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Abstract

There is growing recognition that the gut microbiome is an important regulator for neurological 

functions. This review provides a summary on the role of gut microbiota in various neurological 

disorders including neurotoxicity induced by environmental stressors such as drugs, environmental 

contaminants, and dietary factors. We propose that the gut microbiome remotely senses and 

regulates CNS signaling through the following mechanisms: 1) intestinal bacteria-mediated 

biotransformation of neurotoxicants that alters the neuro-reactivity of the parent compounds; 2) 

altered production of neuro-reactive microbial metabolites following exposure to certain 

environmental stressors; 3) bi-directional communication within the gut-brain axis to alter the 

intestinal barrier integrity; and 4) regulation of mucosal immune function. Distinct microbial 

metabolites may enter systemic circulation and epigenetically reprogram the expression of host 

genes in the CNS, regulating neuroinflammation, cell survival, or cell death. We will also review 

the current tools for the study of the gut-brain axis and provide some suggestions to move this 

field forward in the future.

I. Introduction

The gut-brain axis is increasingly recognized as an important target for the health of the 

central nervous system (CNS) (Carabotti et al., 2015; Sharon et al., 2016; Skonieczna-

Zydecka et al., 2018; Zhu et al., 2017). As a multidirectional communication network, the 

key components of the gut-brain axis include the CNS, the autonomic nervous system 

(ANS), the enteric nervous system (ENS), as well as the hypothalamic pituitary adrenal axis 

(HPA) (Carabotti et al., 2015). The CNS is crucial for cognitive functions including memory, 

social, and emotional responses, and it communicates with ANS, ENS, and HPA to 

orchestrate signal transduction. The ENS regulates the production of intestinal hormones 

and mucus secretion. In addition, the ENS and enteric immune system interact to maintain 

gut integrity (Yoo and Mazmanian, 2017). The ENS can polarize macrophages and put them 

in close proximity to extrinsic and mucosal nerve fibers (Gabanyi et al., 2016). The 

bioavailability of catecholamines—a sympathetic neurotransmitters and immune modulator

—can be modified by gut bacteria; catecholamines are glucuronidated for excretion, whereas 

some gut bacteria can de-glucuronidate catecholamines and possibly affect leukocytes in the 

gut (Asano et al., 2012; Yoo and Mazmanian, 2017). Gut permeability and integrity can also 
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be regulated and monitored by the ENS through mechanoreceptors responsive to mucosal 

abrasions, intrinsic primary afferent neurons responsive to molecular and mechanical 

aberrations, and tension receptors responsive to stretch. Several compounds, including from 

bacteria such as short-chain fatty acids) activate receptors in neurons that regulate gut 

motility (Cherbut et al., 1998). The HPA modulates the release of cortisol from adrenal 

glands during stress response. In addition to host signaling, the gut microbiome, is important 

in the bidirectional communications through modulating gastrointestinal tract (GI) functions, 

remotely signaling to the brain and other metabolic organs, and is one of many regulatory 

targets of brain-to-gut signaling (Carabotti et al., 2015; Fu and Cui, 2017; Sharon et al., 

2016; Skonieczna-Zydecka et al., 2018; Zhu et al., 2017).

The human microbiome dwarfs the human genome with a 10:1 ratio of nucleated cells, and 

100:1 ratio of genes (Sender et al., 2016). The microorganisms in the GI tract represent the 

majority of the human microbiome, including bacteria, fungi, parasites, and viruses (Zhu et 

al., 2017). This review focuses primarily on bacteria, as they are the best characterized 

members of the microbiome at this time. At the phylum level, the dominant intestinal 

bacteria are Firmicutes and Bacteroidetes in healthy human subjects, whereas other minor 

phyla include Proteobacteria, Actinomycetes, Verrucomicrobia, and Fusobacteria (Eckburg 

et al., 2005). As illustrated in Figure 1, following exposure to environmental stressors such 

as environmental contaminants, drugs, dietary factors, and other xenobiotics, the gut 

microbiome is thought to modify the toxicological outcomes through several mechanisms. 1) 

Gut microbiome can directly metabolize neurotoxicants primarily through reduction and 

hydrolysis/de-conjugation reactions (Claus et al., 2016; Lu et al., 2015); the gut microbiome 

may communicate with the liver through the enterohepatic circulation of primary and 

secondary metabolites, altering hepatic xenobiotic biotransformation and nutrient 

homeostasis, which are the major functions of the liver (Klaassen and Cui, 2015; 

Spanogiannopoulos et al., 2016; Swanson, 2015; Visschers et al., 2013). 2) Intestinal 

dysbiosis as a result of chemical exposure may lead to local inflammation and gut leakiness, 

subsequently increasing levels of pro-inflammatory cytokines in the systemic circulation, 

which may contribute to neuroinflammation (Fournier et al., 2018; Janakiraman and 

Krishnamoorthy, 2018; Lin et al., 2018; Rea et al., 2016; Sampson et al., 2016). 3) Gut 

microbiota may produce neuro-reactive microbial metabolites, including short-chain fatty 

acids (SCFAs), ursodeoxycholic acid (UDCA), as well as various neurotransmitters such as 

gamma-Aminobutyric acid (GABA), histamine, acetylcholine, serotonin, melatonin, gut 

lumen-derived bioreactive free catecholamines, nitric oxide, and hydrogen sulfide (Asano et 

al., 2012; Iyer et al., 2004; Schicho et al., 2006; Sobko et al., 2006). These microbial 

metabolites may enter the systemic circulation and reach the molecular targets in the brain to 

modulate various types of cognitive functions (Carabotti et al., 2015).

In this review, we will first discuss the role of the gut microbiome in various types of 

neurological diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), 

autism spectrum disorder, attention-deficit hyperactivity disorder (ADHD), anorexia 

nervosa, depression, schizophrenia, bipolar disorders, as well as post-traumatic stress 

disorder (Table 1). We will then provide a comprehensive analysis of the literature regarding 

the interactions between various neurotoxicants and gut microbiome (Table 2). These 

neurotoxicants are selected based on research articles as well as the Casarett and Doull’s 
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Toxicology Textbook (Klaassen CD 2013), including various drugs and environmental 

contaminants. While a substantial portion of the research body in this area still remains at 

the association level, several mechanistic studies have been performed taking advantage of 

novel research tools, including germ-free (GF) models, fecal/single microbial strain 

inoculations, anaerobic cultures, and microbial metabolite supplementations (Table 2). We 

will also discuss the challenges and opportunities characterizing the gut-brain axis in 

neurotoxicology.

II. The gut-brain axis and neurological diseases

II-1. neurodevelopmental disorders.

II-1.1. ADHD.—Attention-deficit hyperactivity disorder (ADHD) is a common condition 

characterized by inattention, hyperactivity, and/or impulsivity that affects 5% of children and 

2.5% of adults (Faraone et al., 2015). Factors that increase the risk of ADHD include age, 

sex (4:1 male to female) (Faraone and Glatt, 2010), socioeconomic status (low family 

income) (Larsson et al., 2014), genetic variants, as well as environmental factors such as 

parental behavior (Harold et al., 2013; Stevens et al., 2008), prenatal metrics, and some 

environmental contaminants including organophosphate pesticides, polychlorinated 

biphenyls (PCBs), and lead (Banerjee et al., 2007; Scassellati et al., 2012). Recent studies 

demonstrate that the composition and predicted functions of gut microbiome are altered in 

ADHD patients. In one study, a decrease in parent-reported ADHD symptoms was 

associated with an increase in the abundance of Faecalibacterium spp. with no alteration in 

the richness of the gut microbiota (Jiang et al., 2018). A second study of male juveniles 

found that relative to healthy controls, subjects with ADHD had lower species richness as 

well as an increase in Bacteroidaceae (Prehn-Kristensen et al., 2018). Young adult subjects 

with ADHD had increased Bifidobacterium spp. associated with a predicted increase in 

cyclohexadienyl dehydratase l, which is important for the generation of the dopamine and 

noradrenaline precursor phenylalanine (Aarts et al., 2017). Dysregulation of dopamine and 

noradrenaline is implicated in ADHD etiology; however, it is unclear whether bacteria can 

independently induce ADHD-like behavior.

II-1.2. Autism spectrum disorder.—Autism spectrum disorder (ASD) is a severe 

neurodevelopmental disorder characterized by persistent social and communicative deficits 

as well as repetitive and restrictive patterns of behaviors, interests, and activities. It is 

increasingly recognized that both environmental and genetic factors play important roles in 

the etiology of ASD (Hallmayer et al., 2011), including the gut microbiome and ASD in 

children (Coretti et al., 2018; De Angelis et al., 2013; Finegold et al., 2010; Hicks et al., 

2018; Kang et al., 2013; Liu et al., 2019; Pulikkan et al., 2018; Qiao et al., 2018; Rose et al., 

2018; Son et al., 2015; Wang, M. et al., 2019). Interestingly, there is a high prevalence of 

gastrointestinal disorders in children with ASD. Gastrointestinal-related symptoms in ASD 

were associated with a less diverse gut microbiome and decreased abundances of the genera 

Prevotella, Coprococcus, and an unclassified taxon in Veillonellaceae, which are 

carbohydrate-degrading and fermenting bacteria, suggesting that carbohydrate metabolism 

or SCFAs may be involved in ASD (Kang et al., 2013). In ASD patients, a positive 

correlation was identified between high levels of the SCFA butyrate and Faecalibacterium 
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prausnitzii (Coretti et al., 2018). Male mice perinatally exposed to valproic acid to induce 

ASD-like behaviors also had increased caecum butyrate (de Theije et al., 2014). ASD 

children were found to have higher fecal abundances of Caloramator, Sarcina and 

Clostridium genera along with a decrease in Bifidobacterium, which is known to produce 

SCFAs (De Angelis et al., 2013). A similar study comparing children with ASD and 

neurotypical healthy controls found no differences in fecal microbiome diversity, but did 

identify a significant interaction between ASD and the Cyanobacteria/Chloroplast genus 

(Son et al., 2015). A comparison of Indian children with ASD relative to healthy controls 

identified ASD as a significant factor to explain the differences in gut phylotypes; 

Lactobacillus spp. was significantly associated with ASD using a meta-analysis of the Indian 

children cohort with a US cohort (Pulikkan et al., 2018). Behavioral tests and hazard models 

from studies investigating antibiotics or vitamin A and ASD do not support a causal 

relationship (Axelsson et al., 2019b; Hamad et al., 2018; Liu, J. et al., 2017). Other studies 

have found decreased alpha diversity and altered composition of the oral microbiome (Hicks 

et al., 2018; Qiao et al., 2018).

In 12 month old BTBR T + tf/J (BTBR) inbred mice, an established model of ASD for 

social interaction and behavior, 16 taxa were altered in a sex-specific manner relative to sex-

matched C57BL/6 mice (Coretti et al., 2017). For female BTBR mice, this included an 

increase in Akkermansia spp. and a decrease in Oscillospira spp., whereas in male BTBR 

mice, there was an increase in Lactobacillus spp. and a decrease in Desulfovibrio spp. 

(Coretti et al., 2017). It was later shown that compared to C57BL/6J mice, adult male BTBR 

mice have decreased Bifidobacterium spp. and Blautia spp. associated with dysregulated bile 

acid and tryptophan metabolism related to ASD behavior (Golubeva et al., 2017). Male 

Syrian hamsters exposed to a neurotoxic dose of propionic acid exhibit ASD-like behaviors 

and glutamate excitotoxicity in the brain. A probiotic mixture of Bifidobacterium breve, 

Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus 
casei, Lactobacillus rhamnosus, and Streptococcus thermophiles abrogated the ASD effects 

of high-dose propionic acid (El-Ansary et al., 2018). Deletion of the gene SHANK3 is 

associated with dysregulated neurodevelopment and autistic like behaviors (Durand et al., 

2007). In Shank3 knockout mice, there was a decrease in the levels of Lactobacillus reuteri 
that correlated with decreased expression of gamma-aminobutyric acid (GABA) receptor 

subunits in the brain; supplementation of L. reuteri attenuated unsocial behavior in male 

Shank3 knockout mice and increased GABA receptor expression (Tabouy et al., 2018).

In summary, both ADHD and ASD patients have higher levels of Faecalibacterium, whereas 

Bifidobacterium is higher in ADHD but lower in ASD. Conflicting observations in the 

richness of gut microbiome were made in both diseases.

II-2. Neurodegenerative diseases

II-2.1. Alzheimer’s disease.—AD is a progressive degenerative neurological disorder 

that is among the most common causes of dementia worldwide. An estimated 5.5 million 

Americans are living with AD (Hebert et al., 2013). These include 5.3 million patients above 

65 years of age (10% of all Americans older than 65) and 200,000 individuals below 65 
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(early-onset AD). More than 90% of AD cases are idiosyncratic and late-onset (after age 

65).

Growing evidence supports a critical role of environmental factors interacting with genes of 

susceptibility to influence the initiation and progression of AD. There is an immense 

impetus to understand the interactions between host genes and the functional microbiome 

that may lead to the pathogenesis of AD (Bhattacharjee and Lukiw, 2013). In humans, gut 

microbiome from AD patients has decreased microbial diversity and is compositionally 

distinct from age- and gender-matched healthy controls, evidenced by a decrease in 

Firmicutes and Bifidobacterium spp., but an increase in Bacteroidetes, and such dysbiosis 

correlated with cerebrospinal fluid biomarkers of AD (Vogt et al., 2017). In the APPS1 

transgenic AD mouse model (human transgenes for both amyloid beta precursor protein 

[APP] and presenilin 1 [PSEN1]), GF mice had a drastic reduction of cerebral amyloid β 
(Aβ) pathology, a hallmark for clinical AD, whereas colonizing these GF mice with 

microbiota from the conventional mice increased cerebral Aβ pathology (Harach et al., 

2017). Similarly, life-long combinatorial antibiotics treatment of AD mice also reduced Aβ 
pathology (Minter et al., 2016). Interestingly, probiotic supplementation reduced cognitive 

decline, accumulation of Aβ aggregates, and plasma inflammatory cytokines (Bonfili et al., 

2017). Acute perinatal antibiotic-treatment resulted in long-term alterations of gut 

microbiota, reduction in brain Aβ deposition, and inflammatory signaling in serum and brain 

of aged APPS1 mice, indicating that there is a critical time window early in life to target the 

microbiome and modulate late-onset of AD (Minter et al., 2017).

Microbial metabolites may modulate the gut-brain axis during the pathogenesis of AD. Fecal 

SCFAs were decreased in AD mice (Zhang et al., 2017). In an AD mouse model, 

administration of butyrate, a major microbial-derived SCFA, led to epigenetic 

reprogramming (by inhibiting histone deacetylation [HDAC]) and improved memory, even 

at an advanced stage of disease progression (Govindarajan et al., 2011). Inflammation is a 

critical contributor to the pathogenesis of AD (Akiyama, 1994; Ardura-Fabregat et al., 2017; 

Eikelenboom et al., 1994), and SCFAs also have anti-inflammatory effects through HDAC 

inhibition (Vinolo et al., 2011). These studies suggest that SCFAs are neuroprotective. In 

addition to SCFAs, the microbial-derived ursodeoxycholic acid (UDCA) has been shown to 

be neuroprotective in various in vitro and in vivo AD models by reducing apoptosis and 

promoting cell survival (Ramalho et al., 2008). UDCA treatment can reduce inflammation 

and increase intestinal Akkermansia muciniphila, which is a normal gut bacterial species 

responsible for SCFA production (Van den Bossche et al., 2017).

In summary, gut microbiome may contribute to the pathogenesis of AD through dysbiosis-

induced pro-inflammatory signaling, whereas beneficial microbial metabolites and/or 

bacteria that produce these metabolites may serve as novel therapeutic modalities for AD.

II-2.2. Parkinson’s disease.—Parkinson’s disease (PD) affects an estimated 1 million 

people in the US and is the second most common neurodegenerative disease; however, less 

than 10% of cases are considered hereditary (Nalls et al., 2014). Symptoms of PD include 

motor deficits (tremors), muscle rigidity, bradykinesia, and impaired gait. PD is one of a 

group of neurodegenerative diseases called synucleinopathies characterized by an 
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aggregation of α-synuclein (αSyn). Interestingly, there is a rostrocaudal gradient of αSyn in 

the ENS with higher expression in the upper gastrointestinal tract, and gastrointestinal 

symptoms often occur before motor symptoms in PD (Cersosimo et al., 2013). In a landmark 

study, mice overexpressing αSyn were protected from aggregation by antibiotic treatment, 

and exposing αSyn-overexpressing mice to microbiota of PD patients increased physical 

impairments compared to colonization by healthy donors (Sampson et al., 2016). In an effort 

to identify microbial metabolites that may antagonize PD development, Sampson et al. 

(2016) demonstrated that oral exposure to high concentrations of SCFAs (propionate, 

acetate, and butyrate) was sufficient to produce the motor deficits similar to PD in mice 

(Sampson et al., 2016). A human study, however, found decreased SCFAs in PD patients 

compared to healthy controls (Unger et al., 2016). Gut dybsiosis in PD patients included 

increased Proteus spp., Bilophila spp., and Roseburia spp. along with decreased 

Lachnospiraceae, Rikenellaceae, Peptostreptococcaceae, and Butyricicoccus spp. (Sampson 

et al., 2016). A cross-sectional study comparing PD patients to healthy controls found 

increased Ruminococcaceae to be associated with disease duration (Hill-Burns et al., 2017).

In summary, for AD and PD, fecal SFCAs were lower, suggesting that this class of microbial 

metabolites may be beneficial to prevent the disease onset. In mouse models, SCFA 

supplementation improved memory likely due to the HDAC inhibitor and anti-inflammation 

properties; however, conflicting results were observed in PD mouse models, because oral 

exposure to high concentrations of SCFAs actually produced motor deficit similar to PD.

II-3. Psychiatric disorders.

II-3.1. Depression.—Major depressive disorder (MDD) is a common, life-disrupting 

mental health disorder that is a leading cause of disability worldwide (Moussavi et al., 

2007). Diagnosed by at least two weeks of low mood, MDD is accompanied by low self-

esteem, loss of interest, and low energy. Environmental factors are associated with MDD, 

and several human studies have examined the association between gut microbiome and 

patients with MDD (Aizawa et al., 2016; Chen, Z. et al., 2018; Jiang et al., 2015; Lurie et al., 

2015; Naseribafrouei et al., 2014). Of note, Oscilibacter spp. and Alistipes spp. showed a 

high association with MDD (Naseribafrouei et al., 2014). A second study also found 

increased Alistipes spp. and Enterobacteriaceae, as well as decreased Faecalibacterium spp. 

(Jiang et al., 2015). Bifidobacterium spp. and Lactobacillus spp. were decreased in another 

MDD cohort (Aizawa et al., 2016), and increased Actinobacteria and decreased 

Bacteroidetes were identified in female MDD patients (Chen, Z. et al., 2018). In the chronic 

variable stress rat model for depression, the genera Candidatus Arthromitus and 

Oscillibacter were increased and Marvinbryantia, Corynebacterium, Psychrobacter, 
Christensenella, Lactobacillus, Peptostreptococcaceae incertae sedis, Anaerovorax, 
Clostridiales incertae sedis and Coprococcus were decreased in depressed rats compared to 

control rats (Yu et al., 2017). The Flinders sensitive rat line—a strain used for depression 

studies—had decreased sample richness (alpha diversity) compared to controls with 

increased Proteobacteria and decreased Elusimicrobia and Saccharibacteria (Tillmann et al., 

2018). Interestingly, transplantation of fecal microbiota from human MDD patients to 

microbiota-depleted rats or mice induced depression-like behaviors, such as anhedonia and 

anxiety (Kelly et al., 2016; Zheng et al., 2016). The transplantation of fecal microbiota from 
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depressed patients to GF mice suggested that the gut microbiota could disrupt CAMP 

Responsive Element Binding Protein 1 (CREB) signaling by down-regulating calcium 

voltage-gated channel subunit alpha1 E (CACNA1E) and disrupting axonogenesis of the 

olfactory bulb (Huang et al., 2019). Clinical trials of patients with MDD and one of three 

probiotics improved cognitive performance. Treatment with Lactobacillus plantarum 299v 

decreased the concentration of kynurenine, suggesting that microbial tryptophan metabolism 

may be important for MDD’s etiology (Kazemi et al., 2018; Rudzki et al., 2019). In a male 

C57BL/6 mouse model for chronic unpredictable mild stress-induced (CUMS) depression, 

Clostridium butyricum treatment improved depressive behaviors, possibly because C. 
butyricum upregulated glucagon-like peptide-1 (GLP-1) in the intestine, activated GLP-1R 

in the brain and increased cerebral serotonin (Sun, J. et al., 2018). Overall, gut dysbiosis 

may contribute to MDD and supplementation of probiotics may alleviate the disorder.

II-3.2. Bipolar affective disorder and schizophrenia.—Bipolar affective disorder 

(BD) is a spectrum of psychiatric syndromes through a cyclical pattern of excitement and 

depressive behavior (Akiskal et al., 2000; Dacquino et al., 2015). BD is a major cause of 

global disability and premature mortality (Painold et al., 2018). Several human studies have 

investigated the association between the gut microbiome and BD. A relatively small cross-

sectional comparison of fecal microbiome revealed a negative correlation between duration 

of BD and sample richness (Painold et al., 2018), and decreased microbiome richness was 

also observed in a monozygotic twin study comparing the risk of developing or having BD 

(Vinberg et al., 2019). The abundance of Faecalibacterium spp. was decreased in a small 

cohort of BD patients (Painold et al., 2018), and this was replicated in a larger cohort of BD 

patients that also showed a positive correlation between Faecalibacterium spp. abundance 

and better self-reported outcomes (Flowers et al., 2017). The use of atypical antipsychotics 

as a treatment for BD increased Lachnospiraceae and decreased Akkermansia spp. and 

Sutterela spp. (Flowers et al., 2017). Of clinical interest, patients diagnosed with BD and 

given the probiotic OMNi-BiOTiC® Stress Repair (Bifidobacterium bifidum W23, B. lactis 
W51, B. lactis W52, Lactobacillus acidophilus W22, L. casei W56, L. paracasei W20, L. 
plantarum W62, L. salivarius W24, Lactococcus lactis W19) had significant improvement in 

attention and psychomotor processing speed after taking the probiotic for 1 to 3 months 

(Painold et al., 2018).

Schizophrenia is a debilitating chronic mental health disorder characterized by delusional 

thoughts, disorganized behavior, and decreased participation in daily activities. 

Schizophrenia has increased mortality (Saha et al., 2007) and creates a heavy financial 

burden (Knapp et al., 2004). Although the etiology of schizophrenia is not well understood, 

risk factors include genetic inheritance (Schizophrenia Psychiatric Genome-Wide 

Association Study, 2011) and environmental interactions (Severance et al., 2015; van Os et 

al., 2010). Both microbial richness index (Chao) and diversity index (Shannon) were lower 

in patients with schizophrenia compared to healthy controls (Zheng et al., 2019). GF mice 

given human microbiome fecal transplants of people with schizophrenia exhibited 

schizophrenic-like behaviors and displayed similar glutamatergic hypofunction as other 

mouse schizophrenic models, which have decreased glutamate and increased glutamine and 

GABA (Zheng et al., 2019). A metagenomics analysis of the oropharyngeal microbiome 
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comparing 16 schizophrenia patients with 16 controls demonstrated increased Lactobacillus 
spp. and Bifidobacterium spp., as well as an increase in the fungal phylum Ascomycota 

(Castro-Nallar et al., 2015). Of note, a single-arm study treating schizophrenia patients with 

the probiotic Bifidobacterium breve A-1 had improved anxiety and depression scores, and 

they reported fewer negative symptoms (Okubo et al., 2019). Bifidobacterium spp. was 

increased in the fecal microbiota of older schizophrenic subjects given 4G-β-D-

galactosylsucrose as a prebiotic treatment for underweight patients (Nagamine et al., 2018).

A 16S rDNA gene sequencing study of the fecal microbiome found increased relative 

abundance of the genera Succinivibrio, Megasphaera, Collinsella, Clostridium, Klebsiella 
and Methanobrevibacter in schizophrenia patients compared to healthy controls, whereas the 

abundance of Blautia, Coprococcus, Roseburia was decreased (Shen et al., 2018). A second 

group found increased Anaerococcus whereas Haemophilus, Sutterella, and Clostridium 
were decreased; there was also an association between worsening depressive symptoms and 

the abundance of Bacteroides (Nguyen et al., 2019). Interestingly, metatranscriptomics of 

whole blood from healthy individuals compared to schizophrenia patients found increased 

microbial sample richness; increased diversity was inversely associated with CD8+ CD28− 

CD45RA−, indicating an association between the microbiome, immunity, and schizophrenia 

(Olde Loohuis et al., 2018). A schizophrenia model in rats using social isolation had 

increased Actinobacteria and decreased Clostridia compared to controls and also noted 

associations between gut microbiota and hippocampal interleukin (IL)-6 and IL-10 

(Dunphy-Doherty et al., 2018).

In summary, among the 3 types of psychiatric disorders, decreased gut microbiome richness 

appeared to be a common feature. Faecalibacterium was decreased in both depression and 

BD; whereas Lactobacillus supplementation was beneficial to improve both depression and 

BD. Depression and schizophrenia appeared to have opposite microbial patterns: for 

example, depression has lower Bifidobacterium and Lactobacillus, whereas schizophrenia 

has higher levels of these bacteria.

II-4. Other neurological disorders associated with stress

II-4.1. Postpartum depression.—Postpartum depression is a clinically diagnosed form 

of MDD with onset during the peripartum period; several risk factors for postpartum 

depression include history of depression, pregnancy and birth complications, and 

psychoneuroimmune dysregulation (Association, 2013; Corwin et al., 2015; Dunn et al., 

2015; Osborne and Monk, 2013). As many as 19.2% of women have a major depressive 

episode within the first three months postpartum (Gavin et al., 2005). Remarkably, antibiotic 

exposure was identified as an independent risk factor up to 2 months postpartum (Murphy et 

al., 2018). A cohort of 380 women in New Zealand were given the probiotic Lactobacillus 
rhamnosus HN001 or a placebo from 14–16 weeks gestation through 6 months postpartum; 

women given the probiotic reported lower depression and anxiety scores during the 

postpartum period (Slykerman et al., 2017). Dysbiosis may increase the risk of postpartum 

depression, whereas probiotic supplementation may decrease the risk of depressive episodes.
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II-4.2. Post-traumatic stress disorder.—Post-traumatic stress disorder (PTSD) is a 

commonly occurring condition manifesting after exposure to trauma, such as war, sexual 

assault, and other distressing experiences, and has a high rate of psychiatric comorbidity 

(Kessler, 2000). PTSD can often occur for many years and is frequently associated with 

exposure to multiple traumas (Hemmings et al., 2017). In a mouse model of PTSD, in which 

adult male C57BL/6J mice were exposed to extreme aggression by SJL albino male mice, 

the microbial-influenced metabolites 3-phenylpropionate, hippurate, and 

phenylpropionylglycine were increased in PTSD mice (Gautam et al., 2015), indicating an 

altered gut microbiome. A follow-up study using the same PTSD aggressive mouse model 

showed an immediate and inconsistent dysregulation of microbiome composition, 

specifically for Akkermansia spp, Anaeroplasma spp., Lactobacillus spp., and Oscillospira 
spp. (Gautam et al., 2018). In a preliminary human study investigating the fecal microbiome 

in South African PTSD-affected individuals, there was no difference in the diversity of the 

microbiota, but there was a decrease in the total abundance of the phyla Actinobacteria, 

Lentisphaerae, and Verrucomicrobia associated with PTSD (Hemmings et al., 2017).

II-4.3. Anorexia nervosa.—Anorexia nervosa is an eating disorder characterized by 

severe weight loss (lack of appropriate weight gain or maintenance) often caused by the 

limitation of calories, fear of gaining weight, and denial of being underweight (Miller and 

Golden, 2010). Anorexia nervosa is more likely to affect females than males (Herpertz-

Dahlmann, 2009). The fecal microbiota of 16 female patients showed increased sample 

richness at the time of admission compared to discharge (Kleiman et al., 2015). Relative to 

controls, samples from anorexic patients during admission were higher in the genera 

Anaerostipes and Faecalibacterium, but an undefined genus in the family Coribacteriales 
was lower (Kleiman et al., 2015). Another study identified decreased Clostridium coccoides, 

Clostridium leptum, and Bacteroides fragilis, as well as decreased SCFAs acetic acid and 

propionic acid, in the stool of female patients with anorexia nervosa compared to healthy 

controls (Morita et al., 2015). In another cohort of anorexia nervosa patients, propionate and 

butyrate were decreased, corresponding to increased Enterobacteriaceae and 

Methanobrevibacter smithii and decreased Roseburia spp., Ruminococcus spp., and 

Clostridium spp. (Borgo et al., 2017). Anorexia nervosa patients who gained weight had 

increased sample richness; the genera in Clostridium XI and Bacteroidetes were unique to 

anorexia nervosa patients before weight gain (Mack et al., 2016). In BALB/c mice, a chronic 

caloric restriction study was conducted to determine the effect on gut microbiota (Chen et 

al., 2016). Briefly, caloric intake was limited to prevent weight gain starting at 28 days of 

age and restored to ad libitum feeding after day 97 until day 120 when the tissues were 

collected. Interestingly, the changes in gut microbiome persisted even after lifting the caloric 

restriction. Collectively, it is unclear if the compositional changes mechanistically contribute 

to anorexia nervosa.

III. Gut microbiome mechanistically contributes to behavior changes – 

lessons learned from germ free (GF) research models.

Studies have established the association between intestinal dysbiosis and neurological 

disorders of various etiologies (Alam et al., 2017; Bourassa et al., 2016; Galland, 2014; 
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Heiss and Olofsson, 2019; Kelly et al., 2017; McKay et al., 2017; Moos et al., 2016; 

Tremlett et al., 2017; Zhu et al., 2017), but the role of the gut microbiome in modulating 

various behavior changes requires mechanistic investigations using laboratory models such 

as GF rats and mice. GF rats had exacerbated neuroendocrine and behavior responses to 

acute stress, coinciding with alterations of the dopaminerigic turnover rate in the upper 

structures of the brain known to regulate stress response and anxiety-like behavior 

(Crumeyrolle-Arias et al., 2014). The GF rats also had higher serum corticosterone levels 

and elevated mRNA of corticotropin releasing factor but reduced mRNA of glucocorticoid 

receptor in hippocampus (Crumeyrolle-Arias et al., 2014). Similarly, GF mice had impaired 

cognitive behaviors in response to novel objects, corresponding to decreased expression of 

genes involved in brain-derived neurotrophic factor (BDNF) signaling in amygdala, which is 

a key region for the social brain network (Arentsen et al., 2015). In response to restraint 

stress, plasma levels of adrenocorticotropic hormone (ATCH) and corticosterone were also 

substantially higher in GF mice (Sudo et al., 2004). Conversely, under basal conditions (i.e. 

without an environmental stimulus), GF mice exhibited anxiolytic behavior accompanied by 

decreased mRNA expression of the N-methyl-D-aspartate receptor subunit NR2B in the 

central amygdala, as well as increased mRNA of BDNF but decreased mRNA of serotonin 

receptor 1A in the dentate granule layer of the hippocampus (Neufeld et al., 2011). There are 

also many morphological differences between specific pathogen-free (SPF) and GF mice. 

For example, GF mice had delayed brain maturation and organization, evidenced by lower 

volumes and fractional anisotropy in major gray and white matter areas, as well as lower 

levels of myelination in total brain and major white and grey matter structures at either 4 or 

12-weeks of age, which demonstrate delayed brain maturation and organization (Lu et al., 

2018). This coincided with lower mobility and higher anxiety of GF mice in an open field 

test, which is a photo beam tracking method to monitor the movement of animals with two 

sets of infrared beams, at 4-weeks of age (Lu et al., 2018). At 12-weeks of age, GF mice also 

had reduced spatial and learning memory in the Morris water maize test, which measures 

spatial learning for subjects that use distal cues to navigate from start locations around the 

perimeter of an open swimming field to locate a submerged escape platforms. At this age, 

GF mice also exhibited reduced contextual memory in contextual fear conditioning test, 

which measures persistent freezing behavior using a foot shock context arena and a 

conditioned stimulus, in order to quantify hippocampus-dependent learning and memory test 

(Lu et al., 2018). Last but not least, in a three-chamber social test, which assesses cognition 

in the form of interest in a never-before-met intruder (i.e. social novelty), GF mice had 

reduced social novelty at 12-week of age. Similar behavioral changes were also observed in 

antibiotic-treated SPF mice (Desbonnet et al., 2015).

While the absence of gut microbiota leads to marked behavior changes, microbial 

colonization of GF mice reprogrammed the postnatal development of the HPA system. For 

example, the heightened HPA stress response in GF mice was attenuated by inoculation with 

Bifidobacterium infantis, but was enhanced by the enteropathogen Escherichia coli (Sudo et 

al., 2004). There appears to be a critical time window for microbiome inoculation to affect 

behavior in GF mice as fecal transplants from SPF mouse donor to 6 week old but not 8 

week old GF mice reduced elevated HPA response in GF mice (Sudo et al., 2004). Early-life 

inoculation using SPF feces reduced the expression of postsynaptic density protein 95 
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(PSD-95) and synaptophysin in the striatum, which are involved in the neuronal circuits for 

motor control and anxiety behavior (Diaz Heijtz et al., 2011). Together these studies 

demonstrate that the presence of the commensal gut microbiota has dual functions in 

modulating both cognitive functions under basal conditions as well as stress response.

IV. Microbiome and neurotoxicants

IV-1. Air pollution.

Recent epidemiological studies have established a positive correlation between exposure to 

ubiquitous traffic-related air pollution and the exacerbations of various neurological 

disorders such as Alzheimer’s disease and Parkinson’s disease (Babadjouni et al., 2017; 

Calderon-Garciduenas et al., 2016). Large populations living in highly polluted metropolitan 

regions are at higher risk for robust central nervous system pathology (Babadjouni et al., 

2017). The primary cause of urban air pollution is through vehicular emissions. Exposure to 

fine particulate matter (PM2.5) and ozone above US EPA standards, have been linked to 

both Alzheimer’s and Parkinson’s diseases (Calderon-Garciduenas et al., 2016; Palacios, 

2017; Shin et al., 2018). Air pollution positively associates with the hallmark clinical 

characteristics of neuroinflammation and CNS diseases, including increased expression of 

pro-inflammatory markers in brain, diffused amyloid plaques, neuronal cell loss, and 

impaired cognition (Block and Calderon-Garciduenas, 2009). It has been suggested that 

inhaled particulate matter can directly translocate to the brain and cause neuroinflammation, 

which in turn contributes to neuro-degeneration (Calderon-Garciduenas et al., 2016; 

Oberdorster et al., 2005). In addition, the novel contribution of the gut-brain axis in several 

CNS disorders suggests that gut-derived pro-inflammatory signaling accompanied with dys-

regulated microbial or host-derived lipid profiles may contribute to neurotoxicity (Russo et 

al., 2018; Valles and Francino, 2018). In human subjects, exposure to freeway air pollution 

correlated with decreased Bacteroidaceae and increased Coriobacteriaceae as well as 

increased fasting glucose levels (Alderete et al., 2018). In mice, inhalation of PM air 

pollution altered the composition of the gut microbiome and was suggested to play a role in 

PM-induced GI inflammation (Beamish et al., 2011; Kish et al., 2013; Mutlu et al., 2018). 

Because intestinal bacteria contribute to both local and systemic inflammation, the latter 

may lead to neuroinflammation (Grigg and Sonnenberg, 2017; Reinoso Webb et al., 2016). 

Investigation of the interplay among air pollution, gut microbiome, and inflammatory 

signaling is an intriguing direction in research on mechanisms of neurotoxicity.

IV-2. Antibiotics and drugs.

The important role of gut microbiome in the biotransformation of various therapeutic drugs 

has been extensively reviewed (Bisanz et al., 2018; Carmody and Turnbaugh, 2014; Haiser 

and Turnbaugh, 2013; Spanogiannopoulos et al., 2016). Briefly, gut microbiome can either 

utilize their own enzymes to metabolize drugs into reactive or inactive metabolites or can 

secrete endogenous microbial metabolites into circulation to interact with host receptors in 

various organs. We will focus on studies on gut microbiome and the drug categories that 

have neurotoxic side effects as summarized in Table 2. These drugs are selected based on 

Chapter 16 of the Casarett & Doull’s Toxicology Textbook (Klaassen, 2013) as well as 
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literature search regarding the involvement of the gut microbiome in the metabolism and/or 

toxicities of these chemicals.

Microbiome and compounds associated with neuropathies.—The anti-cancer 

drug doxorubicin is known to produce progressive ataxia in laboratory animal models 

through degeneration of dorsal root ganglion cells and axonal degeneration (Graham and 

Lantos, 1997; Spencer and Schaumburg, 2000). In the human gut microbiome, doxorubicin 

can be inactivated by Raoultella planticola via reductive deglycosylation (Yan et al., 2018), 

thus targeting this bacteria is promising to reduce its side effects including neurotoxicity. 

Intestinal bacteria contribute to doxorubicin-induced intestinal damage (Rigby et al., 2016), 

whereas the dietary fiber pectin, which is a substrate of microbial fermentation, can reduce 

doxorubicin-induced intestinal inflammation through direct interaction with host Toll-like 

receptors 1 and 2 (Sahasrabudhe et al., 2018). In addition, gut microbiota can affect the 

efficacy of doxorubicin and many other anticancer drugs (Florez et al., 2016; Lehouritis et 

al., 2015), whereas doxorubicin can alter the gut microbial activity (Song et al., 2015). It 

may be interesting to investigate whether the interactions between doxorubicin and gut 

microbiota may modify the CNS toxicity.

MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is an industrial chemical and 

contaminant of illicit narcotics that selectively destroys dopaminergic neurons of the 

nigrostriatal pathway, leading to Parkinsonian syndromes (Calne et al., 1985; Kopin, 1987). 

In mice, sub-chronic MPTP exposure affected the gut microbiome diversity, which was 

associated with sensorimotor performance and fear learning (Torres et al., 2018). 

Importantly, dysbiosis and GI dysfunction precedes motor dysfunction (Lai et al., 2018), 

whereas fecal microbiota transplantation from MPTP-exposed mice alone can induce motor 

impairment and striatal neurotransmitter decreased in normal mice (Sun, M.F. et al., 2018). 

Therefore, microbiota may mechanistically contribute to the pathogenesis of Parkinson’s 

disease.

Microbiome and compounds associated with axonopathies.—The antibiotic and 

antiprotozoal drug metronidazole is a drug that can produce peripheral neuropathy (Goolsby 

et al., 2018), leading to axonal degeneration, lesions of cerebellar nuclei, mostly affecting 

myelinated fibers (Graham and Lantos, 1997; Spencer and Schaumburg, 2000). Studies 

showed that metronidazole also altered gut microbiota in the colon of healthy rats, evidenced 

by increased Bifidobacteria spp. (especially Bifidobacterium pseudolongum) and 

Enterobacteria, and this associated with increased mucus layer thickness (Pelissier et al., 

2010). While this effect has been suggested to benefit the treatment of inflammatory bowel 

diseases, potential systemic effects following changes in the microbiota, especially on the 

CNS, need further investigation.

The antibiotic nitrofurantoin produces peripheral neuropathy via axonal degeneration 

(Spencer and Schaumburg, 2000). In human subjects with urinary tract infections, 

nitrofurantoin treatment correlated with a reduced relative abundance of the genus 

Clostridium and an increased relative abundance of the genus Facalibacterium (Stewardson 

et al., 2015), whereas another clinical study showed that nitrofurantoin treatment resulted in 

a temporary increase in Bifidobacterium (Vervoort et al., 2015). Overall, it is generally 
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considered that this drug only has a mild effect on the gut microbiota community, although 

the potential changes in microbial functions locally and in distal organs need additional 

investigations.

The anticancer drug cisplatin produces peripheral neuropathy evidenced by axonal 

degeneration and microtubule accumulation in early stages (Graham and Lantos, 1997; 

Spencer and Schaumburg, 2000). In mice, cisplatin treatment disrupts the gut microbiome as 

well as the mucosal integrity, and this can be partially corrected by Ruminococcus gnavus, 

which is one of the bacteria that is depleted by cisplatin, or by fecal gavage (Perales-Puchalt 

et al., 2018).

Microbiome and compounds associated with myelinopathies.—Amiodarone is 

an anti-arrhythmic drug that is known to produce myelinopathy (Graham and Lantos, 1997; 

Spencer and Schaumburg, 2000) as well as peripheral neuropathy following long-term high-

dose therapy (Fraser et al., 1985). In rats, oral administration of Lactobacillus casei DN-114 

001 slowed the absorption of amiodarone without altering the pharmacokinetics of its main 

metabolite (Matuskova et al., 2017); however, oral administration of Escherichia coli Nissel 

1917 (EcN) increased the oral bioavailability of the parent compound as well as the P450-

mediated metabolism (Matuskova et al., 2014). These studies at the single-strain resolution 

have suggested that targeting distinct microbiota can alter the pharmacokinetics and 

potentially the toxicity of amiodarone.

Disulfiram, which treats chronic alcoholism by inhibiting aldehyde dehydrogenase, produces 

peripheral neuropathy and swelling in distal axons (Graham and Lantos, 1997). 

Interestingly, disulfiram was repurposed as an antibiotic for multi-drug resistant 

Staphylococcus aureus infections, and it can increase the vancomycin susceptibility of three 

clinical vancomycin-resistant S. aureus strains (Long, 2017). The disulfiram metabolite 

diethyldithiocarbamate also has antibacterial activity towards Bacillus anthracis (Frazier et 

al., 2019). In addition, disulfiram-based disulfide derivatives have been shown to exhibit 

antibacterial activity against gram-positive Staphylococcus, Streptococcus, Enterococcus, 

Bacillus, and Listeria spp. (Sheppard et al., 2018). It remains unknown whether the 

antibacterial effect of disulfiram can affect the CNS.

Psychotropic drugs.—Several psychotropic drugs, including fluoxetine and 

escitalopram, have antimicrobial effects in vitro (Cussotto et al., 2018). Alternatively, 

lithium, valproate, and aripiprazole increased the richness and diversity of gut microbiome 

in human gut. In addition, escitalopram, venlafaxine, fluoxetine and aripiprazole have also 

been shown to increase the permeability in the ileum. Because it is known that microbiota 

plays an important role in regulating the gut-brain interactions, it has been suggested that the 

intestinal effect of the psychotropics may contribute to the mechanism of action and side 

effects of these medications (Cussotto et al., 2018).

IV-4. Metals and metalloids

Arsenic.—Arsenic is a carcinogenic metalloid that is widely distributed in nature in its 

trivalent (arsenic trioxide and sodium arsenite) and pentoxide forms (sodium arsenate, 

arsenic pentoxide, and arsenic acid). Other organoarsenicals are also common. Occupational 
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exposure to arsenic compounds comes in the form of pesticides, herbicides, and other 

agricultural products. Environmental arsenic is in drinking water with sources in the United 

States less than 5 μg/L (Environmental Protection Agency maximum contaminant limit is 10 

μg/L), however it is estimated that many people in Bangladesh drink water in excess of 50 

μg/L (Klaassen, 2013). Acute exposure to arsenic has many symptoms, including fever, 

anorexia, hepatomegaly, melanosis, cardiac arrhythmia, and terminal cardiac failure, as well 

as a delay in sensory loss in the peripheral nervous system (Wallerian degeneration of axons) 

(Klaassen, 2013). Chronic arsenic exposure can cause diffuse or spotted hyperpigmentation 

or hypopigmentation, as well as liver injury. Interestingly, peripheral neuropathy also occurs 

with the development of numbness or “pins and needles” in the hands and feet, caused by 

dying-back axonopathy with demyelination.

From environmental observations, there was a non-significant trend in microbiome 

composition dependent on arsenic contamination observed in soil and earthworm 

microbiome samples around an arsenic mine, with about 47 taxa (about 7% of the 

abundance) driving the differences (Pass et al., 2015). Zebrafish exposed to varying low 

concentrations of arsenic (10, 50, and 100 ppb for 20 days) found 43 amplicon sequence 

variants that increased in abundance and 43 that decreased at the genus level (Dahan et al., 

2018).

The Simulator of the Human Microbial Intestinal Ecosystem (SHIME) system is a dynamic 

series of six compartments and pumps that are used to mimic the intestines by controlling 

the pH, relative volume of fluid, and residence time, as well as the inoculation of the human 

microbiome (Joly et al., 2013; Requile et al., 2018). Regarding arsenic toxification and 

detoxification via methylation by gut microbiome, a study using the human SHIME model 

showed that arsenite (As[II]) is more readily metabolized than arsenate (As[V]), 66.5–92% 

to 22.1–38.2% respectively (Yin et al., 2015), and gut microbiota can also release arsenic 

from the soil in solid phase for absorption (Yin et al., 2017). Another SHIME model 

demonstrated that co-administration of drinking water with ferric iron and arsenic increased 

arsenic methylation and decreased absorption in the colon. Effluents from iron-exposed 

SHIME colons decreased toxicity in the human hepatoma cell line HepG2 cells (Yu et al., 

2016). Bacteroides spp., Clostridium spp., Alistipes spp., and Bilophila spp. had resistance 

to and ability to methylate arsenic (Yu et al., 2016).

Several mouse studies have looked at the effect of arsenic exposure on the microbiome using 

16S rDNA gene sequencing data. One of the first arsenic microbiome studies exposed 

C57BL/6 mice to 10 ppm arsenic in drinking water for 4 weeks and showed clear 

microbiome compositional differences between control and exposed mice with 2 microbial 

classes increased and 7 classes decreased (Lu et al., 2014). Another study showed that 

microbiome compositional and functional changes could be sex-specific (Chi et al., 2016), 

and a follow-up study exposing mice to 100 ppb arsenic for 13 weeks showed altered 

abundance of microbial genes involved in carbohydrate metabolism, especially pyruvate 

fermentation, short-chain fatty acid synthesis, and starch utilization, as well as stress 

response genes (Chi et al., 2017a). However, mice exposed to arsenite (10 or 250 ppb) did 

not have altered expression of arsenate reductase (arsA) or the arsenite exporter (arsB), thus 
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bacteria with genes protective against arsenic may not be the bacteria that were increased 

during arsenic exposure (Dheer et al., 2015).

Importantly, Coryell et al. (2018) showed that GF mice and antibiotic-treated conventional 

mice exposed to arsenate (25 and 100 ppm) excreted less arsenic in stool and accumulated 

more arsenic in organics relative to control mice. GF arsenite methyltransferase (As3mt)-

knockout mice are hypersensitive to arsenic-induced mortality but are protected following 

human fecal microbiome transplants, likely in part due to protective properties of 

Faecalibacterium prausnitzii (Coryell et al., 2018). Similarly, antibiotic-treated mice exposed 

to arsenite (III; 250 ppb and 1 ppm) had increased total urinary arsenic, but decreased fecal 

arsenic than conventionally raised mice, indicating that a depleted microbiome could absorb 

more arsenic (Chi et al., 2019). This evidence suggests that gut microbiota may limit the 

arsenic absorption, but no conclusions are definitive between arsenic-induced microbiome 

neurotoxicity. Additionally, many of the studies used exposures greater than the described 

human exposures (50 ppb or 50 μg/L in the population from Bangladesh); therefore, 

translational conclusions regarding arsenic exposure and microbiome in humans should 

remain cautious.

Copper.—Copper is a trace element found in all tissues and is required for a plethora of 

molecular events including cellular respiration, peptide amidation, neurotransmitter 

biosynthesis, pigment formation, and connective tissue strength. Copper is present 

throughout the brain with many enzymes in the CNS being copper-dependent for proper 

function. Both a deficiency and an excess of copper due to genetics or environmental factors 

can lead to several neurological conditions, including aceruloplasminemia, Alzheimer’s 

disease, amyotrophic lateral sclerosis, Huntington’s disease, Menkes disease, occipital horn 

syndrome, Parkinson’s disease, prion disease, and Wilson disease (Desai and Kaler, 2008). 

Copper ions are naturally antimicrobial, but very few papers have investigated the 

antimicrobial properties of copper on the gut microbiome. Culturing of chicken ileal 

microbiome exposed to copper increased Lactobacillus spp. while decreasing Escherichia 
coli, but the effect of copper on the in vivo microbiome was negligible (Pang et al., 2009). 

Supplementation of copper to dairy calves for 75 days increased the richness of the rumen 

microbiome and decreased the lipopolysaccharide biosynthetic pathway (Biscarini et al., 

2018). It appears that copper supplementation, not necessarily excess copper, may alter the 

microbiome composition, but it is unclear if this may play a role in copper neurotoxicity.

Gold.—Elemental gold is considered nontoxic and is used as an aesthetic enhancement in 

food and drinks. However, gold in its ionic form can have neurotoxic effects. For example, 

used as an anti-inflammatory treatment for rheumatoid arthritis, gold sodium thiomalate 

decreases the number of unmyelinated axons, suggesting gold could slow signal response to 

the peripheral nervous system (Levine et al., 1986; Salzer and Zalc, 2016). A study 

investigating gold nanoparticle protection against colitis also identified a gut dysbiosis in 

mice following 8 days of exposure with decreased species richness as well as decreased 

Lactobacillus spp. and other SCFA-producing bacteria (Kase et al., 1987). Further research 

is needed to understand the effect of ionic gold on the gut microbiome and neurotoxicity.
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Lead.—Lead is a non-essential, heavy metal toxicant that can cause severe neurotoxicity 

with the EPA dictating the action level at 15 ppb. Adults can be exposed to lead through 

contamination of drinking water via lead pipes or by its natural occurrence in the 

environment, as well as in occupational settings such as smelting and soldering. Children 

can also be exposed through mouthing or consuming objects other than food, such as dust 

and lead contaminated paint. Children more readily absorb lead compared to adults with 

limited protection by the developing blood-brain barrier (Perlstein and Attala, 1966). Shown 

in Figure 2A, lead concentrations in mussels on the coastal regions of the US are highest on 

the East coast between Washington and Boston with large areas of exposure around the Lake 

Erie region in northern Ohio, Chicago, and along the West coast near San Francisco and 

Seattle (see Methods for GIS data analysis). Concentrations of lead in bivalves ranged from 

0.172 to 73.6 μg/dry g. Large acute exposures result in severe cerebral edema, likely due to 

damaged endothelial cells, with children more likely to develop lead encephalopathy than 

adults (Johnston and Goldstein, 1998). Although not well understood, chronic lead exposure 

results in peripheral neuropathy and can also include gastritis, abdominal pain, anemia, and 

deposits of lead in gums and long bones.

Animal studies showed that lead exposure (acute, chronic, and perinatal) alters the 

composition of the gut microbiome, which may contribute to metabolic disorders. For 

instance, perinatal lead exposure in drinking water (32 ppm; 2 weeks before mating to 

postnatal day 21) increased the adult body weight of male mouse offspring, but not female 

offspring, and this was highly associated with microbiome compositional change, suggesting 

that lead-exposed gut microbiome may play a role in sex-specific differences (Wu et al., 

2016). Adult female C57BL/6J mice exposed to lead (10 ppm) for 13 weeks decreased the 

abundance of the genera Blautia, Coprococcus, two species of Ruminococcus, and 1 genus 

in each of the families Clostridiales and Lachnospiraceae, as well as increased abundance of 

a genus in the Clostridiaceae family (Gao et al., 2017c). Lead exposure also reduced 

microbial metabolites in the vitamin E and bile acid pathways as well as altering the gene 

abundance for nitrogen metabolism and energy metabolism (Gao et al., 2017c). 

Dysregulated energy metabolism and altered microbiome composition were also found in 5-

week-old mice exposed up to 0.1 mg/L (0.1 ppm) of lead for 15 weeks; a dose-dependent 

decrease in the phylum Bacteroides and an increase in Firmicutes was observed (Xia, J. et 

al., 2018a). Adult male zebrafish exposed to 0.03 mg/L (0.03 ppm) lead for 7 days had an 

increase in Firmicutes, but a decrease in Proteobacteria; in total 30 genera were altered by 

acute lead exposure (Lai et al., 2018). Many of the microbiome-lead exposure studies 

identified changes in gut microbiome, however the exposures are greater than the EPA action 

limit of 15 ppb and no studies related the changes in microbiome to neurotoxic effects in the 

host. More studies are needed to identify if gut microbiome is a contributing factor to lead-

induced neurotoxicity.

Magnesium.—Magnesium is an important cofactor that helps regulate diverse chemical 

reactions in the body, including cardiovascular, alimentary, endocrine, and osteoarticular 

systems, as well as brain biochemistry by influencing neurotransmission pathways 

associated with depression (Rajizadeh et al., 2017; Serefko et al., 2016). Mice exposed to a 

magnesium-deficient diet for 6 weeks had increased depressive-like behaviors and a gut 
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microbiome composition correlated with magnesium deficiency (Winther et al., 2015). 

However, it is unclear if the compositional changes in gut microbiome contribute to the 

observed depressive-like behaviors.

Manganese.—Manganese is an essential trace element needed for many enzymatic 

reactions, such as arginase and glutamine synthatase. Excessive consumption of manganese 

can lead to Parkinson’s disease-like symptoms, including dysfunction of the basal ganglia 

(Dobson et al., 2004). In the United States, the highest concentration of manganese in 

bivalves is in northern Ohio and northwestern New York around the Great Lakes region 

(Lake Erie and Lake Ontario; Figure 2A). Adult mice exposed to neurotoxic concentrations 

of manganese for 13 weeks induced a gut dysbiosis for 12 genera in female mice and 16 

genera in male mice. Furthermore, there was an increase in microbial tryptophan synthesis 

pathways in females, but in males, there was a general decrease in GABA/Putrescine 

metabolism (Chi et al., 2017b). Again, it is not known if the changes in gut microbiome 

contribute to manganese toxicity.

Mercury and methylmercury.—Elemental mercury (Hg) is a heavy, silvery liquid metal 

that is used in products such as thermometers, barometers, float valves, and fluorescent 

lamps. Exposure to elemental mercury may cause emotional disturbances, tremors, and 

fatigue, but there is limited evidence of toxicity in humans (Klaassen, 2013). The National 

Institute for Occupational Safety and Health (NIOSH) limits occupational exposures to 0.05 

mg/m3 (about 6 ppb) over a 10-hour workday and the EPA limits mercury to 2 ppb in 

drinking water. In the context of the microbiome, one study examined the development of 

Hg and antibiotic resistance in bacteria of the estuarine fish mummichog (Fundulus 
heteroclitus) upon exposure to Hg in the diet for 15 days. The microbiome of fish exposed to 

mercury developed resistance to at least 3 antibiotics compared to control fish; furthermore, 

there was an 8-fold increase in the mercury resistance gene mercuric reductase at a mercury 

contamination site (Lloyd et al., 2016). This indicates that mercury exposure induced the co-

selection of mercury and antibiotic resistance. An epidemiological study of pregnant women 

and children found that consumption of probiotic yogurt was protective against increased 

blood levels of mercury and arsenic in pregnant women but not children (Bisanz et al., 

2014). Interestingly, a combinational exposure of copper and mercury in female Kunming 

mice decreased the abundance of the genera Sporosarcina, Jeotgailcoccus, and 

Staphylococcus, but increased the genus Anaeroplasma (Ruan et al., 2018). It is unclear how 

the shift would affect neurotoxicity, but this demonstrates the need to consider mixtures 

when assessing risk.

Methylmercury (organic mercury) is highly toxic, causing neuronal degeneration, ataxia, 

paresthesia, and psychomotor retardation in adults (Klaassen, 2013). In children, exposure to 

methylmercury can cause developmental disabilities, retardation, and cognitive deficits, 

which is attributed to an immature blood-brain barrier and higher disposition of mercury in 

the developing brain. In an epidemiological study, methylmercury concentration in the stool 

or total mercury in hair of pregnant women (36–39 weeks gestation) was correlated with 17 

bacterial genera, but there was no detection of the mercury methylation gene or the 

methylmercury detoxification genes (Rothenberg et al., 2016). The inability to identify 
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known mercury biotransformation genes in the gut microbiome of pregnant women could be 

attributed to small sample size (n=6) or there could be exciting new alternative pathways for 

microbial mercury metabolism. One group cultured the microbiome of two human subjects 

to investigate methylmercury metabolism rate in relation to nutrients; there was a 

dependency of diet on demethylation of methylmercury by an increase in protein content, 

but the responsible genes and mechanism could not be identified (Guo, G. et al., 2018). 

Changes in gut microbiome following dietary exposure to methylmercury is further 

supported by a study in fathead minnows which showed significant compositional 

differences between methylmercury exposed and unexposed groups with 18 genera altered 

by exposure (Bridges et al., 2018). They found an increase in bacteria that generally have 

genes for xenobiotic metabolism and metal removal, including Deltaproteobacteria FAC87, 

Xanthomonadaceae, Comamonadaceae, Cloacibacterium spp., and Pirellula spp. (Bridges et 

al., 2018). Overall, more studies at human relative exposures are needed to conclude the 

effect of mercury and microbiome on host neurotoxicity.

IV-5. Persistent environmental toxicants.

PCBs.—Polychlorinated biphenyls (PCBs) were formerly used in industrial and consumer 

projects before they were banned in the United States in 1979. Due to their bio-accumulative 

nature, these persistent environmental contaminants are still of significant public health 

concern and are listed on the 2015 Agency for Toxic Substances and Disease Registry 

Substance Priority List (http://www.atsdr.cdc.gov/SPL/index.html). PCBs are frequently 

detected in fatty food (Gorchev and Jelinek, 1985; Newsome et al., 1998), air in public 

schools (Herrick, 2010; Herrick et al., 2016), industrial paint pigments (Anezaki and 

Nakano, 2014; Hu and Hornbuckle, 2010), as well as human samples including blood, 

adipose, milk, and placenta (Nakagawa et al., 1987; Suzuki et al., 2005; Wang et al., 2010). 

In humans, epidemiological studies showed a positive link between developmental PCB 

exposure and neurological deficits in infants and children (Korrick and Sagiv, 2008; Schantz, 

1996; Winneke, 2011). Symptoms associated with PCB neurotoxicity include decreased 

motor and cognitive skills in newborns, greater incidence of behavioral problems and lower 

IQ scores in children, and lower cognitive functioning in older adults (Przybyla et al., 2017; 

Ribas-Fito et al., 2001; Schantz, 1996). Developmental neurotoxicity following PCB 

exposure has also been observed in laboratory animals including mouse and rat pups, as well 

as chicken embryos (Kania-Korwel et al., 2017; Roelens et al., 2005; Yang et al., 2009) and 

in neuronal cell cultures (Lyng and Seegal, 2008; Lyng et al., 2007). Suggested molecular 

mechanisms of PCB neurotoxicity include binding to aryl hydrocarbon receptor (for dioxin-

like PCB congeners), decreasing dopamine content, GABAergic neuronal dysfunction, 

interference with calcium signaling, as well as altering the dendritic growth and plasticity by 

promoting the activity of ryanodine receptors (Lyng et al., 2007; Tilson and Kodavanti, 

1998; Yang et al., 2009).

As shown in Figure 2B, Concentrations of PCB-95 in bivalves ranged from 0.12 to 153.88 

ng/dry g while concentrations of PCB-153 ranged from 0.04 to 472.5 ng/dry g. Similar to 

PBDEs, concentrations of both PCB congeners tended to increase with increasing proximity 

to coastal cities with large populations, with overall higher concentrations of PCB-153 
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measured. One exception to this trend appears south of Miami, Florida where PCB-95 is 

present in higher concentrations than PCB-153.

Coinciding with PCB-associated neurodevelopmental disorders, there is strong evidence that 

intestinal dysbiosis also plays a role in the etiology of these diseases (Borre et al., 2014; 

Warner, 2019). In adult mice, oral exposure to an environmentally relevant PCB mixture 

(PCB-153, PCB-138, and PCB-180) was shown to decrease the levels of Proteobacteria 
correlating with the activity level of the mice, whereas exercise attenuated PCB-induced 

changes in gut microbiome (Choi et al., 2013). Dioxin-like PCB-126 increased both 

intestinal and systemic inflammation correlating with gut dysbiosis (Petriello et al., 2018). 

Gut dysbiosis may lead to altered microbial metabolites as well as increased pro-

inflammatory cytokines in circulation. Oral exposure to PCBs increased pro-inflammatory 

mediators in brain and other metabolic organs (Chi et al., 2018; Sipka et al., 2008). Because 

systemic inflammation has been linked to neuroinflammation (Bendorius et al., 2018), it is 

possible that PCB-induced gut dysbiosis contributes to PCB-induced neurotoxicity partially 

through inflammation. In addition, there is a positive association between circulating 

glucagon-like peptide-1 (GLP-1) and Bifidobacterium spp. following PCB-126 exposure 

(Petriello et al., 2018) with GLP-1 protecting against neurotoxicity of various etiologies 

(Athauda and Foltynie, 2016; Chang et al., 2018; Khalilnezhad and Taskiran, 2018).

PBDEs.—Polybrominated diphenyl ethers (PBDEs) are a class of persistent environmental 

contaminants that were previously used as flame retardants in various consumer products. 

Although the commercial use of PBDEs has been recently banned in the United States, 

PBDEs are still ubiquitously found in the environment due to their resistance to degradation, 

bio-accumulation along the food chain, as well as the recycling of PBDE-containing 

products worldwide (Schecter et al., 2010; Schecter et al., 2003). PBDE levels in human 

specimens, such as blood, breast milk, and adipose tissue, have increased exponentially over 

the last 30 years, and are especially high in North America as compared to European and 

Asian countries (Costa et al., 2014; Costa and Giordano, 2007). Infants and toddlers are 

particularly vulnerable to PBDE-induced adverse effects due to exposure to PBDE-

contaminated breast milk and dust (Costa et al., 2014). In contrast to many studies, a 2017 

study in middle-aged and older Californian women showed a modest average annual percent 

increase in serum concentrations of 3 major PBDE congeners (BDE-47, BDE-100, and 

BDE-153) from 2011 to 2015 (Hurley et al., 2017). The Geographic Information System 

(GIS)-based distribution of 2 breast milk-enriched PBDE congeners (BDE-47 and BDE-99) 

in coastal areas of the United States is shown in Figure 2C. Concentrations of BDE-47 in 

bivalves ranged from 0.3 to 68.4 ng/dry g and concentrations of BDE-99 ranged from 0.2 to 

38.4 ng/dry g. The concentrations of both congeners tended to increase with proximity to a 

major coastal city, and overall higher concentrations of BDE-47 measured. Higher 

brominated congeners are thought to debrominate into lower forms through photolytic 

degradation, which possibly explains this overall trend (Lagalante et al., 2011). BDE-47 was 

present in notably higher concentrations than BDE-99 near Houston, Texas, Biloxi, 

Mississippi, Mobile, Alabama, and Tampa, Florida.

PBDEs are present in 97% of adults in the United States as measured by the National Health 

and Nutrition Examination Survey (NHANES), with BDE-47 and BDE-99 present in the 
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highest serum concentrations (Sjodin et al., 2008). Pregnant Mexican immigrant women 

living in California were found to have increasing levels of total PBDEs with each year of 

residence as measured by the Center for the Health Assessment of Mothers and Children of 

Salinas (CHAMACOS) cohort, with BDE-47 the most common congener found (Castorina 

et al., 2011). In fact, BDE-47 can reach higher levels in Americans than total PBDE levels in 

humans in other countries (Fromme et al., 2009). For 223 Mexican women living in 

California as measured through the CHAMACOS cohort, increasing total PBDE (including 

BDE-47 and BDE-99) serum concentrations were associated with lower chance of 

pregnancy (Harley et al., 2010).

PBDEs have been linked to developmental neurotoxicity. A 2018 review and meta-analysis 

of animal evidence showed that exposure to BDE-47, BDE-99, and BDE-209 affects 

learning (Dorman et al., 2018). In humans, large prospective cohorts showed that in utero 
exposure to PBDEs is associated with impaired executive function and poor control of 

attention in children and that prenatal and postnatal PBDE exposure adversely impact 

externalizing behavior (Vuong et al., 2018). However, the exact mechanisms of PBDE-

induced neurotoxicity in humans is unknown. In mice and rats, perinatal PBDE exposure at 

environmentally relevant concentrations produced persistent changes in spontaneous motor 

activity, including hyperactivity and decreased habituation, as well as disruptions in learning 

and memory (Costa and Giordano, 2007). Proposed mechanisms of PBDE developmental 

neurotoxicity include reduction of circulating thyroid hormones, induction of apoptotic cell 

death of neurons and astrocytes, oxidative stress-induced damage, interference with calcium 

signaling and neurotransmitters, as well as biotransformation of PBDEs (Costa et al., 2014; 

Costa and Giordano, 2007; Giordano et al., 2008). In zebrafish, developmental neurotoxicity 

of DE-71 (a commercial PBDE mixture) decreased expression of genes involved in central 

nervous system development and decreased locomotion activity (Chen et al., 2012).

Investigation of the involvement of gut microbiome in PBDE-induced neurotoxicity is still at 

an early stage. We hypothesize that PBDE neurotoxicity may be regulated through the gut-

liver axis. This hypothesis is based on 1) the evidence that PBDEs are primarily oxidized by 

hepatic cytochrome P450s (CYPs) into hydroxylated metabolites, which are considered 

more toxic than the parent compound (Dingemans et al., 2008), and 2) the observations that 

the hepatic P450 levels are profoundly modified by lack of gut microbiome in mice (Kuno et 

al., 2016; Selwyn et al., 2015; Toda et al., 2009). In primary adult neural stem/progenitor 

cells isolated from subventricular zone of mice, the hydroxylated BDE-47 metabolite 6-OH-

BDE-47, but not its parent compound, inhibited adult neurogenesis demonstrated by 

decreased survival, proliferation, and neuronal differentiation associated with inhibition of 

ERK5 signaling (Li et al., 2013). We have reported that in BDE-47 orally exposed GF mice, 

there was an increase in 5-OH-BDE-47 but lower levels of 4 other BDE-47 hydroxylated 

metabolites in liver; whereas in BDE-99 orally exposed GF mice, there was a decrease in 4 

minor BDE-99 hydroxylated metabolites in liver (Liu, Q. et al., 2017). Interestingly, the lack 

of gut microbiome potentiated PBDE-mediated up-regulation of Cyp1a2 and Cyp3a11 at 

both mRNA and protein levels in mouse liver (Liu, Q. et al., 2017). We also showed that in 

large intestinal content of adult male mice, PBDEs induced a dysbiosis, including an 

increase in Akkermansia muciniphila and Erysipelotrichaceae Allobaculum spp., positively 

associated with increased unconjugated bile acids in serum as well as increased DNA 
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abundance in microbial 7α-dehydroxylation enzymes involved in secondary bile acid 

synthesis (Li et al., 2018). Although evidence in humans is limited, it has been shown in 

mice that deoxycholic acid (a microbial-derived secondary bile acid) may contribute to a 

neurological decline (McMillin and DeMorrow, 2016; McMillin et al., 2016). Microbial 

metabolic functions in the intestine have also been shown to be altered by DE-71 in 

zebrafish, associated with disruption of neural signaling, epithelial barrier integrity, 

inflammatory response, oxidative stress, and compromised detoxification potential in males 

(Vuong et al., 2018). Similar to the studies on heavy metal exposure, a mechanism linking 

microbiome and PBDE-induced neurotoxicity remains elusive.

Organochlorines.—Organochlorines are a class of pesticides that include 

dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), which were 

banned in the 1970s and 1980s due to their reproductive (Salihovic et al., 2016), 

neurobehavioral (Saeedi Saravi and Dehpour, 2016), and immunological (Mrema et al., 

2013) toxicities, as well as carcinogenicity (Freund et al., 2014). In addition, 

organochlorines are environmentally persistent (Jayaraj et al., 2016), and are still detected in 

Atlantic bluefin tuna (Thunnus thynnus), an indicator organism for the oceanic environment 

and therefore a potential risk to human health if consumed chronically (Maisano et al., 

2016). Chronic exposure to the major metabolites of DDT, dichlorodiphenyldichloroethylene 

(p,p’-DDE) and β-hexachlorocyclohexane (β-HCH), in mice altered the composition of the 

gut microbiota and increased the presence of bacteria with microbial bile salt hydrolase, 

which is required for the production of secondary bile acids (Liu, Q. et al., 2017). However, 

it is unclear how the metabolites modified the gut microbiota and how this may contribute to 

organochlorine neurotoxicity.

IV-6. Pesticides

Carbamates.—Carbamates are derived from carbamic acid that kill insects by reversible 

inhibition of acetylcholinesterase (AChE). The inhibition of AChE prevents the degradation 

of the neurotransmitter acetylcholine causing over-stimulation of a nerve or muscle, 

resulting in exhaustion and tetany (Fukuto, 1990). Carbamate pesticide has increased along 

with organophosphorus compounds and some compounds can have toxicities for mammals 

and aquatic organisms.

In the rumen microbiome of cows, Ufarté et al. (2017) identified a bacterium named clone 

44I12 that could metabolize the carbamate fenobucarb to a less toxic compound, but not two 

other carbamates tested, fenoxycarb and prosulfocarb (Ufarte et al., 2017). The carbamate-

specific metabolism by microbes is similar to a study that isolated bacteria which could 

metabolize fenobucarb from rice paddy soils, but not other carbamates (Kim et al., 2014). 

However, neither of these studies associated the microbiome to neurological health. 

Consumption of aldicarb in drinking water of C57BL/6 mice for 13 weeks resulted in a 

differential abundance of 17 genera and also significantly disrupted the brain metabolism 

marked by a reduction in glucose and malic acid, whereas 3-hydroxybutyric acid was 

increased (Gao et al., 2018b). Although toxicity was not shown to be dependent on a gut 

dysbiosis, this study demonstrated a potential association between aldicarb, neurotoxicity, 

and gut microbiome.
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Neonicotinoids.—Neonicotinoids are a popular and growing class of insecticide thought 

to selectively and irreversibly target the nicotinic acetylcholine receptors in the CNS of 

insects, making them generally safe for humans and animals (Han et al., 2018). Because of 

this selectivity, neonicotinoids also increase the mortality of pollinators, such as honey bees 

(Apis mellifera) (Ihara and Matsuda, 2018). For example, imidacloprid, the first 

neonicotinoid, suppresses immune function and increases the risk of pathogen-infection in 

honey bees (Di Prisco et al., 2013). Using Drosophila melanogaster (fruit fly) as a model for 

honey bees, it was shown that sublethal exposure to imidacloprid induced a gut dysbiosis 

and decreased survival following Serratia marcescens infection (Daisley et al., 2017). 

However, a study examining this effect in honey bees showed that decreased survival due to 

imidacloprid exposure and metabolism of the compound is not gut microbiome-dependent 

(Raymann et al., 2018).

Organophosphates.—Organophosphates (OPs) are esters of phosphoric acid that 

covalently bind to AChE, causing over-stimulation of neurons (Ruark et al., 2013). More 

recently, some OPs are recognized to have off-target toxicities at concentrations below the 

inhibition of AChE. For example, some OPs can inhibit or activate serine hydrolases and 

inhibit cannabinoid receptor 1 (CNR1) (Casida and Quistad, 2004). Diazinon exposure can 

also alter signaling of the neurotransmitter serotonin, production of which is influenced by 

the microbial metabolites short-chain fatty acids (SCFAs) and tryptophan (Slotkin et al., 

2008; Timofeeva et al., 2008; Waclawikova and El Aidy, 2018). Gao et al. (2017b) 

demonstrated that C57BL/6 mice exposed to diazinon in drinking water for 13 weeks altered 

gut microbiome composition (19 genera), function, and metabolic profiles in a sex-specific 

manner (16S rDNA sequencing and whole genome shotgun sequencing) (Gao et al., 2017b), 

including decreased tryptophan synthase, which is required for the biosynthesis of 

tryptophan in bacteria. In a follow-up study, metatranscriptomic analysis revealed an 

increase in the RNA of quorum sensing genes as well as bacterial motility and sporulation, 

which could explain the detection of pathogenic bacteria (Gao et al., 2017a). Similarly, 

C57BL/6 male mice exposed to malathion for 13 weeks exhibited increased DNA expression 

of quorum sensing, motility, and pathogenicity genes, indicating that exposure to some OPs 

may increase the gut microbiota susceptibility to colonization by pathogenic bacteria (Gao et 

al., 2018a). One study compared the gut microbiome of the malaria vector-containing 

mosquito Anopheles albimanus and demonstrated that mosquitos resistant to the OP 

fenitrothion had a relatively lower diversity than mosquitos who were not resistant, possibly 

due to fenitrothion-exposure selecting for a few bacteria which utilize fenitrothion as an 

energy source, leading to their overabundance (Dada et al., 2018). Interestingly, BALB/c 

mice exposed to monocrotophos for 180 days had increased production of the microbial 

SCFA acetate and show that increased acetate induced gluconeogenesis and glucose 

intolerance (Velmurugan et al., 2017). Fecal microbiome transplants of monocrotophos-

exposed mice to un-exposed mice showed that glucose intolerance was microbiome-

dependent. In humans, an examination of the oral microbiome of farmworkers by season 

demonstrated that microbiome perturbations may act persistently as the dysbiosis persisted 

in winter after the potential for exposure during the spring and summer (Stanaway et al., 

2017). Therefore, while the majority of these chemicals have not been investigated for gut 

microbiome-dependent neurotoxicity, it has been noted that gut dysbiosis causes 
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neurotoxicity via multiple mechanisms (Galland, 2014), thus exposure to chemicals such as 

carbamates could potentially further these effects.

Chlorpyrifos is the most well studied OP insecticide in relation to changes in the 

microbiomes of humans and animal models, with some evidence for neurotoxic effects. 

Most notably, adult male Wistar rats exposed to chlorpyrifos for 9 weeks increased bacteria 

associated with neurotoxicity such as Candidatus Arthromitus, in addition to inducing 

metabolic disorders (obesity and diabetes) (Fang et al., 2018). Rats exposed perinatally to 

chlorpyrifos had altered gut microbiome profiles as adults and were associated with 

impaired epithelium protection (Joly Condette et al., 2015) and induced metabolic disorders, 

but these conditions were partially abrogated by inulin supplementation (Reygner et al., 

2016b). The microbial metabolites SCFAs and bile acids were altered in the urine of mice 

exposed to chlorpyrifos for 30 days (Zhao et al., 2016). The metabolome profiles correlated 

with changes in gut microbiome. Increased lipopolysaccharide, intestinal inflammation, and 

intestinal permeability indicates that the perturbations of the mouse microbiome by 

chlorpyrifos significantly affect gut health and the microbial metabolites that can act as 

signaling to the host (Zhao et al., 2016). Zebrafish exposed to chlorpyrifos also had altered 

gut microbiome composition (25 taxa) as well as metabolic changes in glucose and lipid 

metabolism, TCA cycle, and amino acid metabolism (Wang, X. et al., 2019). In the SHIME 

model, chlorpyrifos decreased the colony forming units (cfu) of Bifidobacterium spp. and 

Lactobacillus spp. after 15 to 30 days of exposure (Requile et al., 2018). Decreased 

Bifidobacterium spp. and Lactobacillus spp. was reflected in two other SHIME studies, as 

well as increased Entereoccocus spp. (Joly et al., 2013; Reygner et al., 2016a).

Two other environmentally relevant animal models, which have been used to explore gut 

microbiome-chlorpyrifos interactions, are the diamondback moth (Plutella xylosterlla) and 

fruit fly (Drosophila melanogaster). The diamondback moth is an economically deleterious 

pest of cruciferous crops, and it is suspected that the development of pesticide-resistance is 

partly due to the microbiome of this insect. In vitro experiments from bacteria isolated from 

the gut microbiome of the diamondback moth revealed that Enterococcus spp., vitamin C, 

and acetylsalicylic acid enhanced resistance to chlorpyrifos; however, the bacteria do not 

detoxify the insecticide (Xia, X. et al., 2018). An earlier sequencing study found that an 

insecticide resistant line of diamondback moth larva had increased Lactobacillales, 

Pseudomonadales, and Xanthomondales (Xia et al., 2013). Contradictorily, GF and 

antibiotic treated fruit flies exposed to chlorpyrifos lived significantly longer than 

conventionally raised flies, and this was due to metabolism of chlorpyrifos to the stronger 

AChE inhibitor chlorpyrifos oxon by Lactobacillus plantarum (Daisley et al., 2018). This 

effect was mitigated by supplementation of the human probiotic Lactobacillus rhamnosus 
GG, which binds, but does not metabolize chlorpyrifos as demonstrated in a previous study 

along with L. rhamnosus GR-1 (Trinder et al., 2016). Studies in the diamondback moth and 

fruit fly demonstrate that certain bacteria species can increase or decrease the toxicity of 

chlorpyrifos.

Overall, microbiome may contribute to neurotoxicity and other toxicological endpoints due 

to organophosphate exposure, but more evidence (behavior and biochemical data) is needed 

to ascertain a direct mechanism of OP exposure to gut dysbiosis to neurotoxicity.
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Pyrethrins.—Pyrethroids are derived from the chrysanthemum flower (originally known as 

pyrethrum) and are found in many household insecticides and repellents. Pyrethroids prevent 

the closure of voltage-gated sodium channels, making them axonic excitotoxins that prevent 

repolarization that leads to paralysis of an affected organism. Pyrethroids are broad spectrum 

pesticides, affecting insects indiscriminately, including bees, but are poorly absorbed by 

humans and often are used to treat clothing and prevent mosquito-borne diseases.

Permethrin has been linked to the depressive- and anxiety-like behavior of Gulf War Illness 

(GWI), as well as reduced hippocampal volume, neural stem cell activity, and neurogenesis 

(Parihar et al., 2013). Co-exposure of permethrin and another GWI compound 

pyridostigmine bromide in a mouse model decreased Lactobacillus spp. and Bifidobacterium 
spp. and supplementation of the microbial SCFA butyrate restored gut homeostasis (Seth et 

al., 2018). Chronic exposure to permethrin in rats decreased abundance of the beneficial 

bacteria Bifidobacterium spp. and Lactobacillus paracasei in the feces (Nasuti et al., 2016). 

Overall, pyrethrins, and specifically permethrin, have an effect on the microbiome, but more 

research is needed to identify if changes in the gut microbiome are associated with the 

neuroinflammation and behavioral changes associated with GWI.

Rotenoids.—Rotenoids are naturally occurring substances, particularly in the flowering 

plant subfamily Faboideae as well as Nyctaginaceae. Many rotenoids such as rotenone have 

broad spectrum insecticidal properties. A hydrophobic compound, rotenone is an inhibitor of 

the mitochondrial complex I that easily crosses the blood-brain barrier causing toxicity to 

the central nervous system. Specifically, rotenone selectively induces apoptosis in 

serotonergic and dopaminergic neurons (Bisbal and Sanchez, 2019; Ren and Feng, 2007; 

Ren et al., 2005). Interestingly, rotenone exposure in Lewis rats for 7 days induces the 

pathology of Parkinson’s disease and is therefore used in animal models for Parkinson’s 

disease (Betarbet et al., 2000; Bisbal and Sanchez, 2019). In mice orally exposed to rotenone 

for 28 days, were shown to have 14 bacteria taxa at the family level dysregulated with a 

marked decrease in Bifidobacterium spp. (30099890). Furthermore, dopaminergic cell loss 

was inversely correlated with increased Rikenellaceae, Erysipelotrichaceae, 

Ruminococcaceae and S24–7, as well as a positive correlation with Bifidobacteriaceae. A 

second study in mice that used unpredictable restraint stress for 12 weeks and 6 weeks of 

rotenone exposure found that rotenone exposure furthered the restraint stress-associated 

increase in the relative abundance of the mucin-degrading bacteria Akkermansia muciniphila 
(Dodiya et al., 2018). This result is interesting because an increase in A. muciniphila has 

been noted in patients with Parkinson’s disease, possibly due to the bacterium’s ability to 

activate TLR2 as explored in a review by Radisavljevic et al (Radisavljevic et al., 2018). In a 

4-week longitudinal rotenone exposure study in mice, gastrointestinal dysfunction started at 

3 weeks along with significant inflammation; rotenone also decreased the microbial richness 

at 3 weeks compared to baseline with decreased in Bacteroidetes and increased Firmicutes 

(Yang et al., 2017). However, in adult male rats exposed to rotenone for 4 weeks, there was a 

tendency for Lactobacillus spp. and Bifidobacterium spp. to increase despite matching 

intestinal inflammatory properties (Johnson et al., 2018). It should be noted that some 

species of Lactobacillus produce D-lactic acid, which can cause neurological effects (Yilmaz 

et al., 2018). Overall, it is unclear if gut microbiome altered by rotenone may contribute to 

Dempsey et al. Page 24

Neurotoxicology. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Parkinson’s disease or if rotenone neuronal toxicity induces a gut dysbiosis; further studies 

are necessary to identify mechanisms of toxicity and disease pathology.

Herbicides and fungicides.—In general, herbicides and fungicides are designed to 

prevent and kill unwanted plants, molds, and fungi; however, their chemical properties can 

have unintended neurotoxicity and hormonal disruption in humans and animals. For 

example, atrazine, a triazine herbicide used in corn and sugarcane fields as well as grass 

turfs (lawns and golf courses), demasculinizes male gonads during developmental exposure 

(Hayes et al., 2011). This occurs across amphibians, reptiles, and mammals and causes an 

increase in the size of testicular tubules, loss of Sertoli cells, and a marked loss of germ 

cells. One experiment in Cuban tree frogs (Osteopilus septentionalis) found that atrazine did 

not affect the amphibian chytrid fungus Batrachochytrium dendrobatidis in a gut 

microbiome-dependent manner, however the intensity of the fungus was negatively 

associated with the microbial phylum Fusobacteria (Knutie et al., 2018). In zebrafish, 

atrazine decreased serotonin and increased inflammation in males, and affected the 

abundance of many genera of bacteria (Chen, L. et al., 2018b).

Glyphosate is a broad-spectrum herbicide that is the leading product for weed management 

by acting as a competitive inhibitor of 5-enolpyruvylshikimate-3-phosphate synthase 

(EPSPS), preventing the biosynthesis of aromatic amino acids and other metabolites in 

plants and some microorganisms that have the shikimate pathway (Motta et al., 2018). 

However, recent evidence suggests that glyphosate has off target effects on non-shikimate 

organisms. For example, chronic exposure of rat hippocampal cells to 1% Roundup® 

(commercial product with 0.38% glyphosate) showed decreased 3H-glutamate uptake with 

increased glutamine uptake, indicating glutamatergic excitotoxicity (Cattani et al., 2014). 

Glyphosate alters the behavior of honey bees, and, interestingly, the genomes of the bee gut 

microbiome contain EPSPS (Motta et al., 2018). Young worker bees fed glyphosate for 5 

days significantly decreased the abundance of the dominant gut microbiota species and 

increased their susceptibility to the opportunistic pathogen Serratia marcescens (Motta et al., 

2018). The gut microbiome of honey bee larva fed a high concentration of glyphosate 

(20mg/L) had 9 taxa that were decreased relative to controls or low dose glyphosate 

exposures (Dai et al., 2018). Cultured gut bacteria from the gastrointestinal tracts of green 

turtles (Chelonia mydas) exposed to six different glyphosate concentrations, as well as a 

deionized water control, showed a decreased in four bacteria genera: Pantoea, Proteus, 

Shigella, and Staphylococcus (Kittle et al., 2018). Interestingly, exposing the gut bacteria of 

poultry in vitro to glyphosate demonstrated that pathogenic bacteria such as pathogenic 

bacteria as Salmonella Entritidis, Salmonella Gallinarum, Salmonella Typhimurium, 

Clostridium perfringens, and Clostridium botulinum are highly resistant to glyphosate, 

whereas beneficial bacteria Enterococcus faecalis, Enterococcus faecium, Bacillus badius, 

Bifidobacterium adolescentis, and Lactobacillus spp. were susceptible to glyphosate 

(Shehata et al., 2013), indicating that glyphosate could increase the risk for pathogenic 

diseases. Indeed, glyphosate exposure reduces the most prevalent Enterococcus spp. in 

German cattle, which can produce bacteriocins against Clostridium botulinum (Kruger et al., 

2013).
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Several studies have used rodent models to evaluate glyphosate-induced perturbations to the 

gut microbiome as well as possible neurotoxic associations. Mice exposed chronically to 

250 or 500 mg/kg/day of glyphosate had increased anxiety and depression like behaviors as 

well as decreased Corynebacterium spp. and Lactobacillus spp., indicating that key microbes 

could increase neurobehavioral alterations (Aitbali et al., 2018). Exposing female Sprague-

Dawley rats to three doses of Roundup® increased the family S24–7 and decreased 

Lactobacillaceae; culturable bacteria in the rat microbiome showed varying sensitivities to 

glyphosate, with one highly resistant Escherichia coli strain lacking EPSPS (Lozano et al., 

2018). Another study examining the rat pups from in utero and developmental exposure to 

postnatal day 125 of glyphosate in drinking water showed an increase in Prevotella spp., but 

a decrease in Lactobacillus spp. at postnatal day 31 (Mao et al., 2018). However, another 

study found that a diet sufficient in aromatic amino acids would prevent the antimicrobial 

effects of glyphosate on the rat microbiome (Nielsen et al., 2018). Overall, some bacteria 

that decrease from glyphosate exposure, such as Lactobacillus spp., may increase the 

neurotoxicity of glyphosate, but further studies are warranted.

IV-7. Plant and animal toxins.

In addition to the manmade neurotoxicants, microbiome may contribute to the 

detoxification/toxification of the plant and animal derived toxins. For example, the 

neurotoxin domoic acid is produced by the diatom Pseudo-nitzschia multiseries and is 

responsible for the amnesic shellfish poisoning. Domoic acid exerts its neurotoxicity through 

activating the excitatory glutamate receptors as a structural analog to glutamate (Bates et al., 

2018; Chegini and Metcalfe, 2005; Mills et al., 2016; Smith and Swoboda, 2019). 

Autochthonous bacteria have been suggested to contribute to the biodegradation and 

disposal of domoic acid, and blue mussels and soft-shell clams have been demonstrated as 

the unique sources of these domoic acid-utilizing bacteria (Stewart et al., 1998).

Nicotine, which is the primary active substance in tobacco, interacts with the nicotinic 

receptors in CNS for excitatory signaling. Studies using mouse models have shown that 

nicotine exposure affects the gut microbiome in a sex-dependent manner, in that there is a 

male gut microbiome-specific modulation of microbial pathways involved in carbohydrate 

metabolism, oxidative stress, and DNA repair. In addition, fecal metabolomics studies 

showed that multiple neurotransmitters including glutamate, GABA, and glycine, as well as 

the neuro-active metabolites leucine and uric acid, were altered by nicotine in both sexes 

(Chi et al., 2017c). This indicates that gut microbiome may at least partly contribute to 

nicotine’s CNS effect.

Cyanide can induce tremors through neuronal calcium signaling (Johnson et al., 1986), and 

is enriched in secondary metabolites in bamboo. Interestingly, the bamboo-eating pandas are 

deficient in rhodanese, which is one of the essential cyanide-detoxifying enzymes as 

compared to other herbivores. Correspondingly, the gut microbiota of pandas have high 

proportions of Pseudomonas bacteria and enriched putative genes coding for rhodanese-like 

enzymes involved in cyanide degradation. This diet-driven symbiotic relationship is 

advantageous for the host survival during evolution (Zhu, L. et al., 2018).
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IV-8. Solvents.

Solvents refer to a class of organic chemicals of varying lipophilicity and volatility classified 

by molecular structure and functional groups that general lack a charge and are of small 

molecular size. Toxicity of solvents is determined by the number of carbon atoms, saturation 

(number of bonds between carbon atoms), configuration of the carbon atoms, halogenation, 

and the presence of functional groups (Klaassen, 2013).

One of the greatest solvent exposures for most humans is ethanol through intoxicating 

beverages as well as from its use in household products, pharmaceuticals, industry, and 

gasoline additive. The metabolism of ethanol by the liver is well characterized by the 

formation of acetaldehyde by CYP2E1 or alcohol dehydrogenase followed by acetate by 

aldehyde dehydrogenase, and it is well known that chronic alcohol ingestion can induce 

alcoholic liver disease. Mice fed the liquid Liber-DeCarli diet with alcohol (5% v/v) for 6 

weeks to induce alcoholic liver disease increased the fecal pH and increased fecal 

Corynebacterium spp. as well as the alkaline tolerant Alcaligenes spp. compared to mice not 

exposed to alcohol (Bull-Otterson et al., 2013). Supplementation with the probiotic 

bacterium Lactobacillus rhamnosus GG prevented the ethanol induced pathogenic changes. 

A combination of ethanol and the artificial sweetener saccharin increased Eubacteria in 

pregnant mice, whereas it decreased in non-pregnant mice; in pregnant mice, ethanol and 

saccharin increased the abundance of Clostridium spp. compared to ethanol and weight 

(Labrecque et al., 2015). Another study found that alcohol dependent mice had increased 

Bifidobacterium spp., and metabolomics analysis revealed changes in bacteria relevant 

metabolism, including secondary bile acids and serotonin (Wang et al., 2018). Ethanol 

exposure for 3 weeks in mice induced anxiety and depression-like behaviors also increased 

Adlercreutzia spp., Allobaculum spp. and Turicibacter spp. and decreased Helicobacter spp. 

(Xu et al., 2018). Interestingly, decreased Adlercreutzia spp. was positively correlated with 

alcohol preference and negatively correlated with anxiety-like behavior and the decreased 

expression of brain-derived neurotrophic factor (BDNF) and α1 subunit of γ-aminobutyric 

acid A receptor (Gabra1) in prefrontal cortex.

Alcohol dependent human subjects admitted to a gastroenterology ward for a 3-week 

detoxification and rehabilitation program had increased gut permeability by the second day 

of alcohol withdrawal. Alcohol dependent subjects with high gut permeability had decreased 

abundance of the genera Ruminococcus, Faecalibacterium, Subdoligranulum, Oscillibacter, 
and Anaerofilum as well as an increase in Dorea (Leclercq et al., 2014). Interestingly, 

increased gut permeability was negatively correlated with the reduced total number of 

bacteria and microbial metabolites from tryptophan metabolism, which is used for 

generating neurotransmission molecules such as serotonin, were low or not present in high 

gut permeability subjects. Mice fed a liquid diet with alcohol were protected from alcohol-

induced neuroinflammation, increased small intestine and brain cytokine expression by 

antibiotic treatment, and antibiotics abrogated microglia activation and morphological 

changes in the cortex and hippocampus, demonstrating a direct connection between the gut 

microbiome and the CNS effects of alcohol (Lowe et al., 2018).

Associations between gut microbiome and solvents have also been investigated for 

formaldehyde and trichloroethylene (TCE). Formaldehyde is an irritating, gaseous solvent 
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that is an environmental toxic hazard found in paint, cloth, cigarette smoke and exhaust gas. 

Formaldehyde has many detrimental effects on various tissues including skin, eye, gonads, 

the gastrointestinal system and the respiratory tract, as well as the nervous system, which 

can cause neurobehavioral impairment and seizures (Kilburn, 1994; Tang et al., 2011). Blab-

C mice exposed to formaldehyde had increased abundance of the genera Prevotella, Dorea, 

Desulfovibrio, Adlercreutzia, Anaeroplasma, Coprococcus, Candidatus Arthromitus, Delftia, 

Lactococcus, and Serratia and decreased abundance of Bacteroides (Guo, J. et al., 2018). 

TCE is a clear sweet-smelling industrial solvent with a variety of uses, including dry 

cleaning, film cleaning, and degreaser. TCE is a CNS depressant by inhibiting GABAA and 

glycine receptors (Beckstead et al., 2000; Krasowski and Harrison, 2000). Mice exposed to 

TCE perinatally and up to postnatal day 259 decreased the abundance of the genera 

Bacteroides and Lactobacillus and increased the abundance of Bifidobactrium (Khare et al., 

2019). Overall, more research is needed to understand the contribution of the microbiome to 

neurotoxicity by solvents.

V. Closing remarks: microbiome as a contributor to neurotoxicity

Taken together, our review provides a comprehensive literature update regarding the role of 

gut microbiome in various neurological disorders, especially during chemical-induced 

neurotoxicity in both human subjects and animal models. Although the research in 

neurotioxicants and gut-brain axis is still in its early phase, we hypothesize that gut 

microbiome may contribute to the pathogenesis and/or resolution of neurotoxicity by 1) 

direct biotransformation of the xenobiotics into neuro-reactive or inactive metabolites; 2) 

alteration of endogenous microbial neuro-reactive metabolites, some of which may have 

epigenetic reprogramming potential in regulating the transcription of host genes involved in 

cognitive functions in brain; 3) modulating neuroinflammation by modulating intestinal 

barrier integrity and the systemic availability of gut-derived pro-inflammatory cytokines; 

and 4) regulation of mucosal immune function (Figure 1). Among various neurological 

disorders and chemical-induced neurotoxicity, distinct neuroactive microbial metabolites 

appear to be common targets, this includes decreased SCFAs and/or decreased abundance of 

SCFA-producing bacteria in AD mouse models (Zhang et al., 2017), anorexia nervosa 

patients (Borgo et al., 2017; Morita et al., 2015), PD patients (Unger et al., 2016), ASD 

patients (De Angelis et al., 2013; Kang et al., 2013), as well as ionic gold (Kase et al., 1987) 

and permethrin/pyridostigmine bromide co-exposed mice (Seth et al., 2018). Conversely, 

SCFA supplementation has been shown to improve AD (Govindarajan et al., 2011; Vinolo et 

al., 2011), and restore permethrin-induced gut dysbiosis, stalls microbiome-induced GI 

inflammation in Gulf War illness mouse model (Seth et al., 2018). This is likely contributed 

by the HDAC inhibitor and anti-inflammation properties of SCFAs (Bourassa et al., 2016; 

Matt et al., 2018; Vinolo et al., 2011). Tryptpohan metabolism is another important common 

target in neurotoxicity, as it is dysregulated in ASD (Golubeva et al., 2017), MDD (Kazemi 

et al., 2018; Rudzki et al., 2019), alcohol addition (Leclercq et al., 2014), as well as 

manganese- and organophosphate-induced neurotoxicity (Chi et al., 2017b; Slotkin et al., 

2008; Timofeeva et al., 2008; Waclawikova and El Aidy, 2018). These common targets 

should be especially focused on as they may represent common signaling pathways that can 

be harnessed therapeutically to mitigate neurotoxicity.
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In the endeavor to move forward the research on gut-brain axis and neurotoxicity, we 

propose that it will be important to consider the following aspects:

1) Beyond associations: more mechanistic investigations are needed in vitro and at the 
single microbial species resolution to establish the causality.

A combination of research tools including anaerobic culture of bacteria, GF mice, fecal 

transplant/single strain inoculations, metabolomics, as well as biochemical and behavioral 

assessment of CNS functions, will likely lead to a more thorough understanding of the exact 

molecular mechanisms of gut microbiota-mediated regulation of CNS functions. For 

example, Dr. Elaine Hsiao’s group demonstrated how the ketogenic diet exerts its anti-

seizure effects in mice through modulating the gut microbiota by initially using a multi-

omics approach of 16S rDNA sequencing and metabolomics followed by identification of 

key bacteria that mitigate seizures (Olson et al., 2018). The ketogenic diet promoted the 

enrichment of the genera Akkermansia and Parabacteroides in the intestine and correlated 

with reduction in systemic gamma-glutamylated amino acids and increased hippocampal 

GABA/glutamate levels. The dependency of gut microbiota in ketogenic diet mediated anti-

seizure effect was confirmed using antibiotic-exposed mice and GF mice, inoculation of 

specific bacteria (Akkermansia and Parabacteroides), and fecal microbiome transfer (Olson 

et al., 2018). Overall, this study demonstrated which bacteria modified by ketogenic diet 

mechanistically contributed to seizure protection in mice.

The SHIME system, or a similar microbial culturing method, is another tool that could be 

used to study the specific effects of chemical exposures on bacteria and understand how the 

chemicals may alter gut microbiome composition in humans. Because the system uses a 

dynamic series of six compartments that can mimic the intestines (Joly et al., 2013; Requile 

et al., 2018), some bacteria that have not be cultured by traditional methods may colonize 

with the system. Furthermore, the bacteria cultured before and after exposure could be used 

to colonize GF mice to elucidate a microbiome dependent effect in a paradigm such that 

exposure causes a gut dysbiosis which leads to neurotoxicity. The SHIME system was used 

to characterize the effect of exposures on the microbiome, including arsenic (Yin et al., 

2017; Yin et al., 2015; Yu et al., 2016) and chlorpyrifos (Joly et al., 2013; Requile et al., 

2018; Reygner et al., 2016a).

In general, an obstacle to study the role of intestinal bacteria using single strain anaerobic 

cultures is that a substantial number of the intestinal bacteria are not culturable in vitro 
(Lagier et al., 2015; Lagkouvardos et al., 2017). This is partly because the artificial media 

may lack key growth factors that are provided by other symbiotic bacteria in the gut 

(D’Onofrio et al., 2010; Fenn et al., 2017). Co-cultures of multiple microbial species may be 

the solution to this problem, and this method has been shown to be successful in 

characterizing GABA-modulating bacteria in the human gut (Strandwitz et al., 2019). 

Because microbes live in a symbiotic environment in the gut, metabolites produced by one 

microbe may serve as important substrates for the function of another microbe. Conversely, 

antagonistic microbes can compete with each other for the same nutrient niche and may 

inhibit a particular signaling pathway under physiological or pathophysiological conditions 

(Das et al., 2018). Therefore, in the effort to determine the mechanistic roles of microbes at 
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single species resolution, it is important to perform co-culture experiments to investigate the 

microbe-microbe interactions, and identify key microbial metabolites in the context of 

microbial networks that contribute to the pathogenesis of neurological diseases. In addition, 

it is important to include host enterocytes in the co-culturing system, so as to determine the 

interactions between distinct microbes and host receptors (Sadaghian Sadabad et al., 2015).

In addition, steady-state pre-rRNA analysis, which quantifies the ribosomal RNA precursors 

instead of mature 16S rDNA, has been shown to be a more promising culture-independent 

tool to assess the active growth status of the bacteria. Pre-rRNA is rapidly replenished when 

growth-limited bacteria encounter a more favorable growth environment, and such changes 

can occur only in viable bacteria but not in dead cells or with free nucleic acids. Pre-rRNAs 

also appear to be a more sensitive biomarker to environmental stress as compared to the 

mature rDNA signals (Cangelosi and Brabant, 1997; Cangelosi and Meschke, 2014; 

Mackow and Chang, 1985; Oerther et al., 2000; Srivastava and Schlessinger, 1990). Lastly, 

taking the advantage of the CRISPR-Cas9 gene-editing system, one could engineer 

individual intestinal bacteria to investigate the necessity of the microbial genes at single 

species resolution (Mimee et al., 2015).

2) Beyond 16S rDNA survey: investigating microbial genes and neuroactive microbial 
metabolites to further decipher the bacterial functions.

As reviewed in Tables 1 and 2, a substantial amount of research in gut microbiome and 

neurological disorders has utilized 16S rDNA gene sequencing, which has provided 

important and valuable information regarding what taxa are differentially regulated during 

the progression of diseases. However, 16S rDNA gene sequencing often does not resolve 

taxonomy past the genus level and provides only moderately accurate predictions of the 

functional changes. Deep whole-metagenome shotgun sequencing, as well as a more cost-

effective approach, namely shallow shotgun metagenomic sequencing, are highly 

recommended alternatives for high resolution taxonomic and functional microbiome 

analysis (Hillmann et al., 2018). In addition, we believe that more research using 

metatranscriptomics (Bashiardes et al., 2016) and metaproteomics (Mills et al., 2019) are 

needed to further characterize the gut microbiome functions beyond DNA level. 

Computational tools for functional predictions of the microbiome, such as FishTaco and 

AGORA (Magnusdottir et al., 2017; Manor and Borenstein, 2017), followed by wet lab 

validations using metabolomics approach (Daliri et al., 2017), will also provide further 

mechanistic insights into further understanding the gut-brain axis in neurotoxicity.

Specifically, building on the known neuroactive microbial metabolites that contribute to the 

pathogenesis and/or mitigation of neurotoxicity, it is important to determine the regulation of 

these microbial genes that are responsible for the production of these metabolites. As 

summarized in this review, SCFAs are commonly reduced in AD mouse models (Zhang et 

al., 2017), anorexia nervosa patients (Borgo et al., 2017; Morita et al., 2015), PD patients 

(Unger et al., 2016); whereas decreased SCFA-producing bacteria were also observed in 

intestines of ASD patients (De Angelis et al., 2013; Kang et al., 2013), ionic gold exposed 

mice (Kase et al., 1987), permethrin and pyridostigmine bromide co-exposed mice (Seth et 

al., 2018). Dysregulation in microbial and/or host tryptophan metabolism was found 

Dempsey et al. Page 30

Neurotoxicology. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated linking to ASD behavior (Golubeva et al., 2017); MDD (Kazemi et al., 2018; 

Rudzki et al., 2019), alcohol addition (Leclercq et al., 2014), as well as manganese- and 

organophosphate-induced neurotoxicities (Chi et al., 2017b; Slotkin et al., 2008; Timofeeva 

et al., 2008; Waclawikova and El Aidy, 2018). It is especially important to focus on the 

neuroactive metabolites that are commonly regulated in neurological disorders of various 

etiology, such as SCFAs and tryptophan microbial metabolites.

3) Beyond intestinal bacteria: characterizing the involvement of other microorganisms in 
neurotoxicity

Although most of the current endeavors in exploring the gut microbiome have focused on 

intestinal bacteria, other microorganisms are important for neurodegenerative diseases and 

may also provide alternative therapeutic options. These other microorganisms that could be 

essential to the normal function of the host or contribute to pathogencity of diseases include 

fungi, porotozoa, and viruses (Barko et al., 2018). Fungi have been detected in different 

brain regions in Alzheimer’s disease patients (Alonso et al., 2018; Pisa et al., 2015), as well 

as in patients with amyotrophic lateral sclerosis (Alonso et al., 2017). One hypothesis is that 

these fungi are of gut origin and may be a result of gut leakage. Regarding viruses, it is not 

known what viruses in the gut microbiome may be beneficial to host health, however 

bacteriophage therapy may be method to alter the gut microbiome. The gut microbiome of 

gnotobiotic mice colonized with known human gut bacteria was modulated by lytic phages 

that shifted the gut microbiome composition and the gut metabolome, suggesting that 

bacteriophage could be used to modulate the microbiome (Hsu et al., 2019). Indeed, 

intravenous treatment with engineered phages was used to treat a cystic fibrosis patient with 

a drug-resistant strain of Mycobacterium abscessus (Dedrick et al., 2019). More research is 

needed in this field to further characterize the sources, types, and mechanistic involvement 

of these microorganisms during various types of neurological diseases. The bioavailability of 

gut-derived microorganisms and microbial products should also be assessed when 

considering the presence of the blood-brain barrier.

4) Beyond early-life exposure: epigenetic reprogramming via microbial metabolites.

Early-life exposure to environmental chemicals has been shown to be an important 

contributing factor for developmental origins of human diseases. Along those lines, early-

life induced dysbiosis may also predispose the host organism to delayed onset of adverse 

health outcomes including neurodegenerative diseases. There is a critical time window early 

in life to target the microbiome and modulate late-onset of Alzheimer’s disease, because 

acute antibiotic-treatment in perinatal period resulted in long-term alterations of gut 

microbiota (especially Lachnospiraceae and S24–7) and reduction in brain Aβ deposition, as 

well as reduced inflammatory signaling in serum and brain of aged AD mice (Minter et al., 

2017). Neuroactive microbial metabolites, such as SCFAs which have anti-inflammatory 

HDAC inhibitor properties, may be beneficial against the pathogenesis of AD (Govindarajan 

et al., 2011; Vinolo et al., 2011). Therefore, linking gut microbiome and metabolome to host 

epigenome and inflammasome is an exciting approach to investigate the remote-sensing 

mechanisms between the gut and brain.
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Figure 1. 
An illustration of the gut-brain axis in environmental stressor induced neurotoxicity.
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Figure 2. 
Collection sites and concentrations of BDE-47, BDE-99, PCB-95, PCB-153, lead, and 

manganese in bivalves collected from the coastal United States. (A) Green circles indicate 

BDE-47 sampling sites while purple circles correspond to BDE-99 sampling sites in 

bivalves with size corresponding to concentration (ng/dry g). (B) Green circles indicate 

PCB-95 sampling sites while purple circles correspond to PCB-153 sampling sites in 

bivalves with size corresponding to concentration (ng/dry g). (C) Green circles indicate lead 

sampling sites while purple circles correspond to manganese sampling sites in bivalves with 

size corresponding to concentration (μg/dry g).
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Table 1.

Studies investigating neurological diseases in the gut-brain axis.

Disease Model Bacteria influence Source

ADHD Human adolescents and 
adults Association (Aarts et al., 2017)

Human children
Association 
(biomarker) (Jiang et al., 2018)

Humans: juvenile males

Association 
(diversity; 
biomarker)

(Prehn-Kristensen et al., 2018)

Humans: cesarean delivery 
or antibiotic use during first 
two years of life No association

(Axelsson etal., 2019a)

Alzheimer's disease
Mice

Association 
(diversity) (Hoffman et al., 2017)

Artificial Aβ aggregation 
assays

Inverse association 
with SCFAs (Ho et al., 2018)

Anorexia nervosa
Human adult females Association

(Borgo et al., 2017; Kleiman et al., 2015; Mack et al., 2016; 
Morita et al., 2015; Morkl et al., 2017)

Mice Association (Chen et al., 2016)

Autism Human children No association (Gondalia et al., 2012)

Human children Association

(Coretti et al., 2018; De Angelis et al., 2013; Finegold et al., 
2010; Hicks et al., 2018; Kang et al., 2013; Liu et al., 2019; 

Pulikkan et al., 2018; Qiao et al., 2018; Rose et al., 2018; Son 
et al., 2015; Wang, M. et al., 2019)

Mice valproic acid-induced Association (de Theije et al., 2014)

BTBR T+ltpr3tf/J mouse 
model of ASD Association

(Coretti et al., 2017; Golubeva et al., 2017)

Juvenile hamsters 
clindamycin and propionic 
acid induced Mechanistic

(El-Ansary et al., 2018)

Shank3-null mice Mechanistic (Tabouy et al., 2018)

Rat valproic acid-induced
Association 
(biomarker) (Liu et al., 2018)

Autism and antibiotics Human children in 
Manitoba, Canada or 
Denmark No association

(Axelsson et al., 2019b; Hamad et al., 2018)

Autism and Vitamin A Human children with 
autism Association (Liu, J. et al., 2017)

Behavior - generic 
germ-free Germ-free mice Association

(Arentsen et al., 2015; Lu et al., 2018; Neufeld et al., 2011; 
Sudo et al., 2004)

Germ-free mice Mechanistic (Diaz Heijtz et al., 2011)

Germ-free, stress-sensitive 
rats Association (Crumeyrolle-Arias et al., 2014)

Antibiotic-exposed mice Association (Desbonnet et al., 2015)

Bipolar Human adults Association (Evans et al., 2017; Painold et al., 2018; Vinberg et al., 2019)

Human adults Mechanistic (Painold et al., 2018)

Depression
Mice Mechanistic

(Sun, J. et al., 2018; Zheng et al., 2016)30521978 (Huang et 
al., 2019)

Rats Association (Tillmann et al., 2018; Yu et al., 2017)
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Disease Model Bacteria influence Source

Rats Mechanistic (Abildgaard et al., 2017; Kelly et al., 2016)

Human adults Association

(Aizawa et al., 2016; Chen, J.J. et al., 2018; Chen, Z. et al., 
2018; Jiang et al., 2015; Lurie et al., 2015; Naseribafrouei et 

al., 2014)

Human adults Mechanistic
(Kazemi et al., 2018; Miyaoka et al., 2018; Rudzki et al., 

2019)

Parkinson’s disease Human adults Association (Hill-Burns et al., 2017; Unger et al., 2016)

Mice Mechanistic (Sampson et al., 2016)

Postpartum depression Adult women Mechanistic (Slykerman et al., 2017)

Pregnant women Association (Murphy et al., 2018)

PTSD Humans Association (Hemmings et al., 2017)

Male mice Association (Gautam et al., 2015; Gautam et al., 2018)

Schizophrenia Rats Association (Dunphy-Doherty et al., 2018; Pyndt Jorgensen et al., 2015)

Humans Association

(Castro-Nallar et al., 2015; Flowers et al., 2019; Nagamine et 
al., 2018; Nguyen et al., 2019; Olde Loohuis et al., 2018; 

Shen et al., 2018)

Humans Mechanistic (Okubo et al., 2019)

Mice Mechanistic (Zheng et al., 2019)
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Table 2.

Studies investigating neurotoxicants and microbiome.

Category Toxicant Model Dose or exposure End point and bacteria result Source

Air pollution
PM2.5 Mouse (8–12 

weeks old)

135.4 ± 6.4 mg/m3 8 
hours for 5 days/
week for 3 weeks

Increased genera, as well as 
alpha and beta diversity

(Mutlu et al., 
2018)

PM10 Mouse (6–8 
weeks old)

18 μg/g/day (oral 
gavage)

Altered short chain fatty acid 
concentrations and microbial 
composition

(Kish et al., 
2013)

Dietary and 
herbal medicine

Fructooligosaccharides

Rat (adults 
given 100 
mg/kg/d d-
galactose i.p. 
for inducing 
AD)

100 mg/kg/d (oral 
gavage)

Maintains gut microbiota 
diversity while improving 
neurological endpoints

(Chen et al., 
2017)

Ketogenic diet

Mouse (adult 6-
Hz induced 
seizure model 
of refractory 
epilepsy)

6:1 fat:protein 
ketogenic diet (ad 
libitum)

Increased hippocampal 
GABA/glutamate levels 
mechanistically by 
Akkermansia and 
Parabacteroides

(Olson et al., 
2018)

Drugs

Amiodarone

Rat (adult)

Probiotic: 1.5 × 109 
CFU/dose once daily 
for 7 days
Amiodarone: 50 
mg/kg (single oral 
dose)

E. coli Nissle 1917 increased 
the bioavailability whereas L. 
casei DN-114 001 delayed 
max plasma concentration

(Matuskova et 
al., 2017; 

Matuskova et 
al., 2014)

Chemotherapeutics

Bacteria (in 
vitro)

Variable—dose-
response 
relatationship 
(screens to identify 
bacteria susceptible 
to chemotherapeutic 
s)

Lactic acid bacteria and 
bifidobacteria may be 
susceptible whereas other 
bacteria may affect efficacy

(Florez et al., 
2016; 

Lehouritis et 
al., 2015)

Cisplatin
Mouse (8–12 
weeks)

Cisplatin: 10mg/kg 
Probiotic: healthy 
donor fecal pellet or 
2×108 Ruminococcus 
gnavus

Probiotic ameliorated intestinal 
toxicity and systemic 
inflammation of cisplatin

(Perales-
Puchalt et al., 

2018)

Disulfiram Bacteria (in 
vitro)

Variable (disulfiram 
and metabolites)

Antimicrobial activity against 
gram-positive bacteria

(Frazier et al., 
2019; Long, 

2017; Sheppard 
et al., 2018)

Doxorubicin

Mouse (8–10-
week-old 
females)

20 mg/kg by i.p. Enteric injury (crypt depth, 
crypt number, and proliferative 
cell number) is dependent on 
presence of bacteria

(Rigby et al., 
2016)

Bacteria (in 
vitro)

150 μg/mL Deglycosylation of 
doxorubicin reduces toxicity

(Yan et al., 
2018)

Mouse (7–10-
week-old 
females)

10 mg/kg by i.p. Pre-treatment with pectin (1.5 
mg per day orally) protected 
against ileitis independent of 
SCFAs

(Sahasrabudhe 
et al., 2018)

Lithium, valproate and 
aripiprazole Rat (adult)

Variable Increased microbial species 
richness and diversity; some 
antimicrobial activity

(Cussotto et al., 
2018)

Metronidazole Rat (adult 
males)

1 mg/ml in drinking 
water for 1 week

Increased in Bifidobacterium 
spp. and Enterobacteriaceae 
and increased mucosal 
thickness

(Pelissier et al., 
2010)
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Category Toxicant Model Dose or exposure End point and bacteria result Source

Mouse (8-
week-old 
males)

30 mg/kg by i.p. Decreased Firmicutes and 
order Clostridiales; increased 
Proteobacteria, 
Turicibacterales and 
Enterobacteriales; PD-like 
effects abrogated by FMT

(Sun, M.F. et 
al., 2018)

MPTP

Mouse (male 
and/or female 
adults, WT and 
metabotropic 
flutamate 
receptors 
knockout)

18 mg/kg 2 times per 
week for 5 weeks
10 mg/kg for 5 days, 
rest 2 days, 20 mg/kg 
for 5 days by i.p.

Altered microbiome 
composition; Gender- and 
genotype-specific results; 
associations between 
microbiome diversity and 
sensorimotor performance

(Lai et al., 
2018; Torres et 

al., 2018)

Nano-encapsulated 
doxorubicin and 
paclitaxel

Mouse (8-
week-old 
males)

12.93 μmol/kg Altered microbial activity 
indicated by levels of 
hippurate and indoxyl sulfate

(Song et al., 
2015)

Nitrofurantoin

Human (adults)

100 mg twice per day

Decreased Clostridium sp. and 
increased Faecalibacterium sp.

(Stewardson et 
al.,2015; 

Vervoort et al., 
2015)

Metals

Arsenic

Mouse (8-
week-old males 
and females)

100 ppb sodium 
arsenite for 13 weeks
Up to 250 ppb
Antibiotic-treated for 
3 days then exposed 
up to 1 ppm arsenic 
in drinking water for 
2 weeks (females 
only)

Altered gene abundances for 
genes involved in carbohydrate 
metabolism, pyruvate 
fermentation, short-chain fatty 
acid synthesis, and starch 
utilization
Arsenic eroded bacterial 
biofilms adjacent to the 
mucosa
1 ppm arsenic did not alter gut 
microbiome

(Chi et al., 
2016; Chi et al., 

2017a; Chi et 
al., 2019; Dheer 
et al., 2015; Lu 

et al., 2014)

Mouse (7–13-
week-old males 
and females)

25 and 100 ppm 
sodium arsenate

Antibiotic-treated and GF mice 
accumulate more arsenic than 
controls; human fecal 
transplants protect mice 
lacking the arsenic 
detoxification enzyme from 
arsenic-induced mortality, but 
may depend on 
Faecalibacterium spp.

(Coryell et al., 
2018)

Earthworm 
(Lumbricus 
rubellus)

Devon Great Consols 
(DGC) mine site

Slight trend for an association 
between worm microbiome 
diversity and arsenic 
contamination

(Pass et al., 
2015)

Human (in 
vitro; SHIME)

Soil arsenic 
concentrations 
(varies)
100μg/L As, 600 
μg/L As, 600 μg/L As 
and 0.1 mg/L Fe, 600 
μg/L As and 0.3 
mg/L Fe, and 600 
μg/L and As+3 mg/L 
Fe

Bioaccessibility in the Arsenic 
was 1.8–2.8 times more 
bioaccessible in the colon than 
in the small intestinal phase
Iron decreased 
bioaccessibiility of arsenic 
with increased arsenic 
methylation;

(Yin et al., 
2015; Yu et al., 

2016)

Human (in 
vitro; Caco-2 
cells)

Soil arsenic samples 
ranging from 15.5 to 
3225.6 mg/kg

Gut microbiota can directly 
release soil arsenic; arsenic in 
colon is digested more quickly 
than in soil

(Yin et al., 
2017)

Human

Children: high group 
(218.8 μg/L in 
drinking water) and 
low group (1.7 μg/L 
in drinking water)
Infants at 6 weeks of 
age

Children: high arsenic group 
had increased 
Gammaproteobacteria class, 
Enterobacteriales order, and 
Enterobacteriaceae family 
Infants: 8 genera were 
enriched with higher arsenic 
exposure, whereas 15 genera 

(Dong et al., 
2017)(Hoen et 

al.,2018)(Wu et 
al., 2019)
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Category Toxicant Model Dose or exposure End point and bacteria result Source

Adult men and 
women

were decreased; changes were 
associated with males, but not 
females Time-weighted 
urinary arsenic associated with 
order Campylobacterales and 
the genera Anaerostipes and 
Faecalibacterium

Zebrafish 
(larva)

10, 50, and 100 ppb 
for 20 days

Increased the genera 
Acinetobacter, 
Sediminibacterium, and 
Janthinobacterium; decreased 
the genera Bdellovibrio and 
Pseudomonas

(Dahan et al., 
2018)

Copper

Broiler chicken 
(Start from Day 
0 as chicks)

8 or 187.5 mg/kg of 
Cu from Cu Sul or 
187.5 mg/kg of Cu 
from TBCC

No affect on performance by 
Cu source or concentration

(Pang et al., 
2009)

Holstein-
Friesian calves 
(Dairy cows; 7 
month old 
males)

3g/100 L of copper 
supplementation as 
cupric sulphate in 
drinking water for 75 
days

Increased microbial alpha 
diversity in rumen; altered 
bacteria S24–7, 
Planctomycetaceae p-1088-a5 
gut group, and Azospira spp.

(Biscarini et al., 
2018)

Gold

Mouse (7–8-
week-old 
males)

Up to 25 μg gold/kg 
bodyweight for 8 7 
different types of 
gold nanoparticles for 
8 days during and 
after 5-day dextran 
sodium sulfate 
exposure

5 nm/Citrate and Au-5 nm/ 
polyvinylpyrrolidone 
attenuated colonic and 
systemic inflammation; gold 
nanoparticles decreased alpha 
diversity;

(Zhu, S. et al., 
2018)

Lead

Mouse

8 week old females: 
10 ppm for 13 weeks;
32 ppm to dams in 
drinking water 2 
weeks prior to 
breeding and up to 40 
weeks of age for pups
6-week-old males 
and females: 0.01, 
0.03, or 0.1 mg/L 
Pbfor15 weeks

Majority of bacteria decreased 
following lead exposure;
Cultivable aeobes decreased 
and anaerobes increased;
at highest exposure, decreased 
Firmicutes and increased 
Bacteroidetes and 
Proteobacteria

(Gao et al., 
2017c; Wu et 

al., 2016; Xia, 
J. et al.,2018a)

Zebrafish (adult 
males)

10 and 30 μg/L for 7 
days

52 microbes altered by 30 ug/L 
PB group; altered metabolites 
in pathways for glucose and 
lipid metabolism, amino acid 
metabolism, nucleotide 
metabolism

(Xia, J. et al., 
2018b)

Carp (Cyprinus 
carpio; 105 
days old)

1 mg/L Pb decreased the expressions 
of pro-inflammatory cytokines; 
Lactobacillus reuteri P16 
decreased mortality, improved 
the growth performance, and 
abrogated changes in gene 
expression

(Giri et al., 
2018)

Magnesium
Mouse (8-
week-old 
males)

Standard diet with 
500 mg Mg/kg food 
and magnesium 
deficient diet with 50 
mg Mg/kg food for 6 
weeks

Increased depressive-like 
behavior with magnesium 
deficiency; the gut microbiome 
was altered by magnesium 
deficiency and was positively 
correlated with hippocampal 
interleukin-6

(Winther et al., 
2015)

Manganese Mouse (8-
week-old males 
and females)

100 ppm in drinking 
water for 13 weeks

Altered tmicrobial tryptophan 
and phenylalanine biosynthesis 
pathways; bacteria of male 
mice had altered GABA/
putrescine metabolism

(Chi et al., 
2017b)
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Category Toxicant Model Dose or exposure End point and bacteria result Source

Mercury Mummichog 
(Fundulus 
heteroclitus)

Total mercury in 
food: 0.08, 24.4, or 
131 μg/g dry weight 
for 15 days

Microbial Hg resistance gene 
mercuric reductase 8 times 
higher in fish at Hg 
contamination site

(Lloyd et al., 
2016)

Methylmercury

Human (36–39 
weeks 
pregnant)

Hair: 57 ng total 
Hg/g hair;
Stool: 150(2.1–810) 
ng total mercury /g 
stool;
Cord blood: 0.23 
(0.061–0.73) μg 
MeHg/L cord blood

17 genera were correlated with 
mercury concentration in stool 
or hair

(Rothenberg et 
al., 2016)

Fathead 
minnow and 
mouse

Minnow: 0.02, 0.72, 
0.87, or 5.50 μg/g, 
mercury in food 
twice daily for 30 
days
Mice: 0.02 μg/g, 0.43 
μg/g, or 4.39 ± 0.57 
μg/g mercury in food 
twice daily for 30 
days

Minnow gut microbiome 
adapted to detoxify MeHg;
Mouse midbrain L-glutamine, 
O-phosphatidylcholine, 
dopamine, tagatose, 
hydroquinone, L-ascorbic acid, 
inosine 5-monophosphate, and 
uracil decreased

(Bridges et al., 
2018)

Bacteria (in 
vitro; fresh 
human fecal 
samples in 
anaerobic 
chamber)

10 ng/g 
monomethylmerc ury 
and 1 ng/g mercury 
for 0, 12, 24, 36, and 
48 hours

Monomethylmercury 
concentration decreased under 
a balanced or protein rich diet, 
but not a carbohydrate rich diet

(Guo, G. et al., 
2018)

Arsenic and zinc

Mouse (4-
week-old 
females)

Zinc-adequate diet 
with 0, 50, or 500 
ppb arsenic or zinc-
deficient diet with 0, 
50, or 500 ppb 
arsenic And drinking 
water with 0, 50, or 
500 ppb sodium 
arsenite for 6 weeks

No interaction between arsenic 
exposure and zinc restriction; 
plasma zinc concentration was 
positively correlated with the 
genera Shewanella, 
Rheinheimera, and 
Bifidobacterium

(Gaulke et al., 
2018)

Arsenic, cadmium, 
cobalt, chromium, and 
nickel

Rat (adults)

15, 22, or 31 
mg/kg/day sodium 
arsenite; 35, 54, or 85 
mg/kg/day cadmium 
chloride; 44, 62, or 
88 mg/kg/day sodium 
dichromate, 27, 47, 
or 82 mg/kg/day 
cobalt chloride, or 
177, 232, or 300 
mg/kg/day nickel 
chloride for 5 days

47 genera were affected by at 
least one metal exposure; 
nickel uniquely altered 25 
genera; bacteria with higher 
iron importing genes were 
increased by arsenic and nickel

(Richardson et 
al., 2018)

Lead and cadmium Mouse (6-
week-old 
females)

For 8 weeks: 
Cadmium: 20 or 100 
ppm Lead: 100 or 
500 ppm

Decreased Lachnospiraceae 
and increased Lactobacillaceae 
and Erysipelotrichaceae

(Breton et al., 
2013)

Mercury and copper Mouse (8-
week-old 
females)

5 mg/kg copper, 2 
mg/kg mercury, or 
2.5 mg/kg copper and 
1 mg/kg mercury

Copper decreased Rikenella 
spp., Jeotgailcoccus spp., and 
Staphylococcus spp.; mercury 
decreased Rikenella spp, 
Jeotgailcoccus spp, and 
Staphylococcus spp

(Ruan et al., 
2018)

Mercury, lead, arsenic, 
and cadmium Humans 

(children and 
pregnant 
women)

Lead (μg/L): 22.6 or 
47.1 Mercury 
(nmol/L): 8.8 and 9.5 
Arsenic (nmol/L): 3.0 
and 6.5 Cadmium 
(nmol/L): 1.1 and 
1.2)

Lactobacillus rhamnosus GR-1 
protected against mercury and 
arsenic blood levels in 
pregnant women; Increased 
blood lead levels was 
associated with increased 

(Bisanz et al., 
2014)
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Category Toxicant Model Dose or exposure End point and bacteria result Source

Succinivibrionaceae and 
Gammaproteobacteria

Lead and PCBs
Human (males 
and females age 
60–84)

Lead geometric mean 
of 2.17 μg/dL; many 
PCBs; geometric 
mean range of 
individual PCBs in 
blood of 7.86–66.99 
ng/g lipid

Increased PCB-146 and lead 
concentrations result in lower 
Digit Symbol Coding Test of 
the Weschler Adult 
Intelligence Scale

(Przybyla et al., 
2017)

Noise

Noise Mouse (3-
month-old male 
senescence-
accelerated 
mouse prone 8)

<40 (background), 
88, or 98 decibels for 
30 days

Cognitive impairment and Aβ 
accumulation; changes similar 
to aged mice; decreased gut 
microbiota diversity; fecal 
transplant of noised-exposed 
mice induced epithelial 
integrity impairment and Aβ 
accumulation to unexposed 
mice

(Cui et al., 
2018)

Environmental 
chemicals -

PBDEs
BDE-47 and BDE-99

Mouse (9-
week-old male 
CV and GF)

100 μmol/kg for 4 
days

Lack of gut microbiome 
altered PBDE metabolite 
profiles; increased 
Akkermansia muciniphila and 
Allobaculum spp.; BDE-99 
increased unconjugated bile 
acids

(Li et al., 2018; 
Li et al., 2017)

DE-71
Zebrafish (male 
and female 
adult)

5.0 ng/L for 7 days Decreased Mycoplasma spp., 
Ruminiclostridium spp., 
unclassified Firmicutes sensu 
stricto spp., and Fusobacterium 
spp.; disrupted intestinal neural 
signaling, epithelial barrier 
integrity in males

(Chen, L. et al., 
2018a)

Environmental 
chemicals -

PCBs

PCB-126

Mouse (8-
week-old male 
Ldlr−/−)

1 μmol/kg at weeks 2 
and 4 of a 12 week 
study

Decreased S24.7, Clostridiales, 
Bifidobacterium spp., 
Ruminococcus spp., 
Oscillospira spp., and 
Lactobacillus spp. and 
increased Akkermansia spp.; 
positive associations between 
Bifidobacterium spp. and 
GLP-1, as well as 
Akkermansia spp. and fasting 
blood glucose

(Petriello et al., 
2018)

Multiple

Mouse

Adult females: Varied 
up to 50 mg/kg
11–13 month old 
males with voluntary 
exercise 5 weeks 
prior: 150 μmol/kg

Parasutterella, Ruminococcus, 
Prevotellaceae_UCG-001, 
Alloprevotella and 
Parabacteroides were 
decreased by PCBs; exercise 
attenuated PCB-induced 
changes in gut microbiome

(Chi et al., 
2018; Choi et 

al., 2013)

Pesticide -
Carbamates

Aldicarb Mouse (8-
week-old 
males)

2 ppm for 13 weeks 
in drinking water

Increased genes involved in 
virulence, adhesion, 
bacteriocins, antioxidant 
defense, protein degradation, 
DNA repair

(Gao et al., 
2018b)

Many
Bacteria from 
rumen of 
Holstein dairy 
cows (in vitro)

Concentration varied; 
screened for bacteria 
that degrade 
carbamates through 
esterase activity

26 isolates had esterase 
activity and degraded at least 1 
polyurethane and pesticide 
carbamate

(Ufarte et al., 
2017)

Pesticide -
Neonicotinoid

Imidacloprid

Fruit fly 
(Drosophila 
melanogaster, 
adults and 
larva)

10, 50, and 100 μM 
in food

Increased Acetobacter spp. and 
Lactobacillus spp.; survival 
decreased with co-exposure to 
bacterial infection or heat 
stress

(Daisley et al., 
2017)
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Category Toxicant Model Dose or exposure End point and bacteria result Source

Honey bee 
(Apis mellifera; 
adults)

500 μg/liter 
imidacloprid 
suspended in 
sterilized sucrose 
syrup for 3 days

Little or no impact on the gut 
microbiome of adult worker 
bees

(Raymann et 
al., 2018)

Pesticide -
Organochlorine

p, p’-DDE and β-HCH

Mouse (adult 
males)

p, p’-DDE: 1 mg/kg 
body weight/day
β-HCH: 10mg/kg 
body weight/day

Both chemicals decreased the 
genera Parabacteroides, 
Prevotella, Bacteroides, 
Clostridium XlVa and 
Clostridium IV and increased 
Barnesiella, Alloprevotella, 
Oscillibacter, Lactobacillus, 
Parasutterella and 
Akkermansia

(Liu, Q. etal., 
2017)

Pesticide -
Organophosp 

hate Azinphos-methyl

Human

0.021 to 6.192 ng 
azinphos-methyl/g 
blood serum

Decreased Streptococcus, 
Micrococcineae, Gemella, 
Haemophilus, Halomonas, 
Actinomycineae, and 
Granulicatella

(Stanaway et 
al., 2017)

Chlorpyrifos

Rat and human 
(in vitro; 
SHIME)

SHIME: 1 mg/day 
for 30 days
Rat dams and pups: 1 
mg/kg/day from 
gestation till 60 days 
of age

SHIME: increased 
Enterococcus spp. and 
Bacteroides spp.; decreased 
Lactobacillus spp. and 
Bifidobacterium spp.
Rats: Decreased Lactobacillus 
spp. and Bifidobacterium spp.

(Joly et al., 
2013)

Rat

Adult males exposed 
to 0.3 or 3 mg/kg/day 
for 9 weeks
Dams exposed orally 
from gestation to 
weaning and pups 
exposed thereafter at 
1 or 3.5 mg/kg/day
Dams exposed orally 
from gestation to 
weaning and pups 
exposed thereafter at 
1 or 5 mg/kg/day

Sutterella spp. consistently 
enriched regardless of diet 
(normal or high-fat)
In ileum, increased 
Enterococcus spp., Clostridium 
spp., Staphylococcus spp., and 
Bacteroides spp.; Decreased 
Bifidobacterium spp. in ileum 
and colon
Inulin supplementation in 
drinking water abrogated 
chlorpyrifos-induced 
metabolic disorders in adults 
exposed in utero

(Fang et al., 
2018; Joly 

Condette et al., 
2015; Reygner 

et al., 2016b)

Mouse (10-
week-old male 
mice)

1 mg/kg/day for 30 
days

Increase lipopolysaccharide 
and diamine oxidase in the 
serum; increased 
Lactobacillaceae and 
decreased Bacteroidaceae

(Zhao et al., 
2016)

Human (in 
vitro; SHIME)

0.35 and 1 mg/mL 
working solution

inulin co-treatment partially 
reversed dysbiosis and 
inhibited pro-inflammatory 
signaling when effluent was 
applied to Caco-2/TC7 
intestinal cells; Increased in 
Enterobacteriaceae, 
Bacteroides spp. and Clostridia

(Requile et al., 
2018; Reygner 

et al., 2016a)

Diamondback 
moth larva 
(Plutella 
xylostella)

Cabbage leaves 
dipped in 50 g/L 
solution for 10 
minutes

Larva resistant to insecticides 
had increased levels of 
Lactobacillales order; Isolated 
from P. xylostella, 
Enterococcus sp. increased, 
Serratia sp. decreased, and 
Enterobacter sp. had not effect 
on insecticide resistance

(Xia, X. et al., 
2018; Xia et al., 

2013)

Fruit fly 
(Drosophila 
melangaster)

10 μM in food with 
or without 
Lactobacillus 
rhamnosus GG

L. rhamnosus GG prevented 
chlorpyrifos toxicity; 
abutbiotic-treated and GF flies 
live longer than CV flies; gut-
derived Lactobacillus 

(Daisley et al., 
2018; Trinder et 

al., 2016)
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Category Toxicant Model Dose or exposure End point and bacteria result Source

plantarum metabolizes 
chlorpyrifos to the oxon

Zebrafish (adult 
males)

30, 100 and 300 μg/L 
for 21 days

Altered 25 microbial genera 
and increased 
malondialdehyde and 
decreased glutathione in the 
gut

(Wang, X. et 
al., 2019)

Diazinon Mouse (8-
week-old males 
and females)

4 mg/L in drinking 
water for 13 weeks

Altered expression of 677 
microbial genes; disrupted 
quorum sensing, and enriched 
motility, sporulation, and stress 
response genes; sex-specific 
changes in altered bacteria

(Gao et al., 
2017a; Gao et 

al., 2017b)

Fenitrothion
Mosquito 
(Anopheles 
albimanus)

Captured mosquitos 
were exposed to 
bottles containing 50 
μg fenitothion and 
categorized as 
susceptible or 
resistant

Resistant mosquitos had a 
lower bacterial diversity but an 
enrichment for OP-degrading 
bacteria and enzymes

(Dada et al., 
2018)

Malathion
Mouse (8-
week-old 
males)

2 mg/L in drinking 
water (~0.6 mg/kg/
day) for 13 weeks

Enrichment of genes encoding 
virulence, mobility, and cell 
wall; altered quorum sensing

(Gao et al., 
2018a)

Monocrotophos and 
other OPs

Mouse (8-
week-old 
females)

28 μg/kg/day in 
drinking water for 30 
days

Mice given fecal microbiota of 
monocrotophos-exposed mice 
had significant blood glucose 
intolerance

(Velmurugan et 
al., 2017)

Pesticide -
Pyrethrin

Permethrin

Rat (90-day-old 
males and 
females)

34 mg/ 4 mL/kg per 
day from 6 to 21 days 
of age

Decreased Provatella family, 
increased Bacteroides-
Prevotella-Porphyromonas spp. 
and Bifidobacterium spp.

(Nasuti et al., 
2016)

Mouse (adult 
males)

200 mg/kg 
permethrin and 2 
mg/kg 
pyridostigmine 
bromide for 3 days in 
2 week

Butyrate exposure before 
treatment improves 
proinflammatory phenotype 
mediated by TLR4

(Seth et al., 
2018)

Pesticide -
rotenoids

Rotenone

Rat (8-week-
old) Mouse

2.75 mg/kg 5 days a 
week for 4 weeks

Increased Bifidobacterium spp. 
in colon; changes in 
microbiota were consistent 
with PD patients

(Johnson et al., 
2018)

Mouse

15–17 week old 
males (after training 
and restrain stress): 
10 mg/kg/day for 6 
weeks
7-week-old males: 10 
mg/kg/day for 4 
weeks
8–9 week-old males: 
30 mg/kg/day for 4 
weeks

Increased relative abundance 
of fecal Akkermansia 
Decreased Bifidobacterium 
spp.
Gastrointestinal dysfunction 
and microbiome dysbiosis 
occurred before motor 
dysfunction; increased 
Lactobacillus spp. and 
decreased Desulfovibrio spp. 
associated with gastrointestinal 
dysfunction and motor 
dysfunction

(Dodiya et al., 
2018; Perez-
Pardo et al., 

2018; Yang et 
al., 2017)

Pesticide-
Herbicides

Atrazine Zebrafish (4 
months)

0.42 ± 0.02 μg/L for 
7 days

Altered gut microbiota 
composition and function, but 
did not differ overall from 
control; decreased body weight 
and gonadosomatic index of 
females; induced intestinal 
inflammation in males

(Chen, L. et al., 
2018b)

Tree frog 
tadpoles and 
adults 

178.2 ± 7.8 μg/L for 
6 days No effect on gut bacteria of 

tadpoles or adults

(Knutie et al., 
2018)
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Category Toxicant Model Dose or exposure End point and bacteria result Source

(Osteopilus 
spetentionalis)

Glyphosate

Bacteria (in 
vitro isolated 
from poultry)

5.0, 2.40, 1.20, 0.60, 
0.30, 0.15 and 0.075 
mg/ml

Pathogenic bacteria are 
resistant to glyphosate whereas 
beneficial bacteria are 
susceptible

(Shehata et al., 
2013)

Enterococcus 
spp. (in vitro 
from cattle and 
horses)

Serial dilutions from 
0.001 to 10 mg/mL

All tested Enterococcus spp. 
inhibit Clostridium botulinum; 
higher concentrations of 
glyphosate inhibited E. faecalis 
growth but not C. botulinum

(Kruger et al., 
2013)

Rat

1.75 mg/kg bw/day 
from gestational day 
6 to postnatal day 
125
0.1 ppb, 400 ppm and 
5000 ppm in drinking 
water in adults for 
673 days
2.5 mg/kg/day in 
adults for 2 weeks

Increased Prevotella spp. and 
decreased Lactobacillus spp.
Increased Bacteroidetes family 
S24–7 and a decreased 
Lactobacillaceae across all 
doses
No observable short term 
effects; aromatic amino acids 
alleviate the antimicrobial 
effect of glyphosate

(Lozano et al., 
2018; Mao et 

al., 2018; 
Nielsen et al., 

2018)

Cultural 
bacteria from 
green turtles 
(Chelonia 
mydas)

0.00022, 0.00044, 
0.056,0.1125, 1.8, 
and 3.6 g/L of 
glyphosate from 
Rodeo® for 24 hours

Reduced growth and decreased 
survival at ceoncentrations 
greater than 0.00022

(Kittle et al., 
2018)

Mouse (4-
week-old 
males)

250 or 500 
mg/kg/day for 1 day, 
6 weeks, or 12 weeks

Increase of anxiety and 
depression-like behaviors 
associated with decreased 
Firmicutes, Bacteroidetes 
Corynebacterium spp. and 
Lactobacillus spp.

(Aitbali et al., 
2018)

Honey bee 
(Apis mellifera; 
larva and 
adults)

Larva: 0.8, 4, and 20 
mg/L
Adults: 5 and 10 
mg/L

development rate, but higher 
doses decreased survival; 
decrease in beta diversity of 20 
mg/L group; increased 
Acidobacteria and 
Gemmatimonadaceae Adult: 
sensitivity was dependent on 
microbiome containing an 
insensitive 5-
enolpyruvylshikimate-3-
phosphate synthase gene; 
increased for opportunistic 
pathogen Serratia marcescens

(Dai et al., 
2018; Motta et 

al., 2018)

Pesticide -
Fungicide Copper sulfate Piglets (28-

days-old)

Up to 175 mg/kg 
food for 2 weeks

May increase villi and crypt 
depth in duodenum; decreased 
Enterobacteriaceae and 
Streptococci spp.

(Hojberg et al., 
2005) (Di 

Giancamillo et 
al., 2018)

Pesticide -
Mixture

Boscalid, captan, 
chlorpyrifos, 
thiofanate, thiacloprid, 
and ziram

Mouse (16-
week-old males 
and females)

Ziram <0.01 mg/kg 
food, chlorpyrifos 47 
μg/kg food, 
thiacloprid 56 μg/kg 
food, boscalid 240 
μg/kg food, 
thiofanate 205 μg/kg 
food, captan 165 
μg/kg food for 52 
weeks

In females, increased microbial 
associated metabolites 3-
indoxyl sulphate and phenyl 
derivatives 
phenylacetylglycine and p-
cresol glucuronide

(Lukowicz et 
al., 2018)

Coumaphos, tau-
fluvalinate, and 
chlorothalonil

Honey bee 
(Apis mellifera)

Colonies treated with 
tau-fluvalinate and 
coumaphos given 
strips with ~10% of 
the active ingredient; 
Colonies treated with 
chlorothalonil at 10 

Pesiticde-dependent changes in 
microbiome and fungal 
communities; chlorothalonil 
increased genes for oxidative 
phosphorylation and decreased 
sugar and peptidase 
metabolism

(Kakumanu et 
al., 2016)
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Category Toxicant Model Dose or exposure End point and bacteria result Source

μg/L in 30% sucrose; 
all treatments for 6 
weeks

Lambda-cyhalothrin, 
deltamethrin, 
chlorpyrifos ethyl, 
spinosad and lufenuron

Bacteria from 
insecticide-
resistant fall 
armyworm 
(Spodoptera 
fruqiperda)

In vitro culturing 
with insecticide doses 
of 10, 20, 40, 80, and 
160 ug/mL

16 microbial strains were 
isolated and shown to be 
resistant against at least 1 
insecticide

(Almeida et al., 
2017)

Plant and 
Animal Toxins

Bamboo (cyanide)

Giant panda 
(Ailuropoda 
melanoleuca) 
and red panda 
(Ailurus 
fulgens)

N/A

Metagenome enriched with 
cyanide degrading enzymes; 
high abundance of 
Pseudomonas

(Zhu, L. et al., 
2018)

Domoic acid

Mollusks

N/A Blue mussels (Mytilus edulis) 
and soft-shell clams (Mya 
arenaria) carry bacteria that 
can degrade domoic acid

(Stewart et al., 
1998)

Nicotine Mouse (8-
week-old males 
and females)

60 mg/L for 13 
weeks in drinking 
water

Microbiome of male mice 
enriched for oxidative stress 
response, DNA repair genes, 
and acetate synthesis

(Chi et al., 
2017c)

SCFA

propionic acid (PPA)

Human (in 
vitro; 
lymphoblasoid 
cell lines from 
male children 
with autism)

0.1, 0.5 and 1 mM
Mitochondrial function 
increased with PPA; however 
high PPA and long exposure 
duration increased proton 
leaking

(Frye et al., 
2016)

Solvents

Ethanol

Mouse (6–8-
week-old 
females)

5% for 10 days and 5 
g/kg via oral gavage 
9 hours prior to 
euthanizing

Neuroinflammation and 
increased SI cytokines were 
abbrogated in antibiotic-treated 
mice

(Lowe et al., 
2018)

Mouse (8–10-
week-old 
males)

5% for 6 weeks 
and/or Lactobacillus 
rhamnosus GG 1×109 

cfu daily

Increased Alcaligenes sp. and 
Corynebacterium sp.; 
Lactobacillus rhamnosus GG 
prevented hepatic injury

(Bull-Otterson 
et al., 2013)

Human (adults)

Group mean 177–188 
g/day

Dorea spp. and Blautia spp. 
were increased in alcohol 
dependent subjects and 
correlated with intestinal 
permeability

(Leclercq et al., 
2014)

Mouse (7-
week-old 
females)

Up to 20% for 8 
weeks

Altered genera in 
Lachnospiraceae family and 
decreased Alistipes spp.; 
decreased Clostridium spp. 
with saccharin co-
consumption; decreased 
Adlercreutzia spp. was 
positively correlated with 
alcohol preference

(Labrecque et 
al., 2015; Wang 

et al.,2018;Xu 
et al., 2018)

Rat (adults)

20% for 13 weeks 
(voluntary 
consumption)

Decreased microbiome 
diversity; decreased 
Lactobacillus spp.

(Kosnicki et al., 
2018)

Formaldehyde Mouse (6 weeks 
old)

1 or 3 ng/mL 
intragastrically

Increased abundance of 13 
genera and decreased 4 genera

(Guo, J. etal., 
2018)

Trichloroethylene

Mouse 
(gestational day 
0 to postnatal 
day 154 or 259; 
females)

0.05 or 500 μg/ml High dose, 259 day exposure, 
decreased Bacteroides spp. and 
Lactobaccilus spp. and 
increased Bifidobactrium spp. 
and Enterobacteriaceae

(Khare et al., 
2019)
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Table 3.

List of neurotoxicants and type of toxicity.

Toxicant Neurotoxicity Sources

Amiodarone Myelinopathy (Graham and Lantos, 1997)

Peripheral neuropathy (Fraser et al., 1985)

Antibiotics (unspecified) Postpartum depression (Murphy et al., 2018)

Arsenic Wallerian degeneration of axons (Klaassen, 2013)

Atrazine Decreased serotonin (Chen, L. et al., 2018b)

Carbamates Inhibition of hippocampal neurogenesis, memory 
dysfunctions, impaired myelination

(Seth et al., 2019)

Cisplatin Peripheral neuropathy (Graham and Lantos, 1997)

Copper imbalance Aceruloplasminemia, Alzheimer’s disease, amyotrophic 
lateral sclerosis, Huntington’s disease, Menkes disease, 
occipital horn syndrome, Parkinson’s disease, prion 
disease, and Wilson disease

(Desai and Kaler, 2008)

Disulfiram Peripheral neuropathy (Graham and Lantos, 1997)

Doxorubicin Progressive ataxia (Graham and Lantos, 1997; Spencer and 
Schaumburg, 2000)

Ethanol Worsened short-term memory, impaired neuronal 
signaling

(Huf et al., 2019)

Glial dysfunction, neuroinflammation (Gomez et al., 2018)

Formaldehyde Neurobehavioral impairment and seizures (Tang et al., 2011)

Gold sodium thiomalate Decreased unmyelinated axons (Levine et al., 1986)

Lead ADHD (Banerjee et al., 2007; Scassellati et al., 2012)

Cerebral edema, lead encephalopathy, peripheral 
neuropathy

(Johnston and Goldstein, 1998)

Magnesium deficiency Depression (Winther et al., 2015)

Manganese Parkinson’s disease (Calderon-Garciduenas et al., 2016; Dobson et 
al., 2004)

Methylmercury Neuronal degeneration, ataxia, paresthesia, 
psychomotor retardation, developmental disabilities, 
and cognitive deficits

(Klaassen, 2013)

Metronidazole Peripheral neuropathy (Goolsby et al., 2018)

MPTP(1-Methyl-4-
phenyl-1,2,3,6-
tetrahydropyridine)

Parkinson’s disease (Kopin, 1987)

Nitrofurantoin Peripheral neuropathy (Spencer and Schaumburg, 2000)

Organochlorines Blocks chloride channels of the GABA-A receptor, 
seizures, weak association with Parkinson’s disease

(Costa, 2015)

Organophosphates ADHD (Banerjee et al., 2007; Scassellati et al., 2012)

Over-stimulation of neurons (Ruark et al., 2013)

Altered serotonin signaling Slotkin et al., 2008

Ozone Alzheimer’s disease (Calderon-Garciduenas et al., 2016)

PM2.5 Alzheimer’s disease (Calderon-Garciduenas et al., 2016)

Parkinson’s disease (Shin et al., 2018)
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Toxicant Neurotoxicity Sources

Polybrominated diphenyl 
ethers (PBDEs)

Developmental neurotoxicity (Dorman et al., 2018)

Inhibited adult neurogenesis (Li et al., 2013)

Polychlorinated biphenyls 
(PCBs)

ADHD (Banerjee et al., 2007; Scassellati et al., 2012)

Neurological deficits (differences in neuromotor 
development, decrements in cognition and behavioral 
deficits)

(Korrick and Sagiv, 2008)

Lower cognitive functioning (Przybyla et al., 2017)

Pyrethroids Gulf War Illness (GWI), hippocampal volume, neural 
stem cell activity, and neurogenesis

(Parihar et al., 2013)

Rotenoids Apoptosis in serotonergic and dopaminergic neurons (Bisbal and Sanchez, 2019)

Parkinson’s disease (Betarbet et al., 2000)

Trichloroethylene (TCE) CNS depressant by inhibiting GABAA and glycine 
receptors

(Beckstead et al., 2000; Krasowski and 
Harrison, 2000)
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