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Abstract

There is increased awareness of the possibility of developmental memories resulting from

evolutionary learning. Genetic regulatory and neural networks can be modelled by analo-

gous formalism raising the important question of productive analogies in principles, pro-

cesses and performance. We investigate the formation and persistence of various

developmental memories of past phenotypes asking how the number of remembered past

phenotypes scales with network size, to what extent memories stored form by Hebbian-like

rules, and how robust these developmental “devo-engrams” are against networks perturba-

tions (graceful degradation). The analogy between neural and genetic regulatory networks

is not superficial in that it allows knowledge transfer between fields that used to be devel-

oped separately from each other. Known examples of spectacular phenotypic radiations

could partly be accounted for in such terms.

Author summary

The development of individual organisms from embryo to adult state is under the control

of many genes. During development the initially active genes activate other genes, which

in turn change the composition of regulatory elements. The behavior of genetic regulatory

systems shows similarities to that of neural networks, of which the most remarkable one is

developmental memory, the ability to quickly adapt to environments that have occurred

in the past, occasionally several generations earlier. This is because each previously

evolved developmental pathway leaves an “imprint” in the gene regulatory network. We

investigated the properties of this system; the number of different developmental path-

ways that can be “memorized”, how this number depends on the number of expressed

genes, how fast the system can switch between these pathways, and its robustness against

various disturbances affecting either the embryo state or the gene interaction networks.
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Our results suggest that developmental memory may also provide the mechanism behind

some rapid speciation processes.

Introduction

Alan Turing, the father of machine learning, also formulated one of the most important math-

ematical models in developmental biology: the reaction-diffusion model for pattern generation

[1]. This is striking because, although both gene regulatory networks [2–5] and associative

neural networks [6–8] have extensive literature, only recently a conceptual analogy between

evolutionary developmental processes and artificial neural network-based learning models has

been articulated. [9–14]. Since development is the process whereby the phenotype is specified

by the evolving genotype, late-evolved morphologies or functional capacities retain aspects of

earlier stages (“memory”) that were likely shaped by natural selection. These earlier stages

might become reactivated if they are again useful in a different or a changing environment

[15]. In this formulation evolutionary changes provide no novel structures that are non-

homologous to an ancestral or existing one [16,17], but allow for recursion. For instance,

mimetic color patterns of an extinct morph of the butterfly Heliconius cydno, presumably as a

result of human disturbance, can be reconstructed from wild-caught butterflies [18], meaning

that the morph could recur in nature if the former conditions reappear. Also surprising is the

repeatability of evolution among closely related lineages [19,20]. An iconic textbook example

is the extraordinary morphological convergence associated with adaptation to distinct ecologi-

cal niches in cichlid fishes [21], with a large taxonomic diversity in the African Great Lakes

Tanganyika (the oldest radiation, around 9–12 Myr ago with about 250 species), Malawi (less

than 0.8 Myr ago and over 700 species) and Victoria (about 700 species evolved within the past

15,000 years) [22].

The idea that developmental processes can retain a memory of past selected phenotypes

[13], together with the exceptional ability of genomes to find adaptive solutions that quickly

converge upon remarkably similar states (“attractors” [23]) in closely related lineages, clearly

suggests a non-linear genotype-phenotype mapping capable of producing multiple distinct

phenotypes [13,24]. Non-linearity is also the hallmark of reaction-diffusion (Turing) and sig-

naling systems involved in patterning processes [25], and developmental evolutionary biology

(evo-devo) views the genotype-phenotype mapping as highly non-linear [26,27]. Furthermore,

it might not be farfetched to think of some sort of developmental memory in the cichlid adap-

tive radiation. The explosive diversification in Lake Victoria was predated by an ancient

admixture between two distantly related riverine lineages, one from the Upper Congo and one

from the Upper Nile drainage [28]. Many phenotypic traits known to contribute to the adapta-

tion of different ecological niches in the Lake Victoria radiation are also divergent between the

riverine species [29,30]. Thus, when referring to the anatomical and morphological variation

of Haplochromine cichlids, which are at the origin of the Lake Victoria radiation [28], Green-

wood writes [30, p. 266]: “It is amongst the species of these various lacustrine flocks that one

encounters the great range of anatomical, dental and morphological differentiation usually

associated with the genus. The fluviatile species appear to be less diversified, but even here

there is more diversity than is realized at first.” If the high diversity in the Haplochromine cich-

lids of Lake Victoria is, to some extent, the result of re-evolved (similar) phenotypes in the

ancestral fluviatile lineages, then the enduring question of why such an explosive diversifica-

tion happened within a short time interval might have a simpler solution than previously

thought. We aim here to sketch what the solution could be.
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The genomic program for development operates primarily by the regulatory inputs and

functional outputs of control genes that constitute network-like architectures [31], which are

mathematically equivalent to artificial neural networks [10,11]. Although the insights of Voh-

radsky [10,11] and Watson et al. [13] shed light on an important analogy between neural and

genetic regulatory networks, the conclusion of the theory of autoassociative networks cannot

yet be readily extended to developmental systems. This is because of the different state space

representations, as well as the nature of the task to be solved. Models of autoassociative net-

works tend to work with positive/negative state variables (inherited from ferromagnetic sys-

tems, but see [6]). In contrast to this, in ontogenetic systems the relevant space is that of

nonnegative real numbers, corresponding to concentrations of different molecules, see e.g.

[32]. Due to the nonlinear activation function features of models working with the above men-

tioned, alternative state representations can markedly differ. Another important consideration

is that autoassociative networks (as their name indicates) solve the problem of the recovery of

a particular state (attractor property). During ontogeny we require something more: not only

should the adult stage be stable, but the system should reach this state from a particular embryo

state (referred to as heteroassociative property). Moreover the system has to find transitions

from different embryo states to corresponding, different adults states. In short, we require net-

works that solve problems of auto/heteroassociativity in one.

In the present investigation we extend the theory of gene regulatory networks to involve

both auto- and heteroassociativity. We derive a heuristic formula for regulatory weights to

obtain a functional system with the desired properties and we follow how Darwinian dynamics

shapes the regulatory networks to acquire these properties. We compare the resulting regula-

tory matrices and analyze their robustness against different kinds of perturbation. Evolution of

developmental pathways is interpreted within the context of ontogenetic dynamics.

Methods

Developmental model

Our model is a formal description of ontogenetic development operating primarily by the reg-

ulatory inputs and functional outputs of control genes. Consider an organism with N genes. Its

developmental state at time t, expressed by its gene product composition (e.g., proteins), can

be represented by the vector p(t) = (p1,p2,. . .,pN)T with each element being the quantity of the

product of a gene. These quantities are assumed to change due to protein decay and gene

expression processes. Following [13], the ontogenetic dynamics of the developmental state can

be described by the difference equation

piðt þ 1Þ ¼ ð1 � dÞpiðtÞ þ tf ð½MpðtÞ�iÞ; ð1Þ

where τ denotes the decay rate, τ denotes the maximal gene expression rate, f(.) is the activa-

tion function, and the matrix M stands for the regulatory network. An mij entry of the matrix

gives the regulatory effect of the product of gene j on the expression level of gene i; positive

and negative elements imply activation and inhibition, respectively. The cumulative regulatory

effects on any single gene i, i.e. the ith element of the product Mp, determine the gene expres-

sions via a sigmoid activation function modelled here as f(x) = (1+tanh (ωx))/2, where ω is the

slope parameter.

From an ontogenetic viewpoint, the role of the gene regulatory network is to guide the indi-

vidual along a developmental pathway from an initial embryonic state p(0) = e to a specific

adult state p(T)!a. In real systems, an ensemble of different developmental pathways is

desired, each responsible for achieving some environment-specific adult state from a particular
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embryonic state. We used T = 150 iterations to reach the steady state, when the output does

not change in time.

Evolutionary model

In the evolutionary model we considered a population of K individuals, with each member of

the population represented by its regulatory matrix. All the interaction matrix elements were

zero initially, representing an undeveloped regulation. Every individual shared the same envi-

ronment, but the environment can change in time. We assumed Q = 3 number of different

selective environments, each defining an embryonic state e(q) and a corresponding adapted

adult state a(q). The selective environments alternated randomly; if the average fitness of the

population approached the optimum (w > 0:95 for at least 20 consecutive generations), or

after 10000 generations, a new environment was chosen at random. In each generation the

individuals underwent mutation, development and selection steps as follows.

Mutation: The mutation of the regulation network was implemented by adding a normally

distributed random value, with zero mean and μW variance, to a randomly selected matrix ele-

ment. Matrix elements were clipped into the range [−1,1].

Development: The equilibrium, adult state of each member of the population was obtained

by iterating Eq (1).

Selection: The fitness of individual k was expressed by a similarity index derived from the

Euclidean distance between the actual adult state p(T) and the environment-specific optimal

adult phenotype a(q) as

wk ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

n¼1

pnðTÞ � a
ðqÞ
n

t=d

" #2
v
u
u
t ð2Þ

Then the regulatory matrix of a randomly selected individual was replaced by that of the indi-

vidual with the highest fitness (elitist selection). Although a stochastic Moran process [33]

would be a more realistic selection scheme, for computational reasons simulations were per-

formed using a relatively small population size (K = 100) that would result in too much genetic

drift.

Embryonic and (optimally adapted) adult vectors: The number of genes was N = 100 with a

low average expression level of σ = 0.1, where 40% of the expressed genes were common, 20%

were partially common (appear in two pairs only), and 40% were unique in all the embryonic

and all the adult vectors. Specifically, the expression sites of the employed state vectors were

e1 ¼ f13; 19; 32; 36; 39; 49; 55; 72; 81; 87g, e2 ¼ f13; 19; 31; 32; 40; 60; 62; 72; 87; 100g,

e3 ¼ f5; 13; 19; 32; 36; 40; 47; 67; 72; 94g, a1 ¼ f6; 12; 20; 24; 46; 65; 84; 86; 88; 92g,

a2 ¼ f6 ; 11; 28; 46; 79; 84; 86; 91; 92; 96g; a3 ¼ f6; 12; 46; 56; 61; 66; 80; 84; 91; 92g;

where underlines and overlines denote the common and partially common elements,

respectively. E.g. gene 13 is expressed in all embryo states (common element), gene 12 is

expressed in two adult states (partially common element). The initial state was always a per-

turbed embryonic state. The perturbation was performed, similar to the mutations, by adding

a normally distributed random value, with zero mean and μe variance, to a randomly selected

element of the environment-specific embryo vector. Vector elements were clipped into the

range [0,τ/δ].

Perturbation analysis

To investigate the robustness of the resulting gene regulatory networks we evaluated their per-

formance against three different kind of perturbations. The embryo states were perturbed by
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flipping the vector elements from low to high, or vice versa, with the given probability. The

interaction matrices were perturbed by either adding random values to all matrix elements,

drawn from a normal distribution with the given standard deviation, or by nullifying a propor-

tion of the elements. Note that, in the evolutionary algorithm we perturbed only single ele-

ments of the embryonic states. In contrast, in the analytical matrix construction we perturbed

all elements of the embryonic vectors to incorporate the accumulating effects of many conse-

cutive perturbations on the interaction matrix.

Results

To perform the developmental task, the network must guarantee that (i) each adult state is a

stable equilibrium point of the dynamics (stability condition), and (ii) each embryonic state is

within the basin of attraction of its corresponding adult state (attraction condition); these two

conditions correspond to the auto- and heteroassociative properties in a neural network [34].

Note that this is a more difficult task than a simple pattern recovery problem, which is known

to be achievable by a neural network with the standard Hebbian learning rule that fulfils only

the stability condition [7]. Not only must all the adult states have a basin of attraction, but

these basins must include the corresponding embryonic states.

We found that the task-optimized structure of the regulatory network can be inferred from

the embryo-adult state vector pairs in the form of an interaction matrix M (Fig 1). Consider

the simplest case with one embryo-adult pair (i.e. one developmental pathway). Depending on

whether a gene is expressed in the adult state or not, all the other expressed gene products, in

either the embryonic or the adult state, must enhance or block its expression, respectively.

This would provide, on the one hand, stability for the adult state and, on the other hand,

attraction from the embryonic state. Note, however, that if a gene is expressed in neither the

embryonic nor the adult state, then its regulatory effect is irrelevant, therefore the correspond-

ing matrix elements are undetermined. In summary, an mij element of the regulatory matrix

M should be positive or negative, depending on whether the ith gene is expressed in the adult

state or not, except when the jth gene is expressed in neither the embryonic nor the adult state.

The above line of thought can be generalized for arbitrary Q number of embryo-adult state

pairs. Denoting the zero-one normalized embryonic and adult state vectors by e and a, such a

matrix can be obtained by averaging two dyadic products for all developmental pathways as

M ¼
1

2Q

XQ

q¼1

ð2âðqÞ � 1Þ � âðqÞ þ ð2âðqÞ � 1Þ � êðqÞ; ð3Þ

where Q stands for the number of embryo-adult state pairs and q denotes the different pairs.

The first and second dyadic products are responsible for the stability and attraction conditions,

respectively. Note the similarity of our treatment and Kurikava and Kaneko 2012 and 2013

approach [35,36]. Within each dyadic product the right term determines whether an entry is

relevant from the viewpoint of the state vector, whereas the left dyadic term determines its

sign. The resulting matrix contains positive values, negative values and zeros for activator,

inhibitory and undetermined elements, respectively. Notice that the developmental pathways

can be in conflict with each other as to whether a gene should be up- or downregulated by

another gene. It is instructive to compare this formula with the standard Hebbian learning rule

H = a�a for ai2{−1,+1}. Its modification for ai2{0,+1} vectors that preserves that stability con-

dition is H = (2a−1)�a, which is identical to the first term in Eq (3), c.f. Table 1, and see [6].

(This is the standard procedure in ANNs with unsigned states as it converts the training pat-

terns to signed values even though the state vector is unsigned. Natural selection will not oper-

ate like this–we are just showing how to hand-construct a solution that works.)
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We investigated the parameter dependence of the analytic model. As for the regulatory

matrix we used a slightly modified version of Eq (3). Treves [8] claims that the interaction

terms should be modified by the average expression σ, i.e. the proportion of expressed genes.

This is because if a larger proportion of genes is expressed, then proportionally smaller interac-

tion strengths are needed for the same regulatory effect on any single gene. Incorporating this

Fig 1. Illustration of the construction rules of interaction matrices based on theoretical considerations on the

optimal pairwise interaction types between genes. e(1) and a(1) are the first embryo-adult pair, e(2) and a(2). the

second pair. Depending on the combination of gene expressions eðnÞi and aðnÞi in an embryo-adult vector pair (n = 1,2),

an mij element of the interaction matrix can be positive (0+0, activation), negative (0−0, inhibition), or undefined (0U0).

To ensure correct development ðMðnÞ
e eðnÞ ! aðnÞÞ the MðnÞ

e matrices must have the structure indicated in the figure. (If

eðnÞj ¼ 1 and aðnÞi ¼ 1, then mðnÞij = 0+0; if eðnÞj ¼ 1 and aðnÞi ¼ 0, then mðnÞij = 0−0; if eðnÞj ¼ 0, then mðnÞij = 0U0; irrespective of

the value of aðnÞi .) A similar argument holds for the stability criteria ðMðnÞ
a aðnÞ ! aðnÞÞ and results in the MðnÞ

a matrices.

By combining MðnÞ
e and MðnÞ

a the resulting M(n) fulfills both the attractivity and stability criteria. The combination rules

are the following: (+,+)!+; (−,−)!−; (±,U)!±; and (±,�)!C, which can be done practically by taking the element-

wise average of the two matrices. The ultimate combination of all M(n)s results in a matrix that fulfills the attraction

and stability criteria for all different embryo-adult pairs.

https://doi.org/10.1371/journal.pcbi.1008425.g001

Table 1. Comparison of the resulting analytic interaction matrices for an autoassociative task with the two

representations.

{-1,+1} representation {0,+1} representation

learning rule Hij ¼
X

q

aðqÞi a
ðqÞ
j ðHebb� ruleÞ Mij ¼

X

q

ð2aðqÞi � 1ÞaðqÞj

symmetry Hij
= H non-symmetric

neutralities in weight

matrix

no neutral elements can be neutral elements (“opposite to” zero vector

elements)

main diagonal always positive (if allowed) can be negative or positive

structure has a unique structure many different realizations

https://doi.org/10.1371/journal.pcbi.1008425.t001
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consideration into Eq (3) gives

M ¼
1

2Q

XQ

q¼1

ð2âðqÞ � 1Þ � ðâðqÞ � sþ êðqÞ � sÞ ð4Þ

The performance of a regulatory network constructed by the above rule changes with the num-

ber of developmental pathways and gene expression levels (Fig 2). With increasing number of

embryo-adult pairs, the accumulating conflicts between them inevitably corrupt the regulatory

ability of the network; some adult states will be unreachable from their embryonic states. Nev-

ertheless, the network is able to tolerate a fair number of conflicts, related to its structural sta-

bility. Since conflicts can occur only between non-orthogonal state vectors, the performance of

the network also depends on the amount of overlap in the expression patterns of states belong-

ing to different pairs. This highlights the importance of the proportion of expressed genes; i.e.,

the sparseness of the state vectors. If these vectors are very sparse, then they are likely to be

orthogonal, therefore the number of learnable embryo-adult pairs does not reduce. The num-

ber of learnable pairs is a decreasing function of sparseness, because the numerous non-

orthogonal state vectors and the largely different gene expressions in the adult states lead to

several conflicts among them. Regarding the effect of system size on functionality, the results

are in line with the expectations; the higher the number of genes, the higher is the number of

“error free” developmental pathways (Fig 3).

We have also analyzed the “memory capacity”, i.e. the number of learnable developmental

pathways as a function of the system size (N). There are several studies on the memory capacity

of Hopfield networks [e.g. 37,38], but these results are not applicable to our hetero/autoasso-

ciative system, and the capacity definitions themselves are valid only in the N!1 limit, while

our systems are relatively small (N�500). Therefore, we define the memory capacity of a given

system as the average number of developmental pathways which can be reconstructed at

r = 0.95 performance (denoted by Q0.95, c.f. Fig 2C). Fig 4 shows that Q0.95 depends linearly on

N: Q0.95 = ϑ(σ)�N+b(σ).

Fig 2. Performance of the analytic developmental networks. We assumed different sparseness (proportion on non-

zero entries in the state vectors) values and different number of embryo-adult pairs. Embryo and desired adult vectors

were generated by independently setting each vector element to high or low randomly according to the sparseness

value. The performance was measured by the averaged (over 400 realizations) Pearson correlation(s) between the

desired and the experienced adult state(s) for all developmental pathways (panel A). Panels B and C show a more

detailed view for the two cross-sections of the parameter space (indicated by dashed lines in panel A). Orange

horizontal lines show the maximum number of orthogonal state vectors for the given sparseness values. Parameters:

N = 100, δ = 0.2, τ = 1, ω = 25).

https://doi.org/10.1371/journal.pcbi.1008425.g002
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Since decreasing sparseness increases the probability of controversial interactions (cf.. 1) ϑ
(σ) is a decreasing function of σ, in line with the expectations. The ϑ values, which are in the

range [0.0588, 0.0236] depending on σ, can be treated as a proportionality factor of memory

capacity. These are significantly lower values than the proportionality value of 0.138 in the

widespread used linear formula for autoassociative networks, see e.g. [39]. Notice, however,

that these values should be compared with caution on one hand due to the different interpreta-

tion of memory capacity, and on the other hand owing to the “double task” nature (hetero-

and autoassociative tasks) of our system.

A key question is whether a functional network is attainable by Darwinian selection via a

series of mutation-selection steps. In our evolutionary model we used a more realistic Darwin-

ian dynamics than the solitary stochastic hill climbing [13]. From the viewpoint of the theory

of artificial neural networks this process can be regarded as a Darwinian dynamics-driven

learning process. The evolutionary algorithm yields interaction matrices that contain positive

and negative values where the heuristic formulation predicts them (Fig 5). While the individ-

ual interaction matrices vary, their average is in line with the heuristically derived matrix. The

values are arranged into a characteristic structure; positive and negative entries form horizon-

tal stripes, intermitted with vertical stripes of near-zero values (c.f. Fig 1). Those genes have the

Fig 3. Performance of the analytic developmental networks with different number of genes and developmental

pathways. Relevant parameters as in Fig 2 and σ = 0.1.

https://doi.org/10.1371/journal.pcbi.1008425.g003

Fig 4. The memory capacity (Q0.95) as a function of the number of neurons (N) at different sparseness (σ). Similar

to Fig 2, each point is an average of 400 realizations. The lines are the linear regression fits (R2>0.99 in all cases).

https://doi.org/10.1371/journal.pcbi.1008425.g004
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largest effect on the developmental process, which are expressed in any embryonic or adult

states (c.f. marked columns in Fig 5). Depending on whether the affected gene is expressed in

any of the adult states, they have a strong positive or negative effect (c.f. marked rows in Fig 5).

The rest of the genes drift freely in individual realizations due to a lack of selective pressure.

Consequently, the average values in these positions are approximately zero (c.f. grey columns

in left panel of Fig 5). The corresponding values in the analytic treatment (undefined elements)

are zero by definition. The only major difference from the heuristic matrix is that the main

diagonal elements of the evolutionary matrix are mainly negative, which means that the

expression of every gene is under negative feedback by its own inhibitory product. A possible

explanation is that without a strong negative feedback a gene could be easily overexpressed

due to the perturbations of the interaction elements. This is more probable if the sparseness of

the expression vectors is low, as it was in our case. This picture is likely to change with hierar-

chical developmental regulation, the evolution of which takes longer time and should be inves-

tigated in the future.

A detailed view of the evolutionary process is shown in Fig 6. During the early generations,

where the gene regulation is undeveloped, it takes many generations (i.e., mutation-selection

steps) to approach the environment-specific optimum. In addition, selection for one environ-

ment can have adverse effects on performance in another environment if the basin of attrac-

tion of the actually selected adult state engulfs the neighborhood of the embryonic states of

other adult states. But those interactions which are not beneficial in any of the environments

are eliminated. Deleterious mutations may arise any time also in a well-functioning system,

but selection eliminates them over the timescale of a few environmental changes.

A developmental process must be sufficiently robust against stochastic perturbations of

both the embryonic state and the gene interaction matrix [5,12]. It requires that the neighbor-

hood (according to a given metric) of the embryonic states must also be in the basin of their

Fig 5. Structure of the interaction matrix obtained with the evolutionary algorithm as compared to the

analytically derived one for three developmental pathways. (A) The evolutionary interaction matrix was obtained by

averaging the output of 300 independent runs of the evolutionary algorithm. The three applied environment-specific

embryonic and adult state vectors are shown along the sides. Orange guidelines highlight those rows where the

corresponding genes are expressed in at least one adult state, whereas green guidelines highlight those columns where

at least one gene is expressed in any of the embryonic or adult states. (B) The theoretically predicted interaction matrix

was constructed from the embryonic and adult state vectors using Eq (3). Parameters as in Fig 2 andQ = 3, K = 100,

μW = 0.05, μe = 0.1, σ = 0.1.

https://doi.org/10.1371/journal.pcbi.1008425.g005
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corresponding adult states. Therefore, some inputs of variation should produce little or no

phenotypic variation at all, a phenomenon that has received a lot of attention under the labels

of canalization, robustness or buffering [31,32,40–42]. The recovery performance of the net-

work changes with increasing amount of perturbations (Fig 7). The system is very robust

against perturbations regarding the embryonic state, it is moderately robust against additive

perturbations and has limited robustness against eliminated interactions regarding the interac-

tion network. The sharp difference between the robustness of evolutionary and analytic mod-

els in the latter case is the consequence of the peculiarities of the evolutionary process. In the

evolutionary matrix the regulatory weights are less evenly distributed as compared to the ana-

lytic one, due to the stochastic nature of the evolutionary process. It makes the system more

sensitive to eliminating perturbations. Resilience understandably decreases with the number

of developmental pathways in all cases, but conforming to “graceful degradation” in artificial

neural networks; i.e., performance first decreases mildly and drops fast only beyond a critical

strength of perturbation [7]. To sum up, variation is apportioned into discontinuous (basins of

attraction) and continuous (small perturbations around the target) phenotypes (Fig 6B). Evo-

devo mainly focuses on the first kind of variation whereas standard evolutionary genetics

focuses on the second [26,43].

Discussion

Treating gene regulatory networks as formally analogous to artificial neural networks [10,11]

allows translating the well-known dynamics of the latter [44] to model genomic programs for

development. There is widespread natural variation in morphogenic pathways [45], and the

developmental memory of past selected phenotypes [13] is akin to the memory capacity of

neural networks. This developmental memory allows populations to re-evolve phenotypes

much faster than it would be possible if they had to evolve de novo. Previous speculation on

the effect of the heat-shock protein Hsp90 as a capacitor for releasing hidden morphogenetic

variation that could allow fast morphological radiations [45] has been criticized on the

grounds that the function of Hsp90 is to prevent morphological aberrations. Furthermore,

Fig 6. Learning of three different developmental pathways in the evolutionary model. (A) Average fitness and the

mutation-selection steps needed to achieve a well-functioning developmental network during random environmental

changes. The three environments are denoted by red, green and blue. Parameters as in Fig 5. (B) Schematic illustration

of the changes in the state-space dynamics during the evolutionary process with three developmental pathways

(indicated by red, blue and green colors). The panels show the basins of attraction of an initial, random regulation

system with two embryo-adult pairs (left), a well-functioning one (top right) and a bad one, where the basins of

attraction of the adult states (filled dots encircled by dotted lines indicating variation around the target phenotypes)

include not only their corresponding embryo states (bottom right).

https://doi.org/10.1371/journal.pcbi.1008425.g006
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some sense of purposive evolution, fully incompatible with the lack of foresight of natural

selection, lays behind this sort of interpretations [46].

These criticisms do not apply here because in our developmental model past selected states

can recur in the population if they appear useful again in a different environment or body con-

text. As any theoretical model, ours obviously has inherent limitations and highly simplifies

the representation of biological systems. However, to the extent that it captures sufficient con-

ditions to generate the phenomenon of morphological radiations, more complex explanations

are not required. Thus, the assumption that structural novelties (or “key innovations”) are

associated with adaptive radiations into new ecological niches (e.g. [47, p. 159]) might be

Fig 7. Robustness of the developmental dynamics against perturbations. The interaction matrices were constructed

from the given number of embryo-adult vector pairs according to Eq (4). The performance was expressed by the

Pearson correlation(s) between the desired and the experienced adult state(s) for all developmental pathways after

T = 150 iterations averaged over 300 matrices and 100 perturbations for each parameter combination. (A)

Performance against the proportion of the flipped embryonic vector elements. (B). Performance against the standard

deviation (SD) of the perturbation of the interaction matrix. All elements of the matrix were perturbed additively by an

N(0,SD) random number. (C) Performance against the proportion of nullified elements of the interaction matrix. Each

element of the interaction matrix was set to zero with the given probability. Relevant parameters are as in Fig 5.

https://doi.org/10.1371/journal.pcbi.1008425.g007
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unwarranted. There is a noteworthy implication in the foregoing consideration for the under-

standing of atavism. Crocodilian teeth can grow in mutant birds, which suggests the reactiva-

tion of the associated developmental machinery [48], that required the resurrection [49] of a

key aspect of regulation. The same neurons participate in the storage of different engrams in

neural networks. The same holds for the storage of devo-engrams in genetic regulatory net-

works. Resurrection leading to atavism requires only limited reactivation of a few connections

in a network that is maintained by the current selective forces. An exciting question is how

evo-devo learning can generalize from the “training set” (previously selected target pheno-

types) to novel ones [13,50]. The prediction described by these authors is that generalization

potential works within a set that can be characterized by the same formal grammar.

While the theory of neural networks can (and does) infer the same conclusions based on

different representations, in the case of modelling real biological situations the adequacy of the

representation can be crucial (the same holds for neuronal networks). Our results show that a

linear change to the representation has profound impact on the essential features of the system.

While in the customary (neural) {-1,+1} representation there are no neutral elements in the

interaction matrix, the biologically adequate {0,+1} representation of genetic regulatory net-

works allows for the free choice of interaction elements being opposite to “0”. This feature

turns out to increase the robustness of the system against the disturbance of interaction coeffi-

cients only if the system is very sparse, which guarantees the commonly zero elements in the

embryo and adult states. Another feature of our representation is the large number of different

interaction matrices entailing the same developmental process, thus evolution “from scratch”

does not face so many constraints. In other words, starting with a single ancestor an extraordi-

narily rapid morphological diversification could be attained, which is the hallmark of adaptive

radiations.
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