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Abstract

Motivation: Metagenomic and metatranscriptomic sequencing have become increasingly popular tools for produc-
ing massive amounts of short-read data, often used for the reconstruction of draft genomes or the detection of
(active) genes in microbial communities. Unfortunately, sequence assemblies of such datasets generally remain a
computationally challenging task. Frequently, researchers are only interested in a specific group of organisms or
genes; yet, the assembly of multiple datasets only to identify candidate sequences for a specific question is some-
times prohibitively slow, forcing researchers to select a subset of available datasets to address their question. Here,
we present PhyloMagnet, a workflow to screen meta-omics datasets for taxa and genes of interest using gene-
centric assembly and phylogenetic placement of sequences.

Results: Using PhyloMagnet, we could identify up to 87% of the genera in an in vitro mock community with variable
abundances, while the false positive predictions per single gene tree ranged from 0 to 23%. When applied to a group
of metagenomes for which a set of metagenome assembled genomes (MAGs) have been published, we could detect
the majority of the taxonomic labels that the MAGs had been annotated with. In a metatranscriptomic setting, the
phylogenetic placement of assembled contigs corresponds to that of transcripts obtained from transcriptome
assembly.
Availability and implementation: PhyloMagnet is built using Nextflow, available at github.com/maxemil/
PhyloMagnet and is developed and tested on Linux. It is released under the open source GNU GPL licence and docu-
mentation is available at phylomagnet.readthedocs.io. Version 0.5 of PhyloMagnet was used for all benchmarking
experiments.
Contact: max-emil.schon@icm.uu.se
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput DNA sequencing has revolutionized biology,
opening up new fields of research and enabling new fundamental
insights in the life sciences. During the past decades, several sequenc-
ing technologies have been developed, each differing significantly in
sequence read length, quality and throughput (Mardis, 2017).
Applications comprise DNA shotgun sequencing as well as RNA
sequencing of complex microbial communities, termed metagenom-
ics and metatranscriptomics, respectively (Mitchell et al., 2018).

Large environmental sequencing initiatives like the Tara Oceans
project (Sunagawa et al., 2015) have provided researchers with
enormous amounts of metagenome data. Using recently developed
genome-resolved or genome-centric metagenomic approaches, draft
genomes or metagenome assembled genomes (MAGs) of uncultured

taxa can be assembled for the first time from shotgun metagenomic
sequencing data of microbial communities (Alneberg et al., 2014;
Eren et al., 2015). In order to apply those tools, however, metage-
nome assembly needs to be performed, which is computationally
demanding and introduces additional challenges compared to single
genome assembly such as the uneven coverage of contigs (contigu-
ous sequences) from different organisms or the presence of micro-
diversity (Quince et al., 2017). Together with the ever-growing
sequencing capacity, it becomes increasingly demanding to identify
which of the available datasets (publicly deposited or locally gener-
ated sequence datasets) actually contain sequence data of a given
taxon or gene of interest.

Instead of assembling short reads into longer contigs, the taxo-
nomic composition of a metagenomic or metatranscriptomic dataset
can be assessed using microbiome profilers that classify reads directly.
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In general, these tools base their classification on the comparison of
reads to reference sequences with a known taxonomy, and either
work similar to the BLAST algorithm (e.g. Huson et al., 2016;
Truong et al., 2015) or use exact k-mer matches to such reference
sequences to classify reads (e.g. Ounit et al., 2015; Wood and
Salzberg, 2014). Development in this area is continuing in order to
increase analysis speed while reducing memory footprint. Currently,
DIAMOND is one of the fastest local aligners that has a sensitivity
comparable to BLAST (Buchfink et al., 2015), and MetaCache is
one of the fastest and most memory efficient k-mer based classifiers,
using only a discriminatory subset of available k-mers (Müller et al.,
2017). All of these approaches, however, are based on sequence
similarity, which can be incongruent with the true phylogenetic rela-
tionship of sequences (Smith and Pease, 2017).

Traditional phylogenetic tools on the other hand offer several
robust evolutionary models for both nucleic and amino acids that
theoretically allow for a more reliable taxonomic assignment of
sequences, but are slow compared to similarity-based methods, usu-
ally prohibiting their application to large metagenome datasets.
In addition, short reads generally do not provide enough phylogenet-
ic signal, leading to artefactual inferences (Matsen et al., 2010).
Several tools have been developed to overcome these barriers by in-
stead placing fragmentary sequences (particularly from amplicon
sequencing data) onto a phylogenetic reference tree (Barbera et al.,
2019; Berger et al., 2011; Matsen et al., 2010).

Shotgun metagenomic or metatranscriptomic data is often ana-
lysed with a focus on gene rather than genome reconstruction, and is
then usually called gene-centric. In this approach, the short reads or
the assembled sequences are partitioned according to their affiliation
to gene families. These methods can be used to determine which
genes are present or actively transcribed in a sample, and can be
combined with assemblers to reconstruct full-length sequences for a
gene of interest. There exist several gene-centric targeted assemblers
that perform de-novo reconstruction, e.g. via an overlap graph of
candidate reads (Gruber-Vodicka et al., 2019; Kucuk et al., 2017;
Pericard et al., 2018; Steinegger et al., 2019). While several of those
only reconstruct the 16S rRNA gene or are limited to transcriptomic
data, the MEGAN gene-centric assembler reconstructs contigs based
on the alignment of reads to any reference protein sequence (Huson
et al., 2017).

A recently published tool, GraftM, uses the ideas of phylogenetic
placement and gene-centric metagenomics to taxonomically classify
sequences of genes within metagenomes (Boyd et al., 2018). It is
capable of placing either short-read sequences or pre-assembled
metagenomic contigs onto a single reference tree at a time, but does
not perform gene-centric assembly, which would increase phylogen-
etic signal of query sequences. Additionally, its reference trees
can only be inferred using the extremely fast but less accurate
maximum-likelihood-based tree inference programme FastTree
(Price et al., 2010; Zhou et al., 2018). Here, we present
PhyloMagnet, an efficient workflow management system for paral-
lel handling of both references and queries, gene-centric assembly,
and robust phylogenetic inference, and show that it outperforms
GraftM in terms of runtime and classification precision and
sensitivity.

The goals of the work presented here were to:

1. Create a computational workflow that could determine the pres-

ence of taxa of interest in large short-read datasets based on

gene-centric assembly and robust phylogenetic inference, espe-

cially with the objective of selecting good candidate datasets for

metagenomic assembly and genome-resolved metagenomics.

2. Create a workflow that uses state-of-the-art methods and is ver-

satile and fast enough to accommodate a broad range of applica-

tions, while being modular in order to easily incorporate new

approaches.

3. Compare the workflow’s performance in terms of computational

footprint and sensitivity/precision to GraftM, another recently

published tool with a similar application.

2 Implementation

PhyloMagnet exploits the idea of gene-centric assembly (Huson
et al., 2017) to efficiently screen sequence datasets of short reads
for target genes, and to taxonomically classify assembled gene
sequences using phylogenetic placement. Below is a description of
the analysis steps employed by the pipeline (see also Fig. 1), which
requires the following inputs:

1. One or several query short-read sequence data files in FASTQ or

FASTA format (potentially ‘raw’, untrimmed reads, see Section

2.3), corresponding to the metagenomic or transcriptomic data-

set(s) to query [Fig. 1(1)].

2. One or several homologous groups of reference proteins, each

sequence annotated with its taxonomic affiliation (in the

EggNOG format, containing NCBI’s taxonomy ID and a unique

identifier, e.g. ‘70448.Q0P3H7’).

2.1 Alignment and tree reconstruction of references
For each input group of reference sequences a multiple sequence
alignment is computed using either MAFFT (Katoh and Standley,
2013) or PRANK (Löytynoja and Goldman, 2010), without apply-
ing any filtering or trimming methods. Then a reference tree is
reconstructed using any of IQ-TREE (Nguyen et al., 2015),
RAxML-NG (Kozlov et al., 2019; Stamatakis, 2014) or FastTree
(Price et al., 2010), making it possible to choose the appropriate
method for a specific analysis. This way the user can make a trade-
off between speed and quality of the reference tree and choose the
appropriate evolutionary model. Reference alignments and trees can
be precomputed (e.g. on a local machine) and then provided to
PhyloMagnet as a compressed reference package (e.g. on an HPC
cluster). This also increases reproducibility, as such reference pack-
ages can be released alongside results.

2.2 Alignment to reference protein sequences
Identifiers from the EggNOG database, containing orthologous
groups of protein sequences from all domains of life with functional
annotations (Huerta-Cepas et al., 2016b), can be specified to be
used as input reference sequences. Alternatively, sets of homologous
protein sequences curated by the user in FASTA format can be used.
In order to check for the potential presence of homologues encoding

Fig. 1. Illustration of the main steps in the PhyloMagnet workflow. (1) The required

input is a dataset of short reads. (2) These reads are aligned against the complete set

of protein references (blastX). (3) Using the protein alignments, homologous gene

sequences are reconstructed for all groups of reference proteins. (4) The contigs are

added to the reference protein alignments (5) and are subsequently placed onto the

reference phylogenetic tree. (6) The results of the placement are summarized and the

classification is visualized
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these proteins of interest in the query metagenomes or metatran-
scriptomes, each of the short-read datasets given as input [see
Section 2(1)] is then aligned to the collection of reference protein
sequences using the DIAMOND aligner in blastX mode [Fig. 1(2);
Buchfink et al., 2015].

2.3 Gene-centric assembly of reads
In a subsequent step, PhyloMagnet uses the gene-centric assembler
implemented in MEGAN (Huson et al., 2016, 2017) to assemble
reads into contigs [Fig. 1(3)]. The assembly is performed independ-
ently for each orthologous group of reference proteins, and the
available alignments of reads to the protein reference sequences of a
group is used to infer overlaps between reads, thereby concatenating
them into contigs. As only the aligned part (core) of each read is
used for the assembly, no pre-processing such as adapter clipping or
quality trimming is needed. The results are written to a FASTA file
per orthologous group if any contig in that group passes the cut-off
for the minimum length (200 bp, can be adjusted if needed) that the
gene-centric assembler uses. The assembled contigs are already in-
frame and are subsequently translated into amino acid sequences
using the standard genetic code.

2.4 Phylogenetic placement of reconstructed protein

sequences
Next, the assembled and translated contigs are aligned to the align-
ments of each homologous reference group (maintaining the col-
umns of the previously computed reference alignment), using the
phylogeny-aware alignment tool PaPaRa [Fig. 1(4); Berger and
Stamatakis, 2011]. This alignment of reference sequences and con-
tigs is then used to place the contigs onto the reference tree using the
evolutionary placement algorithm (EPA-ng) [Fig. 1(5); Berger et al.,
2011; Barbera et al., 2019]. In a final stage, the tool gappa is used to
annotate the internal branches of the reference tree and assign taxo-
nomic labels to the translated contigs based on the likelihood
weights of the placement (Czech and Stamatakis, 2019). Then a
summary list of taxonomic labels is created.

2.5 ‘Magnetizing’ trees and identifying candidate

datasets
The user can choose to specify taxonomic names (e.g. ‘Escherichia’)
that should be used to filter (‘magnetize’) the list of all labels, specify
a taxonomic rank (e.g. ‘family’) or a combination of both. The
occurrences of the chosen taxonomic labels are summarized per ref-
erence group and metagenomic or transcriptomic datasets in order
to assist manual decision of candidate datasets [Fig. 1(6)]. The infor-
mation of how many trees were positive for a taxon of interest can
be used as an approximation of coverage (see Section 4). The user
could, e.g. select datasets that display differential coverage for subse-
quent genome extraction, which often relies on such differences to
group genome contigs together (Albertsen et al., 2013; Alneberg
et al., 2014).

2.6 Availability
PhyloMagnet is an open source software package and released under
a GPLv3 licence. It is written as a Nextflow (Di Tommaso et al.,
2017) script and available on github (github.com/maxemil/
PhyloMagnet). Several functions and utilities are implemented either
in python or bash (Dalke et al., 2009; Huerta-Cepas et al., 2016a;
McKinney, 2010). All needed dependencies are available as a singu-
larity (Kurtzer et al., 2017) container (singularity-hub.org/collec-
tions/978) and the documentation can be found on ReadTheDocs
(phylomagnet.readthedocs.io).

3 Benchmarking

To evaluate the performance of the PhyloMagnet workflow and ex-
emplify its potential uses, we performed three benchmark experi-
ments using an in vitro mock community as well as environmental

metagenomic and metatranscriptomic sequencing datasets. We
chose the datasets such that we could compare the results produced
by PhyloMagnet to reference genome mapping data (Singer et al.,
2016), genomes extracted from metagenomes with taxonomic anno-
tation (Delmont et al., 2018) and an assembled metatranscriptome
(Frazier et al., 2017), respectively. For details on command line
parameters, see Supplementary Material.

3.1 Reference sequences
To assess the general taxonomic composition of datasets we used a
set of 16 ribosomal proteins (rp16) that are thought to represent reli-
able phylogenetic markers, as they should be vertically inherited
throughout evolution and present in a single copy in most organisms
(Brown et al., 2015). For this, we downloaded the corresponding
sets of unaligned homologous sequences from the EggNOG data-
base v4.5.1 (Huerta-Cepas et al., 2016b).

As a second set of reference protein sequences, we used the set of
12 protein coding genes known to be present in chloroplast genomes
of Dinophyceae (Howe et al., 2008). This phylum of single-celled
algae can be found in a wide range of aquatic environment and not-
ably contains coral symbionts within the genus Symbiodinium
(Gómez, 2012). For each of the genes we downloaded all available
curated chloroplast encoded protein sequences for all phyla from
UniProt (Apweiler et al., 2004) as well as all available proteins from
the Dinophyceae from the same database.

All reference groups were aligned using MAFFT E-INS-i (Katoh
and Standley, 2013) and reference trees were reconstructed using
IQ-TREE (under the LGþGþF model; Nguyen et al., 2015).

3.2 Datasets
The first dataset we selected was the MBARC-26 (Mock Bacteria
ARchaea Community), an in vitro mock community of 23 bacterial
and 3 archaeal strains (in 24 genera) with finished reference
genomes that were pooled and sequenced on an Illumina HiSeq in-
strument (Singer et al., 2016). As the taxonomic classification is de-
pendent on the reference sequences, we added orthologous
sequences to the EggNOG rp16 references for those genera missing
from the original EggNOG datasets. To avoid using identical
sequences as references, we used available genomes from related spe-
cies within the same genera to expand the rp16 references. The
orthologous proteins were identified by performing HMMER
(v3.1b2; Eddy, 2011) searches of the EggNOG rp16 reference align-
ments against the additional proteomes (see Supplementary
Material). These extended rp16 references were then used as referen-
ces in PhyloMagnet in order to classify the MBARC-26 short-read
data.

As a second dataset we used several metagenomic datasets from
the geographic region ‘Southern Ocean’ that are part of the metage-
nomic datasets of the Tara Oceans Initiative, as defined by Delmont
et al. (2018). We used the EggNOG rp16 references to assess taxo-
nomic composition in those datasets and compared the results
with the taxonomic classification of the MAGs reconstructed by
Delmont et al. (2018). The authors extracted 375 genome bins from
these datasets, but only presented detailed information, including
taxonomy, for 13 ‘non-redundant’ MAGs that passed several quality
and completeness filters. To be able to compare our classification
results to a more extensive set of extracted genome bins, we inferred
taxonomic labels for those bins that were not part of the 13 non-
redundant MAGs using the tool sourmash that uses k-mer matches
to taxonomically classify genomes (Titus Brown and Irber, 2016).

Finally, we analysed the metatranscriptomes published by
Frazier et al. (2017), who sequenced mRNA from both healthy cor-
als and such that are affected by the so-called ‘bleaching’, a stress re-
sponse in which Symbiodinium symbionts are expulsed (Howe
et al., 2008). We used the chloroplast protein references to search
for Dinophyceae (and especially Symbiodinium) sequences in the
metatranscriptome data. We then compared the assembled sequen-
ces and their placement in the reference trees with the sequences
from the metatranscriptomic assembly available at NCBI’s GEO
database (Barrett et al., 2012). Similar to how the assembly was
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generated, we combined all of the 27 individual datasets by Frazier
et al. (2017) into a single dataset for this analysis. In order to iden-
tify the transcripts in the assembly, we performed a tblastN search,
querying the reference sequences against a database of the quality-
filtered transcripts. The identified sequences were then, analogous to
how sequences are classified in PhyloMagnet, placed onto the refer-
ence tree with EPA-ng.

3.3 Comparison with GraftM
We compared the performance of PhyloMagnet with that of the re-
cently published tool GraftM (Boyd et al., 2018, v0.11.1). GraftM
also places sequences (either unassembled reads or pre-assembled
contigs) onto a reference phylogeny using the tool pplacer, for which
EPA-ng represents a scalable replacement that is able to handle
larger amounts of data. We created GraftM reference packages
(gpkgs; containing the reference alignment, tree and the taxonomic
annotation) from each of the extended rp16 references using the cre-
ate command (see Supplementary Material). We then used each
gpkg to analyse the MBARC-26 dataset and recovered taxonomic
classifications of the query sequences. For both tools, we counted
the number of genera that were correctly identified in each tree (true
positives) as well as the number of genera that were identified even
though they were not present in the MBARC-26 mock community
(false positives). We also assessed the runtime and memory con-
sumption of both tools for analysis of the full MBARC-26 dataset
(50 Gb) as well as for subsamples of 1 and 10% (0.5 and 5 Gb,
respectively).

4 Results

4.1 Classification of ribosomal proteins in the

MBARC-26 dataset
We evaluated the performance of PhyloMagnet and GraftM to de-
tect the presence of the 24 MBARC genera (23 of those detectable,
as Nocardiopsis was part of the pooled community but not present
in the sequence data from Singer et al., 2016) in the metagenomic
dataset (Supplementary Fig. S1 and Table S1). The number of cor-
rectly detected as well as falsely reported genera are displayed in
Figure 2. PhyloMagnet correctly identified up to 20 (87%) of the
MBARC genera and up to 7 (with an average of 2) false positive
genera in all of the 16 trees. In contrast, GraftM identified a max-
imum of 9 (39%) of the correct MBARC genera while giving up to
14 (with an average of 4) false positives for each tree (Fig. 2). Some
of the reported false positive and false negative errors of both
PhyloMagnet and GraftM could be attributed to closely related and
possibly unresolved taxonomic groups such as Escherichia/
Salmonella, Thermobacillus/Paenibacillus or possibly Clostridium/
Ruminiclostridium. Another confounding factor might be the well-
known disagreement between phylogeny and taxonomy in some

cases (e.g. Escherichia/Salmonella; Retchless and Lawrence, 2010).
Some taxa with very low abundance in the data (e.g.
Corynebacterium and Clostridium) were picked up by GraftM but
not PhyloMagnet, which is likely due to the fact that there are not
enough reads to reconstruct longer contigs for theses taxa, impeding
an identification by PhyloMagnet as we used the default cut-off
implemented in the gene-centric assembler. In general we observe a
correspondence between the percentage of mapped reads (Singer
et al., 2016) and the number of trees a genus was detected in
Supplementary Figure S2, suggesting that we can use the number of
trees as a rough proxy for the abundance of a taxon in a dataset.
When comparing results for the full dataset and the subsampled
datasets, PhyloMagnet seems to profit immensely from the addition-
al data, likely because the assembler can connect more reads and
thus reconstruct more contigs above the length threshold. In terms
of runtime, PhyloMagnet is twice as fast as GraftM when using 10
threads, making more efficient use of available computational
resources. It uses, however, significantly more memory due to the
requirements of MEGAN that performs the memory intensive se-
quence assembly, which GraftM does not include (see
Supplementary Fig. S1).

We tested the performance of PhyloMagnet in a scenario where
no sequences from the correct genus or family were available by
removing the respective sequences from the rp16 references.
PhyloMagnet was then run on each such reference dataset and we
assessed whether the correct family or order was recovered. Our
results show that if not the right genus (or family) is present but only
other sequences from the corresponding family (or order), the right
taxon could be recovered in 30 and 20% or the reference trees (see
Supplementary Fig. S3). To further compare the performance of
PhyloMagnet with that of a k-mer based metagenome profiling tool,
we used Kraken2 (Wood et al., 2019; Wood and Salzberg, 2014) to
classify the MBARC-26 dataset. Kraken performs the classification
at a significantly higher speed and with a very good recovery rate of
true positives, but also predicts a significant amount of false positive
labels (see Supplementary Fig. S4).

4.2 Classification of taxa in the Tara Southern

Ocean dataset
The PhyloMagnet workflow could identify 65 taxa (families) over
the 8 datasets and 16 reference trees, whereof 21 were found in at
least 4 trees for at least 1 dataset (Fig. 3). These taxa cover all but
one of the taxonomic groups for which genomic bins could be iden-
tified by Delmont et al. (2018) (marked with an asterisk in Fig. 3).
Most noticeable, the authors of that study recovered 6 non-
redundant high-quality MAGs for the family Flavobacteriaceae which
could be identified in every single tree for each dataset here as well.

Fig. 2. Classification results of PhyloMagnet and GraftM on the MBARC-26 data-

set. True positive and false positive (on the negative y-axis including zero) values are

shown for both PhyloMagnet (blue circles) and GraftM (red triangles) and for each

reference OG (x-axis). The three different dataset sizes are shown by lighter (1%),

middle (10%) and darker (full dataset) shades of the respective colour. (Color ver-

sion of this figure is available at Bioinformatics online.)

Fig. 3. Classification results of the Tara Southern Oceans datasets. The heatmap on

the right shows the identified taxa for each of the eight datasets, and only taxa

which could be identified in at least four trees in at least one dataset are shown. For

each combination of dataset and taxon, the value represents the number of trees a

sequence from that dataset has been labelled with this taxon name. On the left a

taxonomic tree (as defined by the NCBI taxonomy database) showing the relation-

ship of lineages is depicted. Lineages represented by non-redundant and raw bins

from Delmont et al. (2018) are marked with an asterisk
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Furthermore, the original authors identified one MAG each within
the Alteromonadaceae, the Rickettsiales and the Alphaproteobacteria
as well as two within Gammaproteobacteria. All of these taxonomic
groups were detected by PhyloMagnet except for the Rickettsiales,
who could have been mis-identified as Pelagibacterales in the phylo-
genetic placement. Alternatively, the genomic bins could have been
mis-labelled as Rickettsiales and actually belong to the
Pelagibacterales, as those two lineages commonly artefactually branch
together in phylogenetic trees due to convergent genome streamlining
resulting in a similar sequence composition bias (Martijn et al., 2018;
Rodrı́guez-Ezpeleta and Embley, 2012; Roger et al., 2017; Viklund
et al., 2013). It is very likely that the MAGs that were labelled as

Gammaproteobacteria by Delmont et al. (2018) are actually members
of the Piscirickettsiaceae or Porticoccaceae, which were both detected
by PhyloMagnet in several individual datasets and the majority of
single gene trees. Here, we also recovered the additional taxonomic
labels (Porticoccaceae, Rhodobacteraceae, Pelagibacteraceae,
Cryomorphaceae) that could be assigned to raw genomic bins (which
were not included in the original analyses as they did not pass quality
and/or completeness thresholds) from the same study (Supplementary
Table S2). Some of the labels we recovered were not represented by
any MAGs/Bins, indicating either false positive classification of con-
tigs or a low abundance of the genomic DNA, such that no genome
bins could be reconstructed by Delmont et al. (2018).

Fig. 4. Phylogenetic placement of contigs and transcripts. As an example of the coral bleaching metatranscriptome analyses, the tree of the plastid gene psbB is shown. The

sequences reconstructed by PhyloMagnet (left) and the assembled and quality-filtered transcripts from Frazier et al. (2017) (right) were placed onto the reference tree. All

sequences were placed on branches sister to two Symbiodinium sequences (U6EFR9 and A0A0A0N1X1)
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4.3 Identification of chloroplast genes in the coral

bleaching dataset
Using PhyloMagnet contigs were reconstructed from the pooled coral
bleaching dataset of Frazier et al. (2017). Using the Phylogenetic
placement workflow, contigs classified as Symbiodiniaceae could be
identified in 10 out of the 12 chloroplast gene reference trees. The
number of contigs that were reconstructed for each gene from the
pooled sequencing data of 23 datasets ranged from 2 (psbE) to as
many as 169 (psbA), whereas we could identify either one or two
transcripts from the corresponding published transcriptome assembly
for 9 out of the 12 genes. The two genes for which no contigs could
be reconstructed were psbI and petD, both missing in the assembled
transcriptome as well, which is likely due to two distinct issues. First,
the psbI gene is only around 30 amino acid residues long, making
contigs shorter than the default length cut-off of 200 bp implemented
in the gene-centric assembler. Besides, psbI has never been identified,
experimentally or computationally, in any Symbiodinium species, but
the identification within the Dinophyceae comes from the species
Amphidinium operculatum (Barbrook et al., 2014; Nisbet et al.,
2004). Second, it seems that the transcription level of petD is quite
low, so that very few reads would have been sequenced, making as-
sembly of contigs or transcripts virtually impossible (Nisbet et al.,
2008). In those cases where transcripts could be identified, they were
generally placed on the same branches or very close within the refer-
ence tree as were all of the corresponding contigs (Fig. 4).

5 Conclusion

We have shown that by applying phylogenetic placement methods
to protein sequences that were reconstructed from short-read
sequencing data, our PhyloMagnet workflow can accurately identify
short-read sequence datasets that contain sequences for genes and
taxa of interest. We compared PhyloMagnet to a similar tool that
does not rely on using a gene-centric assembly approach and demon-
strated that PhyloMagnet is faster and has a higher precision and
sensitivity (at the price of consuming more memory).

PhyloMagnet allows researchers to explore the microbial diver-
sity of a specific clade, or to specifically assess the presence of a
metabolic pathway of interest. For example, PhyloMagnet was able
to identify several lineages from single gene trees that match the
results of a genome-resolved metagenomic study, showcasing how
our tool could be used to screen the contents of a metagenomic data-
set before applying metagenome assembly and binning methods.

Finally, we have also shown that the gene-centric phylogenetic ap-
proach of PhyloMagnet can be successfully used to efficiently detect
expressed genes of taxa of interest in metatranscriptomic datasets.

Hence, PhyloMagnet represents a powerful tool that will enable
researchers to pre-screen large metagenomic and metatranscriptom-
ics datasets prior to engaging in time and resource consuming com-
putational analyses in their research.
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