, 25) but also highlight the large seasonal change
in the intracellular active population.

To further examine the group of abundant viruses, we pooled
the most abundant viral contigs, contributing to 80% of the
viral abundance in either season or sample type (SI Appendix,
Figs. S2E and S3). The presence–absence of these abundant
viruses across seasons shows that most of them are present

abundance in the cellular DNA fraction. (D) Diel expression patterns of VCs
can be linked to a rank state. x axis indicates sampling time of day. (Upper)
Abundance distribution of viral contigs by time point. Point color represents
samples collected in the dark (black) and light (yellow). y axis indicates con-
tig abundance (RPKM). (Lower) Estimation plot (31) displaying the effect
size as a 95% confidence interval (1,000 bootstraps) of the mean differences
between each time point compared against midnight as a reference group.
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in the high-abundance group only in one of the seasons (SI
Appendix, Fig. S2F). These results suggest that low-abundance
viruses (bank) compose most of the viruses that are present
across seasons (25), while the top-ranking members of the viral
community undergo a seasonal succession.

Together, the seasonal change of ranks and the persistent
low-abundance viral population support the bank model where
low-abundance viruses in one environment (stratified summer
water in our case) increase in abundance as the environment
changes (e.g., winter water column mixing) and their host abun-
dance increases (13, 16). Furthermore, in the winter samples,
our alpha diversity measures were generally higher, indicating
a larger active population fraction than in the summer samples
where the alpha diversity measures were generally lower. In turn,
this could indicate an increase in both the diversity and abun-
dance of potential hosts (14% unique contigs in the viral fraction
in each of the summer and autumn samples vs. 52% in the win-
ter samples; SI Appendix, Fig. S2F). A similar mechanism where
high seasonal host diversity generates high viral diversity has
been recently hypothesized to be in effect in the Arctic marine
environment (30). Our observations suggest that seasonal varia-
tions in host diversity could drive an increase in viral diversity in
a coastal and more temperate marine environment and are not
confined to the Arctic.

We classified the high-abundance viral group into viral clusters
(VCs) based on a gene-sharing network (32) (Fig. 1B and Mate-
rials and Methods), and a taxonomic annotation was assigned
based on the identity of Refseq viral genomes found in that clus-
ter or according to the closest Refseq genomes that represented
a distinct hub. We kept the annotation at the viral genus level
(33) (e.g., cyanopodovirus, SAR11 myovirus, etc.) and consid-
ered highly connected VCs with the same taxonomic annotation
as viral superclusters. Most of the VCs did not cluster with a Ref-
seq representative and were classified as uncharacterized Red
Sea virus in our data (SI Appendix, Fig. S4), accentuating the high
proportion of yet uncharacterized viruses in the environment
(2, 16, 30).

A closer look at the abundance of different viral superclus-
ters across seasons and sample types reveals different patterns
for distinct clusters. For example, cyanophages, one of the most
abundant viral groups in our data, were grouped into four
superclusters according to their viral families, Cyanomyoviridae,
Cyanopodoviridae, and two Cyanosiphoviridae clusters (Fig. 2).
The cyanomyovirus cluster (300 contigs) was abundant in both
viral and cellular samples in all seasons. The cyanopodovirus
cluster (220 contigs) was abundant in the viral samples across
seasons, while in the cellular samples it was highly abundant
in the summer but mostly absent from the autumn and win-
ter samples. One cyanosiphovirus cluster (Fig. 2, Lower Right,
175 contigs) was abundant in the viral samples across all sea-
sons but almost absent from the cellular samples. In contrast,
another cyanosiphovirus cluster (Fig. 2, Upper Right, 34 contigs)
showed a distinct difference in abundance of VCs within the
same supercluster between summer and winter. VCs 251 0 and
550 0 were abundant in the summer samples and VCs 281 0 and
419 0 in the winter samples (in both viral and cellular samples).
The observed variability in the seasonal abundance within these
closely related viral superclusters highlights the different life his-
tory traits of viral populations and subpopulations in terms of
possible host range and lifestyle, suggesting potential adapta-
tions to changing host landscapes. Indeed, a comparison of the
most abundant microbial taxonomic groups shows considerable
differences between summer and winter (SI Appendix, Fig. S5).

To systematically assign an ecologically relevant classification
to viruses based on abundance patterns we focused on the most
abundant viral contigs and looked for seasonal changes in their
rank percentile (0 to 1) in the viral and cellular DNA frac-
tions (Fig. 1C). Specifically, we grouped these contigs based
on their intracellular and extracellular seasonal rank changes,
where contigs ranked in the top 20% were considered as active
and lower-ranking contigs as bank (Materials and Methods). The
combination of two seasons (summer and winter) and two sam-
ple types (viral fraction and cellular DNA fraction) yields 16
possible combinations, representing the relationship between

Fig. 2. Seasonal virus abundance overlaid on a gene sharing network. Each node is a viral genome/contig. Color intensity represents log abundance (RPKM).
(Top) Viral fraction. (Bottom) Cellular DNA fraction. Labeled are cyanophage superclusters discussed in the text.
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a virus’s abundance in the free virus fraction and its abun-
dance when interacting with its host in the cellular fraction, in
a changing environment (Fig. 3). Furthermore, as relative abun-
dance measurements arising from metagenomic studies have
been shown to contain a systematic bias (34, 35), we validated
the rank-based results using the centered log-ratio transform
(CLR) which is invariant to such bias (35) (SI Appendix, Fig. S6,
and Materials and Methods). We termed these abundance–
sample combinations rank states and annotated them as fol-
lows: S, summer; W, winter; H, high ranks (active group); L,
low ranks (bank group); V, virome samples; and C, cellular
metagenome samples. For example, high abundance of a group
in the viral sample in both summer and winter is annotated as
Viral[Highsummer-Highwinter] and abbreviated as V[Hs-Hw].

Furthermore, the extent of rank change can also be deduced,
and for example, contigs that undergo no change in rank across
seasons are easily identified (Fig. 3). Classifying the Red Sea
viral community using this framework reinforces the observation
of various abundance patterns for different viral superclusters,
while assigning each viral contig an ecological context. The
summer-abundant free viruses (V[Hs-Lw]) represented 21.75%
from the total number of classified viral contigs, while their
winter counterparts (V[Ls-Hw]) represented 43%. In contrast,
the abundance of viral contigs in the cellular DNA fraction
was inverted, where the summer-abundant intracellular contigs
(C[Hs-Lw]) represented 21.85% from the total number of classi-
fied viral contigs, while the winter-abundant contigs (C[Ls-Hw])
represented only 5.53% (Fig. 3 and SI Appendix, Table S1).

These results further suggest that the abundance of free
viruses alone (as measured in the viral fraction) does not directly
correlate to their abundance in the cellular fraction and vice
versa and thus cannot reliably serve as a predictor for infection
levels. For example, this approach highlights viral contigs with
a V[Ls-Lw]C[Hs-Hw] rank state (Fig. 3, Bottom Left) that in
the free viruses fraction show seasonal variability in ranks within
the bank group, while steadily ranked among the active group

in the cellular DNA fraction in both seasons. As the majority of
contigs in this rank state appear to be of uncharacterized SAR11
viruses (based on major capsid protein gene homology), the
traits that enable this pattern are still mostly unknown. However,
a recent discovery of prophages in cultured and metagenomic
sequences of SAR11 phages (36) suggests that lysogeny is a
very plausible explanation for these seasonal patterns as these
temperate phages appear to be produced continuously dur-
ing the infection cycle with higher production during nutrient
limitations.

Temperate phages were found to dominate summer blooms
in the Southern Ocean close to Antarctica, and the induction
of lysis was correlated with bacterial production and increase
in chl a (37). However, none of the abundant contigs in our
samples were assigned to rank states V[Hs-Lw]C[Ls-Hw] or
V[Ls-Hw]C[Hs-Lw]. Our interpretation of this result is that no
phages appearing in the cellular DNA fraction in one season
bloomed in the free virus fraction in the next season, as would
be expected from seasonally induced lysogenic phages.

While the methods used in this study are not sufficient to assess
the prevalence of temperate phages in the Red Sea, our observa-
tions along with a recent report (38) suggest that lysogeny might
not be as dominant in the Red Sea as it is in the Southern Ocean
(37). However, further, targeted research into the prevalence and
identity of temperate phages in the Red Sea is needed.

Diel cycles lie at the basis of ocean productivity as sunlight
is the most readily available source of energy in the photic zone
(39), driving microbial community-wide gene expression patterns
(40). Many of the diel patterns of highly expressed genes in the
microbial community in our samples, including several viral tran-
scripts, presented a strong correlation with a daylight cycle and
no seasonal hierarchical order. This correlation was robust across
seasons and functions of the microbial community, indicative of
potential community-level trait–diel relationship and functional
redundancy among these seasonally varying communities (41,
42) (SI Appendix, Fig. S7 and Table S3).

Fig. 3. Representation of viral rank states of the most abundant viral contigs group, including 16 possible rank state combinations, ranging from viruses
that are highly abundant in both seasons and samples (V[Hs-Hw]C[Hs-Hw], n = 75; Top Left) to those with lower abundance across seasons and samples
(V[Ls-Lw]C[Ls-Lw], n = 196; Bottom Right).
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Since virus proliferation strongly depends on its host
metabolism (14), we followed the patterns observed in the micro-
bial community to examine seasonality and daylight effect on
the intracellular activity of selected viral groups (16). Generally,
in the RNA fraction we observed an increase in the transcript
abundance of the cyanopodovirus supercluster at 08:00 (first
sample collected in light) and a peak at 10:00 in the summer
sample with a slight shift in the winter samples (Fig. 4D, Top).
This peak included significantly higher expression in the light
(Fig. 4C, Top) of phage structural genes and key cyanophage

AMGs such as psbA (subunit of Photosystem II) and nrdB
(nucleotide metabolism), indicating active infection. Abundance
of cyanopodoviruses in the cellular DNA fraction peaked at
10:00 in the summer and was again shifted in the winter sam-
ple (Fig. 4E, Top), consistent with the shift in transcription of
viral genes observed in the cellular RNA fraction. In addition,
a clear difference in the diel pattern can be observed between
contigs originating from different rank states, despite the fact
that they are part of the same viral supercluster (Fig. 4, Top).
The cyanomyovirus (Fig. 4D, Middle) supercluster’s transcript

A B C D E

Fig. 4. Intracellular diel abundance patterns of (Top) cyanopodovirus VCs, (Middle) cyanomyovirus VCs, and (Bottom) cyanosiphovirus VCs. (A) Superclus-
ters of cyanophage VCs by family. (B) Cyanophage VCs contigs that were classified into two rank states with strong seasonal abundance pattern (V[Hs-
Lw]C[Hs-Lw] and V[Ls-Hw]C[Ls-Hw]). (C) Light–dark expression in the cellular RNA fraction of the viral ORFs from the contigs in B. (D and E) Diel distribution
in the cellular RNA (D) and DNA (E) fractions of viral contigs from B. x axis indicates hours of the day when a sample was collected and the number of viral
contigs expressed. (Upper) Abundance distribution of viral contigs by time point (each point represents a contig). Point color represent samples collected in
the dark (black) and light (yellow). y axis indicates contig abundance (RPKM). (Lower) Estimation plot (31) displaying the effect size as a 95% confidence
interval (1,000 bootstraps) of the mean differences between each time point compared against midnight as a reference group.

29742 | www.pnas.org/cgi/doi/10.1073/pnas.2010783117 Hevroni et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.2010783117


EC
O

LO
G

Y

abundance also increased with the onset of light and fluctu-
ated during the day, with most genes at their highest around
18:00. Expressed viral genes included structural genes as well
as AMGs such as psbD (Fig. 4C, Middle). The abundance pat-
terns of cyanomyoviruses in the cellular DNA fraction displayed
multiple peaks, most pronounced at 10:00 to 12:00 and at 16:00
to 18:00 (Fig. 4E, Middle). The cyanosiphovirus supercluster’s
transcript abundance peaked at midnight and noon, while their
cellular abundance increased during daytime, peaking at noon
(Fig. 4, Bottom).

To understand the finer details of these patterns and their
seasonality, we examined the cellular RNA and cellular DNA
samples for light–dark abundance patterns of viral contigs by
VC (441 VCs with counts ≥1 reads per kilo base per million
mapped reads (RPKM) in the light or dark samples, where the
light–dark label was determined by the photosynthetic active
radiation measurements at the time of sampling; SI Appendix,
Fig. S1C). This analysis revealed 97 VCs (22%) with at least
one rank state that displayed differential light–dark abundance
(Mann–Whitney U test, P < 0.05; SI Appendix, Fig. S8A and
Table S2). Within these 97 VCs, most of the light–dark differ-
ential signal in either the cellular or RNA fractions originated
from contigs in only four rank states (24.63% V[Ls-Hw]C[Ls-
Lw], 23.18% V[Hs-Lw]C[Hs-Lw], 11.59% V[Ls-Lw]C[Hs-Lw],
and 10.14% V[Ls-Hw]C[Ls-Hw]). Moreover, most of the viral
RNA signal in the light–dark differential VCs came from
only two rank states of viruses with distinct summer (27.27%
V[Hs-Lw]C[Hs-Lw]) and winter (31.81% V[Ls-Hw]C[Ls-Hw])
abundance patterns. This can be explained by most of the VCs
composing these two rank states being cyanophages (Table S2).
This signal was very low or undetectable in other rank states,
indicating that most of the detected viral RNA transcripts are
from viruses that show a strong seasonal pattern, both extra-
cellularly and intracellularly (Table S2). When examining the
seasonal patterns of the microbial groups in the cellular and
RNA fractions, it appears that the seasonal microbial communi-
ties are largely different from one another, sharing only 19.5%
of the contigs (23,219 shared contigs). Additionally, while the
Synechococcus population is highly abundant and active across
our seasonal samples, changes in the dominance of unicellular
picoeukarya algae in the winter and Prochlorococcus in the sum-
mer (SI Appendix, Fig. S5) are consistent with previous reports in
this region (43, 44).

Indeed, as would be expected from these patterns of potential
microbial hosts, a large proportion of the VCs with significant
light–dark differential abundance was part of the cyanophage
groups (488 contigs in 16 VCs and 9 rank states; SI Appendix,
Fig. S8B and Table S2). Some cyanophages have been shown to
have a light-dependent lytic infection cycle, where the infection
is initiated in the early morning and progresses throughout the
day when energy fluxes are at their peak (through photosynthetic
activity), promoting viral propagation (18, 45–47). Recent work
has also shown that some Prochlorococcus viruses are capable of
adsorption and even replication in the dark (47).

The cellular and RNA diel abundance of some of the
cyanophage groups in our data (cyanopodoviruses and cyanomy-
oviruses) show a pattern that peaks during light hours, suggesting
that the infection of these cyanophages indeed follows diel energy
fluxes as previously suggested (16, 18, 47, 48). Summer-abundant
cyanophages (in rank state V[Hs-Lw]C[Hs-Lw]) show an increase
in intracellular abundance during light hours in all three fami-
lies. In winter-abundant cyanophages (V[Ls-Hw]C[Ls-Hw]), sim-
ilar daytime increase was observed for cyanopodoviruses and
cyanomyoviruses but not for cyanosiphoviruses (Fig. 4). The vari-
ation in intracellular abundance patterns by viruses infecting
similar hosts might indicate differences in the infection cycle or
the metabolic capabilities of these viruses as has been recently
described for three different cultured Prochlorococcus viruses

(47, 49). That is to say, based on our results we hypothesize
that a high diversity exists in the timing and rate of various
key aspects of infection such as absorption, virion production,
and lysis for these viruses in their natural environment.

The contrast between the detection of viral transcripts in
the different cyanophage families, where the podoviruses and
myoviruses show a clear transcriptional increase at the onset of
light, as opposed to the less clear pattern in the siphoviruses,
could result from lack of AMGs in the latter (based on currently
described genomes) (50). Further manual inspection of several
complete cyanosiphovirus genomes in our samples (length ≥40
kb) confirmed the absence of known AMGs in these genomes
(51, 52). However, this hypothesis cannot be validated using
our data and requires additional experimental validation. These
results signify that while many cyanophages display a clear
intracellular increase in abundance during daytime, the hourly
resolved variations might indicate differences in their infection
cycles or capacities to tinker host metabolism with AMGs.

Interestingly, our approach also detected a large group of
uncharacterized Red Sea viruses (947 contigs in 61 VCs and
9 rank states) with light–dark differential abundance signal (SI
Appendix, Fig. S8B and Table S2). Many of these putatively infect
heterotrophic microbial hosts (based on proximity to a RefSeq
viral genome in the sequence similarity network; SI Appendix,
Fig. S4). This large group of viruses exhibits diverse abundance
patterns and potentially different diel-dependent life history
traits. For example, contigs in this group with a high summer
presence in both the viral and cellular fractions (V[Hs-Lw]C[Hs-
Lw]) showed an increase in intracellular abundance during light
hours (a handful in the RNA and the majority in the DNA
fraction), while with their winter counterparts (V[Ls-Hw]C[Ls-
Hw]), such an increase was only observed in the cellular DNA
and not in the RNA (SI Appendix, Fig. S9, Top). This result
extends the previously described diel and seasonal activity reper-
toire of viruses of heterotrophic microbial hosts in the marine
environment (16, 17).

Differential light–dark virus–host interaction is thus preva-
lent among viruses in the active population in the photic marine
environment and is not restricted to cyanophages. However,
while the uncharacterized Red Sea virus group is larger than
the cyanophages group, the prevalence of contigs with detectable
differential light–dark RNA signal was more pronounced in the
latter (SI Appendix, Table S2). In contrast, we could not detect
any diel abundance patterns in the vDNA fraction of the bank
population, and the abundance levels in the gDNA and RNA
fractions were too low for analysis.

While highly abundant in the free virus fraction, we observed
low abundance of transcripts from viruses of heterotrophic bac-
teria (SAR116 as a prime example; SI Appendix, Fig. S9, Bottom)
despite the strong transcriptional diel patterns of many of their
potential heterotrophic bacteria hosts in this study (see pho-
toautotroph to heterotroph ratio in SI Appendix, Fig. S7 and
Table S3). Our results are consistent with previous reports
which mostly detected cyanophage transcripts in environmen-
tal metatranscriptomic samples (16), indicating their high levels
of intracellular transcription in comparison to highly abundant
heterotroph viruses (e.g., SAR11 and SAR116 viruses). In addi-
tion, viruses infecting heterotrophic microbes such as SAR11,
SAR116, and MGII Euryarchaea (26, 53, 54) have been pre-
viously reported to have lower intracellular signal (26, 55).
Notwithstanding the high abundance of free viruses, these results
indicate that the fraction of actively infected heterotrophic hosts
is low in our samples, especially in comparison to cyanobacteria
and their viruses. It is possible that the low signal in the RNA
and cellular DNA fractions is due to an experimental bias or to
the fact that they operate on longer and slower life cycles (53,
54). However, our observations were consistent across multiple
seasons, samples, and technical replicates.
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The discrepancy between the infection levels of cyanophages
and that of viruses of heterotrophs suggests a fundamental dif-
ference in lifestyle and infection dynamics between these groups.
It is most intriguing, then, that viruses of heterotrophs remain in
high proportions in the bank, and future research is needed for
understanding their underlying infection dynamics in the marine
environment. In light of recent reports of temperate phages in
SAR11 and constant production of viral particles (36, 56), our
results hint that such mechanisms likely govern the abundance
patterns of this as well as other groups of phages of heterotrophs
in the marine environment.

Conclusions
Here we have elucidated previously unknown complex seasonal
and diel patterns of abundance and activity of marine viruses
of the photic zone. We used the bank model (13) as a concep-
tual framework where the most abundant viruses are considered
active and the remaining majority as bank. In addition, we clas-
sified viruses based on their seasonal changes in ranks. The
bank group persisted across seasons, while many contigs in the
active group showed seasonal change in rank abundance in either
the viral or cellular fractions. We speculate that the seasonal
viral response is facilitated by a stable bank population that
is readily activated upon increase in abundance of a poten-
tial host, in accordance with kill-the-winner and bank models
(10, 12, 13).

A negative correlation between virus production (burst size)
and virus survival has been previously demonstrated even
between viruses of Escherichia coli (57). Thus, beyond the
straightforward implications regarding the infection cycle of
these viral groups (bank and active) in the marine environment,
questions arise regarding their life history traits and challenge
the prevailing view of virus decay rates (7). Specifically, the
mechanisms that allow for viral groups to persist in the bank pop-
ulation despite apparent low infection levels are currently not
being considered in most models.

In taxonomically similar viral superclusters we detected a
variety of rank states. This could suggest that at the general
supercluster-level abundance, some viral groups might appear to
be stable despite changes in host composition. However, when
examining the rank states of these superclusters, seasonal pat-
terns emerge. These patterns, we hypothesize, are a result of a
considerable number of members of the viral population having
a broad host range and their being able to operate in a changing
host landscape (58–60). Our observation that the taxonomical
clustering does not conform with the rank state classification sup-
ports the theoretical finding that virus–host interactions cannot
be easily deduced from linear relationship in their abundance in
surface water samples (1).

Our observed diversity in diel patterns of viral transcripts and
intracellular abundance, within both VCs and rank states, pro-
vides environmental support to recent culture-based evidence
(47, 49) and suggests that it is more widespread. Our observa-
tions in the Red Sea of seasonal changes in the ranks of the most
abundant virus groups are supported by previous long-term stud-
ies in marine and freshwater environments (21, 22, 24, 37, 61,
62), and our observations are somewhat different from a recent
report of mostly stable viral populations in a 5-y time series study
at the San Pedro Ocean Time Series (25).

Additionally, our data suggest that high viral abundance in the
viral fraction might not necessarily translate into high infection
levels, as is evident in the case of many heterotrophic viruses
with almost no detectable intracellular presence, despite being
highly abundant in the viral fraction. This could suggest a con-
sistently low production of virions (36) (below detection levels),
allochthonous inputs, extremely slow decay rates, or another
as yet unknown mechanism supporting this intracellular and
extracellular abundance discrepancy.

The approach used in this study facilitated the discovery of sev-
eral coexisting viral populations that exhibit various seasonal and
diel patterns. The prevalence of differential diel light–dark abun-
dance patterns of viral contigs across seasons might indicate the
convergence of infection and propagation strategies employed by
viruses as a function of the recurrent diel metabolic patterns of
their hosts. Furthermore, the repertoire of possible viral lifestyles
and infection dynamics, manifested in rank states in this study,
suggests underlying differences within major virus groups in the
marine environment.

Additional fundamental differences between viruses of marine
photosynthetic microbes and viruses of heterotrophs appear to
exist, and further investigation is needed to understand how
life history traits differ between these groups and whether they
can explain the patterns we observed. The VCs and rank states
reported here can serve as potential targets for such future
research, which could be fundamental for understanding the con-
tribution of viruses to the structure of microbial assemblages
and the resulting impact on the dynamics of viral shunt, nutrient
cycles, and the marine food web.

Materials and Methods
Sampling Site. Evident seasonal succession patterns of microbial communi-
ties have been previously described in the Gulf of Aqaba (44, 63), largely
driven by its oligotrophic nature and annual stratification-mixing cycles (63,
64). Additionally, changes in viral communities have also been observed
between different seasons and between stratified and mixed water column
(23, 65, 66).

Sample Collection and DNA/RNA Extraction. Water samples were collected
every 2 h during a span of 24 h, from the Interuniversity Institute for Marine
Sciences (IUI) pier in Eilat from a depth of 2 to 3 m (surface water). At each
time point, two 20-L containers of seawater were initially filtered through
a GF/D glass microfiber filter (Whatman) with a nominal pore size of 2.7
µm to remove large eukaryotic cells. One 20-L container was used to collect
two fractions: cellular genomic DNA (cellular DNA fraction or metagenome)
and, after filtration, viral DNA (viral fraction, virome, or free viruses). The
second container was used to collect RNA (cellular RNA fraction or meta-
transcriptome). A similar set of samples was collected on 11 to 12 August
2015 (summer samples) and on 7 to 8 February 2016 (winter samples). The
cellular DNA fraction was collected onto a 142-mm 0.22-µm Durapore filter
(Millipore) using a peristaltic pump. DNA was extracted using the alkaline-
lysis protocol. For the viral DNA, the flow through of the 0.22-µm filters was
treated with iron chloride (FeCl3) for the precipitation of viral particles, as
described in ref. 67. The precipitate was collected on a 0.22-µm Durapore
filter (Millipore) and washed with 10 mL of calcium oxalate solution. The
washed precipitate was further concentrated using a 100-kDa Centricon fil-
ter (Millipore) and purified on a CsCl gradient followed by DNase treatment as
described in ref. 68. DNA extraction was performed using Wizard minicolumns
(Promega) as described in ref. 69. The metatranscriptome fraction was col-
lected onto a 142-mm 0.22-µm Durapore filter (Millipore) using a peristaltic
pump. After collection, the filters were transferred immediately to a screw
cap containing 1 mL of RNAlater (Ambion) and frozen in liquid nitrogen. Total
handling time was less than 15 min. Total RNA extraction was done using the
mirVana RNA isolation kit (Ambion), followed by DNA removal with Turbo
DNase (Ambion) and cleanup using the RNeasy MinElute Kit (QIAGEN).

Sample Processing and Sequencing. The DNA samples were sheared using
Covaris E220 with the following parameters: 10% duty factor, 45 s duration
time, 200 cycles per burst, 175 W peak incident power, and a tempera-
ture of 6 ◦C. The RNA samples were fragmented using a library preparation
kit (NEBNext) with 5 min in 75 ◦C. The mean fragment lengths (without
adapters) of the DNA and RNA samples were 404 and 350 bp, respectively.
None of the samples were amplified prior to sequencing-library prepara-
tion, nor were rRNA depletion protocols applied in order to avoid possible
bias resulting from these steps (70) and loss of considerable amount of RNA
during the rRNA depletion process. Libraries were constructed with 10 ng
of DNA per sample using NEBNext Ultra II DNA Library Prep Kit with 12 PCR
cycles for the DNA samples and 100 ng with NEBNext Ultra RNA Library Prep
Kit with 15 PCR cycles for the RNA samples. All samples were paired-end
(PE) sequenced at the Technion Sequencing center on Illumina Hiseq 2500,
where the DNA samples sequenced with 2 ×125 bp and the RNA samples
with 2 ×100 bp.
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Quality Control and Assembly of Short Reads. Reads were trimmed using
Trim Galore version 0.4.4 (https://github.com/FelixKrueger/TrimGalore) with
default parameters. Data for the 48 different DNA samples (24 vDNA and
24 gDNA) were assembled separately using IDBA-UD (71) with default
parameters.

Annotation. The assembled contigs from all of the different samples were
concatenated in a single FASTA file and dereplicated to keep those 5,000 bp
using vsearch version 2.6.2 (72) with the options “–derep fulllength –
minseqlength 5000 –maxseqlength 5000000.” The dereplicated contigs were
then screened using Mash version 2.0 (73) for similarities to PhiX (Gen-
Bank accession no. HM775309.1), a common control used during Illumina
sequencing runs which can result in spurious assemblies (74). Using the
Mash results, those contigs with similarities to PhiX were discarded from
further analysis. Open reading frames (ORFs) of the remaining contigs
were predicted by Prodigal version 2.6.3 (75) using the parameter -p
meta. ORFs longer than 300 nt were dereplicated using vsearch with the
options “–derep fulllength –minseqlength 300 –maxseqlength 5000000.”
ORFs were taxonomically annotated using either BLASTn best-hit against
NCBI nr, Diamond version 0.8.38 (76), or blastp best-hit to the protein
sequences from the Prokaryotic Virus Orthologous Groups database (77).
ORFs appearing in the RNA data were assigned a functional category using
eggNOG mapper version 1 (78), with mapping mode Diamond and default
parameters.

Relative Abundance Estimations. The relative abundance of ORFs was calcu-
lated using Salmon version 0.8.2 (79). A total of 16,047,552 ORFs predicted
from 3,878,543 assembled contigs and 3,224 Refseq genomes (bacteria,
archaea, plastid, protozoa, and viruses; accessed 2 February 2017) were
dereplicated using vsearch “–derep fulllength” (10,893,032 unique ORFs)
and used to create a Salmon index. The Refseq genomes used were selected
by classifying the unassembled reads with Kraken version 0.10.4-beta (80)
and a custom database composed by all Refseq available genomes (bacte-
rial, archaeal, and viral; accessed 2 February 2017). The list of taxa assigned
to the reads was retrieved and processed to keep only those genomes not
considered as sample-processing contamination sources (81). The ORF abun-
dance in the 72 datasets (metagenomes, metatranscriptomes, and viromes)
was quantified with the index using Salmon in the quasi-mapping mode
with the following parameters: “–meta –incompatPrior 0.0 – seqBias –gcBias
–numAuxModelSamples 2500000 –numBootstraps 100 –validateMappings.”
Quantification results were processed by tximport (version 1.10.0) (82),
followed by normalization with edgeR (v3.24.2) (83). Reads per kilobase
per million were calculated from the normalization results by the edgeR
function edgeR::rpkm.

Clustering Diel Gene Expression Patterns. Predicted ORFs were quantified as
mentioned above (Salmon and tximport), followed by normalization with
Bioconductor R package DESeq2 (84) by applying a regularized log trans-
formation (rlog) to the Salmon counts data (baseMean 2). The normalized
counts were clustered using Gaussian mixture models coupled with Dirich-
let process (DP-GP) (85) with default parameters. The ORFs clustered into 18
and 23 clusters in the summer and winter datasets, respectively, based on
the similarity of their diel expression patterns.

Mapping, Binning, and Prediction of Viral Contigs. Short reads were mapped
to the assembled contigs using Bowtie2 version 2.3.4.1 (86) and Samtools
1.3.1 (87). The mapping files were used to generate a depth coverage matrix
using Metabat2 script jgi summarize bam contig depths and binned with
Metabat2 version 2.12.1 (88) with parameters -m 1500 -s 10000. Predic-
tion of viral contigs was performed using two independent classifiers: 1)
VirFinder (89), R package version 1.1 with default parameters and mod-
EPV k8.rda model for predicting both prokaryotic and eukaryotic viruses,
and 2) MARVEL (90) version 0.1 with default parameters.

Evenness and Rank Change Estimation. Evenness was measured for the abun-
dance of viral contigs per diel time points in the summer and winter samples
using the codyn R package (91) community structure function for Simpsons
evenness, EQ, and Evar (27) indices, as described in ref. 29. Rank change
was measured based on the concepts presented in ref. 29. Briefly, mean
rank shift was measured by taking the sum of absolute rank differences

between consecutive time points, divided by the total number of unique
viral contigs in both time points. Rank change was measured by divid-
ing the mean rank shift by the total number of unique viral contigs in
all time points, making the measure independent of species richness (29).
For the seasonal rank change we used the geometric mean of viral contigs
across diel time points per season as the input for the process described
above.

Taxonomic Classification of Prokaryote Viruses and Network Visualization.
Taxonomic assignment of viral contigs from the active group was performed
with vConTACT (Viral CONTigs Automatic Clustering and Taxonomy) 2.0
(32) on the CyVerse cyberinfrastructure platform (92). Viral contigs were
clustered into VCs based on a gene-sharing network, where each VC was
assigned a taxonomic annotation based on the identity of Refseq viral
genomes found in the same VC or according to the closest Refseq genomes
that represented a distinct hub (node degree average node degree. The
vConTACT analysis was performed with the following parameters: protein
clusters generation method, Markov Cluster Algorithm (MCL); protein–
protein similarity method, Diamond; VC generation method, Clustering
with Overlapping Neighborhood Expansion (ClusterONE); and reference
database, National Center for Biotechnology Information (NCBI) Bacterial
and Archaeal Viral RefSeq V85 with International Committee on Taxonomy
of Viruses (ICTV) + NCBI taxonomy. Network visualization was performed
using Cytoscape version 3.7.1.

Rank State Assignment and CLR Transformation. Grouping contigs into active
and bank groups relies on setting a cutoff to differentiate between the two.
In the absence of a formal definition for the bank model (13), we used the
highest proportion of the most abundant contigs group in a single season
as a baseline (∼15%; Fig. 2E). Next, we aimed to set the cutoff such that the
widest array of rank states are represented (by at least five contigs), while
keeping it strict enough to avoid introducing noisy patterns in some con-
tigs. (This means that very strict cutoffs eliminate the assignment of some
rank states, while very permissive ones allow the assignment of seasonal
contigs as nonseasonal and vice versa.) Having tested a range of cutoffs
for the top 10 to 30% (5% increments), setting the top 20% as the active
group represented the maximum realized rank state diversity with minimum
noise. Furthermore, to avoid misrepresenting borderline cases as seasonal
contigs (e.g., a move from the top 19% to the top 21%), we defined a sea-
sonal change between the active and bank as a minimum of 20% change in
rank percentile and at least one order of magnitude change in abundance
(RPKM). To further validate that the rank state patterns persist when ana-
lyzed with bias-insensitive measures (35), we used the ALDEx2 (ANOVA-like
differential expression) R package to visualize the rank states based on the
CLR of the viral abundances (that is, the centered log ratio of each virus to
the geometric mean of all viruses). Specifically, we used the aldex.clr func-
tion to calculate the transformation with the denominator parameter set to
iqlr and 128 Monte Carlo samples (93) (SI Appendix, Fig. S6).

Data Availability The assembled viral contigs, along with raw sequence
data, are available from the European Nucleotide Archive under accession
no. PRJEB35627. SI Appendix, Tables S1–S5, can be downloaded from https://
doi.org/10.17605/osf.io/b74mt.

Code Availability Scripts and notebooks for reproducing the rank state
analysis are available at https://doi.org/10.17605/osf.io/b74mt.
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