Skip to main content
. 2019 Nov 8;36(6):1772–1778. doi: 10.1093/bioinformatics/btz796

Table 3.

Comparative analysis of the grid search optimization of selected ML algorithms with SS, SP and RFE pre-processing operators for P1(A) and P2(B)

Model Balanced accuracy V/T Precision V/T Recall V/T ROC AUC V/T PRC V/T Pipeline complexity
A. P1
 LR pipelines
  LR 0.68/0.72 0.85/0.87 0.85/0.90 0.68/0.87 0.84/0.95 1
  LR +SS 0.68/0.77 0.86/0.92 0.76/0.80 0.68/0.84 0.84/0.94 2
  LR + SS + SP 0.68/0.78 0.86/0.92 0.76/0.81 0.68/0.84 0.84/0.94 3
  LR + SS + RFE 0.73/0.77 0.88/0.91 0.80/0.81 0.73/0.84 0.86/0.94 3
 BNB pipelines
  BNB 0.72/0.77 0.88/0.91 0.76/0.78 0.72/0.85 0.85/0.95 1
  BNB + SS 0.66/0.72 0.85/0.89 0.73/0.73 0.66/0.79 0.83/0.92 2
  BNB + SS + SP 0.71/0.76 0.88/0.92 0.76/0.75 0.71/0.84 0.85/0.95 3
  BNB + SS + RFE 0.70/0.73 0.88/0.90 0.75/0.76 0.70/0.82 0.85/0.94 3
B. P2
 LR pipelines
  LR 0.73/0.74 0.76/0.78 0.84/0.84 0.73/0.85 0.73/0.89 1
  LR +SS 0.69/0.76 0.73/0.81 0.79/0.80 0.69/0.84 0.70/0.89 2
  LR + SS + SP 0.72/0.76 0.76/0.81 0.80/0.79 0.72/0.83 0.73/0.89 3
  LR + SS + RFE 0.74/0.74 0.78/0.80 0.81/0.80 0.74/0.84 0.74/0.89 3
 BNB pipelines
  BNB 0.70/0.74 0.75/0.80 0.77/0.79 0.70/0.80 0.71/0.85 1
  BNB + SS 0.63/0.66 0.69/0.75 0.69/0.67 0.63/0.74 0.66/0.81 2
  BNB + SS + SP 0.74/0.75 0.80/0.83 0.74/0.75 0.74/0.82 0.74/0.87 3
  BNB + SS + RFE 0.65/0.67 0.71/0.76 0.74/0.73 0.65/0.77 0.68/0.83 3

Note : SS, standard scaler; SP, select percentile; RFE, recursive feature eliminator; LR, logistic regression classifier; BNB, Bernoulli Naïve Bayes classifier.